ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή"

Transcript

1 Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει έα σαφή σκοπό, τη ερµηεία τω δεδοµέω, οπότε η συλλογή του υλικού είαι έα πρώτο βήµα για τη επίτευξη του. Κατά καόα το δεύτερο βήµα της ααλύσεως και ερµηείας είαι η ταξιόµηση και η πιακοποίηση τω πληροφοριώ που έχου συγκετρωθεί. Ο τρόπος µε το οποίο ταξιοµούται τα δεδοµέα οοµάζεται στη στατιστική «καταοµή» τω δεδοµέω αυτώ. Η καταοµή τω δεδοµέω είαι σηµατική γιατί αποκαλύπτει τρόπους µε τους οποίους τα δεδοµέα µεταβάλλοται. Παλαιότερα αυτό γίοται µε χαρτί και µολύβι σήµερα αποκλειστικά µε ειδικά λογισµικά ηλεκτροικώ υπολογιστώ. Τέτοια λογισµικά είαι το Excel του Mcrosoft Offce, το SPSS, το Mntab, το Statstca, το SAS, το Statgraphcs κ.α. Η ταξιόµηση συίσταται στη διάταξη τω δεδοµέω σύµφωα µε τα κοιά χαρακτηριστικά που έχου οι παρατηρήσεις που περιλαµβάοται στα δεδοµέα. Η ταξιόµηση αυτή γίεται κατά διάφορους τρόπους, αλλά κυρίως χρησιµοποιούται τέσσερις: ο χροολογικός, ο τοπογραφικός, ο ποιοτικός και ο ποσοτικός. Έστω π.χ. ο απολογισµός µιας επιδηµίας στους κατοίκους µιας περιοχής, κατά τη οποία όσησα άδρες ηλικίας 0-4 ετώ 73, ηλικίας 5-9 ετώ 7, ηλικίας 0-4 ετώ 67, και 5-9 ετώ 63 αλλά και γυαίκες ηλικίας 0-4 ετώ 78, 5-9 ετώ 76, 0-4 ετώ 53 και 5-9 ετώ 48. Είαι φαερό ότι από τα παραπάω δεδοµέα είαι πολύ δύσκολο α βγου κάποια συµπεράσµατα. Α όµως τα δεδοµέα ταξιοµηθού σε πίακα και απεικοισθού σε διάγραµµα, όπως φαίεται παρακάτω, τα συµπεράσµατα προκύπτου ευκολότερα. Απολογισµός της επιδηµίας Ηλικία Άδρες Γυαίκες Σύολο Σύολο Πλήθη ασθεώ Άδρες Γυαίκες Ηλικίες ασθεώ Παρατηρούµε λοιπό ότι το φύλο παίζει µικρό ρόλο στο αριθµό τω κρουσµάτω. Ατιθέτως µεγάλη σηµασία παίζει η ηλικία αφού είαι φαερό ότι όσο αυτή αυξάει λιγοστεύου τα κρούσµατα. Η τελευταία παρατήρηση φαίεται καθαρότερα στο προηγούµεο διάγραµµα.

2 ΟΙ ΠΙΝΑΚΕΣ Η σωστή κατασκευή εός πίακα είαι απαραίτητη και για α είαι καταοητά τα στοιχεία που παρουσιάζει και για α είαι ευκολότερη και χωρίς κίδυο σφαλµάτω η στατιστική επεξεργασία του υλικού που θα ακολουθήσει. Οι πίακες διακρίοται στους:. Γεικούς πίακες, οι οποίοι περιέχου όλες τις πληροφορίες που προκύπτου από µία στατιστική έρευα (συήθως µε αρκετά λεπτοµερειακά στοιχεία) και αποτελού πηγές στατιστικώ πληροφοριώ στη διάθεση τω επιστηµόωερευητώ για παραπέρα αάλυση και εξαγωγή συµπερασµάτω.. Ειδικούς πίακες, οι οποίοι είαι συοπτικοί και σαφείς. Τα στοιχεία τους συήθως έχου ληφθεί από τους γεικούς πίακες. Οι βασικές αρχές κατασκευής εός πίακα Κάθε πίακας είαι συδυασµός οριζοτίω και καθέτω στηλώ. Συγκεκριµέα: Στη πρώτη κάθετη στήλη ααγράφεται η κλίµακα του χαρακτηριστικού µε τις πολυπληθέστερες κατηγορίες, η κλίµακα δε αυτή έχει το τίτλο της π.χ. ηλικία σε έτη. Οι βαθµίδες της κλίµακας διατάσσοται µε αυξαόµεη σειρά, εφ όσο τα µεγέθη είαι διατάξιµα, ή µε κάποια άλλη λογική σειρά. Στη πρώτη οριζότια γραµµή ααγράφοται οι τιµές του χαρακτηριστικού µε τις λιγότερες κατηγορίες π.χ. φύλο, εξετασθέτα άτοµα που διαχωρίζοται σε θετικά και αρητικά κ.λ.π. Η τελευταία κάθετη και οριζότια στήλη αφορίζου το λεγόµεο ωφέλιµο χώρο του πίακα, στο οποίο καταχωρούται οι τιµές τω παρατηρήσεω. Μέσα στο ωφέλιµο χώρο του πίακα βρίσκοται τα λεγόµεα κελιά που περιλαµβάου τις τιµές του πίακα. Η τελευταία κάθετη και οριζότια στήλη περιλαµβάου τα µερικά και γεικά σύολα τω παρατηρήσεω, που είαι απαραίτητα για τη πλήρη ατίληψη του θέµατος και για α είαι συγκρίσιµα τα στοιχεία του πίακα προς τα στοιχεία άλλω τυχώ πιάκω. Οι τίτλοι και υπότιτλοι του πίακα πρέπει α είαι σαφείς και χωρίς τη παραµικρή αµφισβήτηση. Εξ άλλου, είαι υποχρεωτικός και ο γεικός τίτλος του πίακα, που αποτελεί µια ολιγόλογη περίληψη του όλου θέµατος, ευκολοόητη στο κάθε ααγώστη, και που επιτρέπει τη αάλυση του πίακα χωρίς α χρειάζεται α αατρέξει καείς στα στοιχεία του κειµέου. Η σαφήεια τω τίτλω τω στηλώ είαι τελείως απαραίτητη ότα οι τίτλοι εκφράζου µοάδες (µάζας, χρόου, µήκους, όγκου κ.λ.π.) για τη αποφυγή συγχύσεω και σφαλµάτω. Για τη επεξήγηση τω τίτλω ή για διευκριήσεις γεικά, µπορεί α χρησιµοποιούται υποσηµειώσεις, που καταχωρούται έξω από το χώρο του πίακα.

3 Πίακας Επιφάεια και πληθυσµός τω κατοικηµέω ησιώ της Ελλάδας µε πληθυσµό, κατά τη απογραφή του 99, άω τω κατοίκω. Κατοικηµέες Επιφάεια Πληθυσµός κατά τις απογραφές ήσοι σε τ.χµ Κρήτη Εύβοια Λέσβος Ρόδος Χίος Κεφαλληία Κέρκυρα Σάµος Λήµος Ζάκυθος Νάξος Θάσος Λευκάδα Κως Κάλυµος Σαλαµία Σύρος Αίγια 8.6, , ,998.40,459 84, ,04 585,3 477,94 476,88 406,6 389, ,67 30,06 87,6 0,58 9,503 84,069 77, Πηγή: ΕΣΥΕ, Απογραφή 99 Πίακας Εργατικά ατυχήµατα κατά οµάδες ηλικιώ Έτη Ηλικία Κάτω τω Σύολο Πηγή: ΙΚΑ, Ελληικό Ιστιτούτο Υγιειής και Ασφάλειας της Εργασίας 3

4 Γεικοί ή βασικοί πίακες Αυτοί περιλαµβάου κατά το δυατό όλα τα στοιχεία της έρευας. Αποτελού κατά κάποιο τρόπο αποθήκη πληροφοριακού υλικού, και είαι µεγάλης εκτάσεως αφού µπορεί α καταλαµβάου και ολόκληρες σελίδες. Περιέχου πολλές πληροφορίες για το ίδιο ατικείµεο, και τόσο λεπτοµερειακές και συτεταγµέες ώστε η ααφορά σ αυτές α είαι εύκολη και γρήγορη. Οι βασικοί πίακες πρέπει α καταχωρού τους απόλυτους αριθµούς τω διαφόρω παρατηρήσεω και µάλιστα πραγµατικούς και λεπτοµερειακούς και όχι στρογγυλοποιηµέους. Συήθως οι γεικοί πίακες επισυάπτοται σα παράρτηµα στις µελέτες ή εκθέσεις που δηµοσιεύοται. Οι πίακες αυτοί έχου επίσης πρακτική αξία γιατί παρέχου υλικό για τη σύταξη τω άλλω πιάκω. Έας τέτοιος γεικός πίακας φαίεται παρακάτω. Στο παράδειγµα που ακολουθεί δίοται οι αριθµοί τω εξετάσεω χοληστερίης που πραγµατοποιούται σε έα βιοχηµικό εργαστήριο κατά τη διάρκεια δύο ετώ. Ηµεροµηία Τιµή χοληστερίης Συέχεια // /8/ // /8/ // /9/ // /9/ // /9/ // /9/ // /0/ /3/ /0/ /3/ /0/ /3/ // /4/006 9 // /4/ // /4/ // /4/ // /5/ // /5/ // /5/ // /6/ // /6/ // /6/006 9 // /6/ // /7/ // /7/ // /7/ /3/ /8/ /3/ Σύολο 597 Όπως παρατηρεί ο ααγώστης ο πίακας αυτός είαι απλή παράθεση στοιχείω χωρίς α µπορεί α βγει κάποιο συµπέρασµα. Το µόο που µπορεί α υπολογιστεί είαι η κατώτερη και η αώτερη τιµή. 4

5 Αθροιστικοί πίακες Αυτοί οι πίακες περιλαµβάου µέσα στα κελιά τους το άθροισµα όλω τω τιµώ µέχρι εκείη τη στιγµή. Για το λόγο αυτό οι πίακες αυτοί οοµάζοται αθροιστικοί και οι σειρές τω τιµώ που παρουσιάζει χαρακτηρίζοται ως αθροιστικές σειρές. Π.χ. η παρουσίαση αθροιστικά τω ατυχηµάτω κατά µήα σε έα πληθυσµό κατά τη διάρκεια εός έτους. Στο πίακα που ακολουθεί δίοται αά µήα οι µέσες τιµές τω εξετάσεω χοληστερίης καθώς και οι ατίστοιχες της αθροιστικές τιµές µε βάση το απλό πίακα του προηγούµεου κεφαλαίου. Μήες Μέσες τιµές αριθµού εξετάσεω χοληστερίης Αθροιστικές τιµές αριθµού εξετάσεω χοληστερίης Ια Φεβ Μαρ Απρ Μάιος Ιου Ιουλ Αυγ Σεπ Οκτ Νοε εκ Ια Φεβ Μαρ Οι αθροιστικοί πίακες δίου µια εποπτική εικόα του ρυθµού µεταβολής εός χαρακτηριστικού. Έτσι στο προηγούµεο αθροιστικό πίακα φαίεται µια απότοµη αύξηση τω εξετάσεω χοληστερίης από το Οκτώβριο του 006. Ο ρυθµός αυτός φαίεται παραστατικότερα στα αθροιστικά διαγράµµατα που παρουσιάζοται σε επόµεο κεφάλαιο. Τα αθροιστικά διαγράµµατα εκτός από τη εποπτική εικόα του ρυθµού µεταβολής εός χαρακτηριστικού προσφέρου και έα εύκολο τρόπο υπολογισµού του ποσοστού τω τιµώ που είαι µικρότερες ή µεγαλύτερες από µια ορισµέη τιµή. Για το σκοπό αυτό προσθέτουµε στο προηγούµεο πίακα µια καιούργια στήλη µε τις αθροιστικές τιµές τω αριθµώ εξετάσεω χοληστερίης σε επί τοις εκατό. O τρόπος υπολογισµού τω αθροιστικώ τιµώ εξετάσεω χοληστερίης % φαίεται στο επόµεο πίακα. Η τιµή 597 που χρησιµοποιείται στους υπολογισµούς είαι το άθροισµα όλω τω εξετάσεω χοληστερίης. Ας δούµε τα ακόλουθα παραδείγµατα. Α. Έστω, λοιπό, ότι µε βάση το επόµεο πίακα θέλουµε α υπολογίσουµε το ποσοστό τω εξετάσεω που συµπληρώεται µέχρι το µήα Αύγουστο του 006. Από το πίακα βρίσκουµε ότι το ποσοστό αυτό είαι 8%. Β. Έστω, ότι θέλουµε α βρούµε σε ποιο µήα συγκετρώεται το 0% τω εξετάσεω χοληστερίης. Από το πίακα βρίσκουµε ότι ο µήας αυτός είαι ο Ιούιος του

6 Γ. Έστω, ότι θέλουµε α βρούµε πότε συγκετρώεται το 50% τω εξετάσεω χοληστερίης. Από το πίακα βρίσκουµε ότι αυτό γίεται µεταξύ Οκτωβρίου 006 και Νοεµβρίου 006. Μέσες τιµές αριθµού εξετάσεω χοληστερίης Αθροιστικές τιµές αριθµού εξετάσεω χοληστερίης Αθροιστικές τιµές αριθµού εξετάσεω χοληστερίης % Μήες Ια x 00/ Φεβ x 00/597 7 Μαρ x 00/597 9 Απρ x 00/597 4 Μάιος x 00/597 8 Ιου x 00/597 Ιουλ x 00/597 5 Αυγ x 00/597 8 Σεπ x 00/ Οκτ x 00/ Νοε x 00/ εκ x 00/ Ια x 00/ Φεβ x 00/ Μαρ x 00/

7 Πίακες Καταοµής Συχοτήτω Συχότητα οοµάζεται ο αριθµός παρατηρήσεω της τιµής x µιας µεταβλητής Χ. Η συχότητα αυτή οοµάζεται απόλυτη συχότητα και συµβολίζεται. Οι συχότητες, καθώς και οι πίακες καταοµής συχοτήτω, µπορού α υπολογιστού τόσο για ποσοτικές όσο και για ποιοτικές µεταβλητές. Tο άθροισµα όλω τω συχοτήτω είαι ίσο µε το µέγεθος n του δείγµατος. Για παράδειγµα, στο παρακάτω πίακα ααφέροται τα αποτελέσµατα τω εκλογώ για τη αάδειξη εκπροσώπου µιας ειδικότητας ΙΕΚ. Η µεταβλητή που µελετάται είαι η Χ: «Ψήφοι µαθητώ» στη οποία οι συχότητες για τις τιµές x Γιώργος, x Νίκος, x 3 Καίτη, x 4 Μαρία είαι ατίστοιχα: v 8, v 5, v 3 7, v 4 6 µε v +v +v 3 +v Οόµατα υποψηφίω x Γιώργος Νίκος Καίτη Μαρία Αριθµοί ψήφω (Συχότητα ) Σχετική Συχότητα f 8/36 0, 5/36 0,4 7/36 0,9 6/36 0,7 Σχετική Συχότητα f % 0, x 00 0,4 x ,9 x ,7 x 00 7 Σύολο: Α διαιρεθεί η συχότητα µε το µέγεθος του δείγµατος, προκύπτει η σχετική συχότητα f της τιµής x, δηλαδή: f,,,..., κ. n Για τη σχετική συχότητα ισχύου οι ιδιότητες: () () 0 f για,,..., κ αφού 0 n. κ κ f + f f κ αφού f + f f n n n n n Συήθως, oι σχετικές συχότητες συµβολίζοται ως f %, δηλαδή κ. f εκφράζοται επί τοις εκατό, οπότε f % 00 f. Ισχύει f % f % +... f % 00% + v Για παράδειγµα, οι σχετικές συχότητες για τις τιµές x Γιώργος, x Νίκος, x 3 Καίτη, x 4 Μαρία της µεταβλητής Χ: «Ψήφοι µαθητώ» είαι ατιστοίχως: 8 5 f 0,, f 0, 4, 7 6 f 3 0, 9 και f 4 0, Συεπώς: f % %, f % 4%, f % 9% και f % 7%. Οι ποσότητες 3 4 x,, f για έα δείγµα µπορού α συγκετρωθού σε έα συοπτικό πίακα, που οοµάζεται πίακας καταοµής συχοτήτω ή απλά πίακας συχοτήτω (βλ. προηγούµεο πίακα). Για µια µεταβλητή, το σύολο τω ζευγώ x, ) λέµε ότι αποτελεί τη ( καταοµή συχοτήτω και το σύολο τω ζευγώ ( x, f ), ή τω ζευγώ ( x, f %), τη καταοµή τω σχετικώ συχοτήτω. 7

8 Καταοµές συχοτήτω από κλάσεις Πολλές φορές για α κατασκευάσουµε τη καταοµή συχότητας διαιρούµε το διάστηµα που καλύπτου οι διαθέσιµες τιµές τω δεδοµέω σε µια σειρά από υποδιαστήµατα. Τα υποδιαστήµατα αυτά οοµάζοται τάξεις, κλάσεις ή κατηγορίες. Σε αυτή τη περίπτωση ως συχότητα ορίζεται ο αριθµός τω παρατηρήσεω που βρίσκοται σε µια δεδοµέη κλάση. Ατίστοιχα ως σχετική συχότητα ορίζεται το ποσοστό τω παρατηρήσεω που βρίσκοται σε µια δεδοµέη κλάση. Για παράδειγµα έστω ότι σε έα κατάστηµα υποδηµάτω ο πωλητής µετράει όλα τα ούµερα παπουτσιώ που έχει στη διάθεση του. Τα αποτελέσµατα του είαι τα ακόλουθα: Oι κλάσεις µε τις ατίστοιχες συχότητες που προκύπτου από το προηγούµεο πίακα είαι: Κλάσεις Συχότητα Σχετική συχότητα Σχετική συχότητα % /6 0, 0, x /6 0,9 0,9 x /6 0,38 0,38 x /6 0,5 0,5 x /6 0,5 0,5 x 00 5 Σύολο 6,00 00 Τα βασικά σηµεία τα οποία θα πρέπει α προσέχουµε ότα κατασκευάζουµε καταοµές συχότητας είαι τα εξής:. Oι κλάσεις που επιλέγουµε θα πρέπει α είαι τέτοιες που α δίου τη σωστή εικόα της καταοµής τω δεδοµέω. Ο καθορισµός του αριθµού τω κλάσεω είαι ε γέει αυθαίρετος. Α ο αριθµός τω κλάσεω που θα χρησιµοποιηθού είαι µικρός είαι εδεχόµεο α αποκρυβού σηµατικά χαρακτηριστικά τω δεδοµέω. Από τη άλλη µεριά, α ο αριθµός τω κλάσεω είαι µεγάλος σε σχέση µε τα δεδοµέα θα έχουµε πολλές κλάσεις που θα είαι ή κεές ή µε µικρό αριθµό παρατηρήσεω οπότε και η καταοµή που θα εµφαίζου δε θα οδηγεί σε ασφαλή συµπεράσµατα. Συήθως χρησιµοποιούµε πέτε έως είκοσι κλάσεις. Όσο µεγαλύτερος είαι ο αριθµός τω παρατηρήσεω τόσο περισσότερες κλάσεις θα πρέπει α χρησιµοποιούται. Ισχύου τα εξής: Α. Παρατηρήσεις < 5 Αριθµός τάξεω: 5 ή 6 Β.»» 5 50»» 7 4 Γ.»» > 50»» 5 0 8

9 . Αφού δούµε το εύρος τω τιµώ του δείγµατος θα πρέπει α καθορίσουµε το εύρος κάθε κλάσης. Ως έα γεικό καόα για τη επιλογή του εύρους κάθε κλάσης διαιρούµε τη διαφορά της µικρότερης από τη µεγαλύτερη µέτρηση µε το επιθυµητό αριθµό τω κλάσεω που θέλουµε α χρησιµοποιήσουµε. Π.χ. στο προηγούµεο παράδειγµα είχαµε 5 τιµές (n5) µε µέγιστη τιµή (max) τη 45 και ελάχιστη (mn) τη 3. Επειδή έχουµε µικρό αριθµό τιµώ θα χρησιµοποιήσουµε 5 κλάσεις (k5). Κατά συέπεια το εύρος τω κλάσεω είαι: max mn k Καθορισµός τω ορίω τω κλάσεω. Τα όρια αυτά θα πρέπει α καθορίζοται µε τρόπο ώστε οι µετρήσεις α καταέµοται σε µια µόο από τις δυατές κατηγορίες. Π.χ. δε επιλέγουµε ποτέ κλάσεις όπου τα όρια επικαλύπτοται: Σε πολλές περιπτώσεις ότα υπάρχου µεταξύ τω παρατηρήσεω ακραίες τιµές π.χ. έα ούµερο παπουτσιώ 54 τότε για α µη ααγκαστούµε α φτιάξουµε κλάσεις υπερβολικά µεγάλου εύρους ή µικρού εύρους αλλά µε µηδεική συχότητα κατασκευάζουµε µία ή δύο κλάσεις αοικτού εύρους. Π.χ > 46 Οι αριθµοί 3, 34, 37, 4, 45 οοµάζοται ελάσσοα όρια και οι αριθµοί 33, 36, 40, 43, 46 µείζοα όρια τω κλάσεω. Το ηµιάθροισµα τω δύο ορίω κάθε κλάσης οοµάζεται κετρική τιµή της κλάσης. Π.χ. Κλάσεις Ελάσσοα όρια Μείζοα όρια Κετρικές τιµές Συχότητα (3+33)/ (34+36)/ (37+39)/ (40+4)/ (43+45)/

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

Επίπεδο εκπαίδευσης πατέρα 2

Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ, Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας.

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας. Συσέτιση δύο μεταβλητώ Συσέτιση δύο μεταβλητώ Θεωρούμε δύο τυαίες μεταβλητές X, Y και ζεύγη παρατηρήσεω,,,,...,, από τυαίο δείγμα μεγέθους. Ααφερόμαστε, δηλαδή, σε μη πειραματικά δεδομέα ο ερευητής δε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΦΟΥΝΤΟΥΚΙ ΗΣ Γ. ΕΥΑΓΓΕΛΟΣ Ρ. ΧΗΜΙΚΟΣ ΜΗΧΑΝΙΚΟΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Τι οομάζεται συάρτηση Συάρτηση uncton είαι μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα αριβώς στοιχείο άποιου

Διαβάστε περισσότερα

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β. Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο

Διαβάστε περισσότερα

4. Αντιδράσεις πολυμερισμού

4. Αντιδράσεις πολυμερισμού 4. Ατιδράσεις πολυμερισμού Ποια μόρια οομάζοται μακρομόρια Τα μακρομόρια είαι μόρια μεγάλου μοριακού βάρους που σχηματίζοται από τη συέωση (= πολυμερισμό) απλούστερω δομικά μορίω (= μοομερή) σύμφωα με

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη B

Γυμνάσιο Μαθηματικά Τάξη B 113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε το ορισμό της δύαμης α με βάση το ρητό α και εκθέτη το φυσικό αριθμό > 1. b. Να συμπληρωθού οι παρακάτω τύποι, δυάμεις

Διαβάστε περισσότερα

Η ΚΑΤΑΛΟΓΟΓΡΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ

Η ΚΑΤΑΛΟΓΟΓΡΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ Η ΚΑΤΑΛΟΟΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ ΣΤΙΣ ΒΙΒΛΙΟΘΗΚΕΣ ΤΟΥ Ε: ΞΩΤΕΙΚΟΥ Υπό κ. Evl Col, της Βιβλιοθήκης του K' Coll. Σηματικό μέρος του HELEN αφιερώεται ο ι η εξέταση της πολιτικής, που ακολουθού οι βιβλιοθήκες

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

Λύση α) Μετά από την σχετική διαλογή ο πίνακας των συχνοτήτων και σχετικών συχνοτήτων είναι ο παρακάτω. Aθρ. Συχν N. συχν

Λύση α) Μετά από την σχετική διαλογή ο πίνακας των συχνοτήτων και σχετικών συχνοτήτων είναι ο παρακάτω. Aθρ. Συχν N. συχν 1 2.2 Ασκήσεις σχ. βιβλίου σελίδας 78 83 Α ΟΜΑ ΑΣ 1. Η βαθµολογία 5 φοιτητών στις εξετάσεις ενός µαθήµατος είναι: 3 4 5 8 9 7 6 8 7 1 8 7 6 5 9 3 8 5 6 6 6 3 5 6 4 2 9 8 7 7 1 6 3 1 5 8 1 2 3 4 5 6 7 9

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ ΠΕΙΡΑΙΩΣ Ταχ. διεύθυση: Ακτή Ποσειδώος 14-16 Ταχ. κώδικας:

Διαβάστε περισσότερα

Πληροφοριακό Δελτίο Παραγωγής στα Μη Διασυνδεδεμένα Νησιά για το έτος 2014

Πληροφοριακό Δελτίο Παραγωγής στα Μη Διασυνδεδεμένα Νησιά για το έτος 2014 Πληροφοριακό Δελτίο Παραγωγής στα Μη Διασυνδεδεμένα Νησιά για το έτος 2014 Συνολική Παραγωγή GWh 18% 4% ΘΕΡΜΙΚΗ ΠΑΡΑΓΩΓΗ ΠΑΡΑΓΩΓΗ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ 78% ΠΑΡΑΓΩΓΗ ΦΒ ΣΤΑΘΜΩΝ Μάρτιος 2014 Α. Παραγωγή ΑΠΕ Γεωγραφική

Διαβάστε περισσότερα

Πληροφοριακό Δελτίο Παραγωγής στα Μη Διασυνδεδεμένα Νησιά για το έτος 2014

Πληροφοριακό Δελτίο Παραγωγής στα Μη Διασυνδεδεμένα Νησιά για το έτος 2014 Πληροφοριακό Δελτίο Παραγωγής στα Μη Διασυνδεδεμένα Νησιά για το έτος 2014 Συνολική Παραγωγή GWh 11% 4% ΘΕΡΜΙΚΗ ΠΑΡΑΓΩΓΗ ΠΑΡΑΓΩΓΗ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ ΠΑΡΑΓΩΓΗ ΦΒ ΣΤΑΘΜΩΝ 85% Φεβρουάριος 2014 Α. Παραγωγή ΑΠΕ

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΥΝΑΜΙΚΟΥ: Ιανουάριος 2014 ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ. Πειραιάς, 10 Απριλίου 2014

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΥΝΑΜΙΚΟΥ: Ιανουάριος 2014 ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ. Πειραιάς, 10 Απριλίου 2014 ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ ΕΛΤΙΟ ΤΥΠΟΥ Πειραιάς, 10 Απριλίου 2014 ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΥΝΑΜΙΚΟΥ: Ιανουάριος 2014 Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρµοσµένο δείκτη ανεργίας για

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΣΥΝΑΓΩΓΗ Νυμφοδώρα Παπασιώπη Φαιόμεα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας

Διαβάστε περισσότερα

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ Στο Κεφάλαιο αυτό θα ασχοληθούε ε το ορισό και τις στοιχειώδεις ιδιότητες τω πιάκω, που είαι ορθογώιες παρατάξεις αριθώ ή άλλω στοιχείω Οι πίακες εφαίζοται στη θεωρία τω γραικώ συστηάτω,

Διαβάστε περισσότερα

ΕΛΤΙΟ ΤΥΠΟΥ. Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρµοσµένο δείκτη ανεργίας για τον Μάρτιο 2015.

ΕΛΤΙΟ ΤΥΠΟΥ. Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρµοσµένο δείκτη ανεργίας για τον Μάρτιο 2015. ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ ΕΛΤΙΟ ΤΥΠΟΥ Πειραιάς, 4 Ιουνίου 20 ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΥΝΑΜΙΚΟΥ: Μάρτιος 20 Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρµοσµένο δείκτη ανεργίας για τον Μάρτιο

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ .Φουσκάκης- Περιγραφική Στατιστική ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Οι µεταβλητές µιας στατιστικής έρευνας αποτελούνται συνήθως από ένα µεγάλο πλήθος στοιχείων που αφορούν τον πληθυσµό που µας ενδιαφέρει. Για να

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων 1. Αναζήτηση των κατάλληλων δεδοµένων. 2. Έλεγχος µεταβλητών και κωδικών για συµβατότητα. 3. Αποθήκευση σε ηλεκτρονική µορφή (αρχεία

Διαβάστε περισσότερα

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι ΘΕΜΑ ο Α.. Βλέπε σχολικό βιβλίο σελίδα 9.. Βλέπε σχολικό βιβλίο σελίδα 87. Β. Βλέπε σχολικό βιβλίο σελίδα 0. Γ. Σ, Σ, Σ, 4 Σ, Λ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο α. Πρέπει x > 0,

Διαβάστε περισσότερα

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά.

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά. ΑΝΑΚΥΚΛΩΣΗ ΣΥΣΚΕΥΑΣΙΩΝ Η Αακύκλωση σήμερα αποτελεί σηματική προτεραιότητα για το περιβάλλο και το μέλλο μας. Δε είαι μια εφήμερη τάση της εποχής, αλλά ατίθετα, υποχρέωση κάθε πολιτισμέης κοιωίας που συμβάλει

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ "KOSTOLOGOS " Σταυριανίδης Κωνσταντίνος Μηχανικός Παραγωγής & ιοίκησης. Εισαγωγή

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ KOSTOLOGOS  Σταυριανίδης Κωνσταντίνος Μηχανικός Παραγωγής & ιοίκησης. Εισαγωγή Εισαγωγή Η προσέγγιση του κοστολογικού προβλήµατος µίας µεταποιητικής επιχείρησης από το Λογισµικό «Κοστολόγος» στηρίζεται στην παρακάτω ανάλυση ΤΕΛΙΚΟ ΚΟΣΤΟΣ ΠΡΟΙΟΝΤΟΣ ΚΟΣΤΟΣ ΠΑΡΑΓΩΓΗΣ ΚΟΣΤΟΣ ΙΟΙΚΗΣΗΣ

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο 1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών. Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης

Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών. Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης Επιστημονική Ευθύνη Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών Συγγραφή Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης Το παρόν εκπαιδευτικό υλικό παράχθηκε

Διαβάστε περισσότερα

ΕΛΤΙΟ ΤΥΠΟΥ. Εξέλιξη ετήσιων µεταβολών του είκτη Τιµών Παραγωγού στη Βιοµηχανία, Συνόλου, Εγχώριας και Εξωτερικής Αγοράς 10,0 8,0. Φεβ. 13. εκ.

ΕΛΤΙΟ ΤΥΠΟΥ. Εξέλιξη ετήσιων µεταβολών του είκτη Τιµών Παραγωγού στη Βιοµηχανία, Συνόλου, Εγχώριας και Εξωτερικής Αγοράς 10,0 8,0. Φεβ. 13. εκ. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 29 Οκτωβρίου 20 ΕΛΤΙΟ ΤΥΠΟΥ ΕΙΚΤΗΣ ΤΙΜΩΝ ΠΑΡΑΓΩΓΟΥ ΣΤΗ ΒΙΟΜΗΧΑΝΙΑ : Σεπτέµβριος 20 Ο Γενικός είκτης Τιµών Παραγωγού στη Βιοµηχανία (σύνολο Εγχώριας

Διαβάστε περισσότερα

3. Η µερική παράγωγος

3. Η µερική παράγωγος 1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΙΚΑ - ΣΕΠΕ - ΟΑΕΔ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΙΟΥΝΙΟΣ 2013

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΙΚΑ - ΣΕΠΕ - ΟΑΕΔ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΙΟΥΝΙΟΣ 2013 ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΙΚΑ - ΣΕΠΕ - ΟΑΕΔ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΙΟΥΝΙΟΣ 2013 Μονάδα Ανάλυσης & Τεκμηρίωσης, Υπουργείου Εργασίας, Κοινωνικής Ασφάλισης & Πρόνοιας Ομάδα Διαχείρισης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Αναλυτική χρονική κατανοµή της αναγκαίας εργασίας σε ανθρωποµήνες ανά ειδικότητα και ενέργεια έως 5 µήνες σε χρονικό διάστηµα δώδεκα (12) µηνών

Αναλυτική χρονική κατανοµή της αναγκαίας εργασίας σε ανθρωποµήνες ανά ειδικότητα και ενέργεια έως 5 µήνες σε χρονικό διάστηµα δώδεκα (12) µηνών Αναλυτική χρονική κατανοµή της αναγκαίας εργασίας σε ανθρωποµήνες ανά ειδικότητα και ενέργεια έως 5 µήνες σε χρονικό διάστηµα δώδεκα (12) µηνών ΗΜΟΣ ΜΕΣΟΛΟΓΓΙΟΥ: 200 ΘΕΣΕΙΣ ΕΕΡΓΕΙΑ ΜΗΑΣ (ΑΠΟ ΤΗ ΗΜΕΡΟΜΗΙΑ

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η και ο στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Γενικές αρχές ανάλυσης και σχεδιασµού Τα βήµατα της ανάλυσης και του σχεδιασµού Συµπεράσµατα 2 3 Η ανάλυση

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση-

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση- Μάθηµα 3 Προχωρηµένες ιδιότητες πεδίων Μάσκες εισαγωγής Οι ιδιότητες Μορφή και Μάσκα εισαγωγής περιγράφονται µαζί γιατί έχουν κοινά χαρακτηριστικά που αφορούν την εµφάνιση. Με την ιδιότητα Μορφή καθορίζουµε

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Σ Ε Μ Ι Ν Α Ρ Ι Ο ΤΙΤΛΟΣ ΕΡΓΑΣΙΑΣ: ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΡΗΣΤΟΥ ΚΩΝΣΤΑΝΙΝΟΣ. Υπεύθυνες Εκπόνησης Εργασίας ΟΝΟΜΑ: ΦΩΤΕΙΝΗ ΕΠΩΝΥΜΟ: ΛΙΟΣΗ Α.

Σ Ε Μ Ι Ν Α Ρ Ι Ο ΤΙΤΛΟΣ ΕΡΓΑΣΙΑΣ: ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΡΗΣΤΟΥ ΚΩΝΣΤΑΝΙΝΟΣ. Υπεύθυνες Εκπόνησης Εργασίας ΟΝΟΜΑ: ΦΩΤΕΙΝΗ ΕΠΩΝΥΜΟ: ΛΙΟΣΗ Α. Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Κ Ρ Η Τ Η Σ Π Α Ι Δ Α Γ Ω Γ Ι Κ Ο Τ Μ Η Μ Α Δ Η Μ Ο Τ Ι Κ Η Σ Ε Κ Π Α Ι Δ Ε Υ Σ Η Σ Σ Ε Μ Ι Ν Α Ρ Ι Ο ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ (Β06Σ03) ΤΙΤΛΟΣ

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Κανόνες για ανάπτυξη διαγραµµάτων κλάσεων

Κανόνες για ανάπτυξη διαγραµµάτων κλάσεων 1 Ελληνικό Ανοικτό Πανεπιστήµιο Κανόνες για ανάπτυξη διαγραµµάτων κλάσεων ρ. Πάνος Φιτσιλής 2 Περιεχόµενα Προσδιορισµός κλάσεων Πως να ονοµάσουµε τις κλάσεις; Που να τις βρούµε; Τι να κοιτάξουµε; Τι να

Διαβάστε περισσότερα

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 6 εκεµβρίου 2012 ΕΛΤΙΟ ΤΥΠΟΥ

ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 6 εκεµβρίου 2012 ΕΛΤΙΟ ΤΥΠΟΥ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 6 εκεµβρίου 20 ΕΛΤΙΟ ΤΥΠΟΥ ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΥΝΑΙΚΟΥ: 20 Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρµοσµένο δείκτη ανεργίας για το Σεπτέµβριο 20.

Διαβάστε περισσότερα

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

ΞΕΝΟΔΟΧΕΙΑΚΟ ΔΥΝΑΜΙΚΟ στις 31/12/2014 ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ

ΞΕΝΟΔΟΧΕΙΑΚΟ ΔΥΝΑΜΙΚΟ στις 31/12/2014 ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΞΕΝΟΔΟΧΕΙΑΚΟ ΔΥΝΑΜΙΚΟ στις // ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΠΕΡΙΦΕΡΕΙΑKH ENOTHTA ***** **** *** ** * Γενικό Άθροισμα ΔΡΑΜΑΣ ΕΒΡΟΥ ΘΑΣΟΥ ΚΑΒΑΛΑΣ ΞΑΝΘΗΣ ΡΟΔΟΠΗΣ. Πηγή: Ξενοδοχειακό Επιμελητήριο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα

ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ

ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ Μία από τις πιο σηµαντικές υπηρεσίες που προσφέρει το διαδίκτυο στην επιστηµονική κοινότητα είναι η αποµακρυσµένη πρόσβαση των χρηστών σε ηλεκτρονικές βιβλιοθήκες

Διαβάστε περισσότερα

Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων.

Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων. Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων. Βήµα 1 ο ηµιουργία Εταιρείας Από την Οργάνωση\Γενικές Παράµετροι\ ιαχείριση εταιρειών θα δηµιουργήσετε την νέα σας εταιρεία, επιλέγοντας µέσω των βηµάτων

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

Μαρία Λεκίδου Προϊσταµένη Βιβλιοθήκης Πολυτεχνικής Σχολής και Γραµµατέας Τµήµατος Μηχανικών Περιβάλλοντος του.π.θ.

Μαρία Λεκίδου Προϊσταµένη Βιβλιοθήκης Πολυτεχνικής Σχολής και Γραµµατέας Τµήµατος Μηχανικών Περιβάλλοντος του.π.θ. Μαρίία Λεεκίίδου Προϊϊσταµέέννη Βιιβλιιοθήκηςς Πολυτεεχννιικήςς Σχολήςς καιι Γραµµατέέαςς Τµήµατοςς Μηχαννιικώνν Πεεριιβάλλονντοςς του..π.θ.. ιιαχείίριιση Στατιιστιικών Στοιιχείίων Ακαδηµαϊϊκών Βιιβλιιοθηκών

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΠΑΡΑΓΩΓΟΥ ΣΤΗ ΒΙΟΜΗΧΑΝΙΑ : Ιούνιος 2013 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ. Πειραιάς, 29 Ιουλίου 2013

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΠΑΡΑΓΩΓΟΥ ΣΤΗ ΒΙΟΜΗΧΑΝΙΑ : Ιούνιος 2013 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ. Πειραιάς, 29 Ιουλίου 2013 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 29 Ιουλίου 20 ΕΛΤΙΟ ΤΥΠΟΥ ΕΙΚΤΗΣ ΤΙΜΩΝ ΠΑΡΑΓΩΓΟΥ ΣΤΗ ΒΙΟΜΗΧΑΝΙΑ : Ιούνιος 20 Ο Γενικός είκτης Τιµών Παραγωγού στη Βιοµηχανία (σύνολο Εγχώριας και Εξωτερικής

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Ζήτηση αεροπορικών θέσεων Σύγκριση 2013-2014

Ζήτηση αεροπορικών θέσεων Σύγκριση 2013-2014 Ζήτηση αεροπορικών θέσεων Σύγκριση 2013-2014 Dr. Άρης Ίκκος Εισαγωγή - 1 70% εισερχόμενου τουρισμού έρχεται αεροπορικώς στην Ελλάδα Το ποσοστό αυτό αυξάνεται στο 90% σε πολλά νησιά Ο προγραμματισμός θέσεων

Διαβάστε περισσότερα

«Πρόβλεψη» «Forecasting»

«Πρόβλεψη» «Forecasting» «Πρόβλεψη» «Forecasting» Σηµειώσεις για το µάθηµα του 6 ου εξαµήνου «Αρχές ιοίκησης και Οργάνωση Παραγωγής» 2005 Μιχάλης Βαϊδάνης 1 I. Πρόβλεψη (Forecasting) Η πρόβλεψη είναι µια από τις σηµαντικότερες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦAΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦAΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦAΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΜΑΙΟΣ 2014 Μονάδα Ανάλυσης & Τεκμηρίωσης, Υπουργείου Εργασίας, Κοινωνικής Ασφάλισης & Πρόνοιας Ομάδα Διαχείρισης

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦAΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦAΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦAΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΙΟΥΛΙΟΣ 2014 Μονάδα Ανάλυσης & Τεκμηρίωσης, Υπουργείου Εργασίας, Κοινωνικής Ασφάλισης & Πρόνοιας Ομάδα Διαχείρισης

Διαβάστε περισσότερα

Η ΕΠΟΧΙΚΟΤΗΤΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΤΟΥΡΙΣΜΟΥ ΚΑΙ Η ΠΕΡΙΦΕΡΕΙΑΚΗ ΤΗΣ ΔΙΑΣΤΑΣΗ

Η ΕΠΟΧΙΚΟΤΗΤΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΤΟΥΡΙΣΜΟΥ ΚΑΙ Η ΠΕΡΙΦΕΡΕΙΑΚΗ ΤΗΣ ΔΙΑΣΤΑΣΗ 26 27 Φεβρουαρίου 2014, Athens Ledra Hotel, Αθήνα Η ΕΠΟΧΙΚΟΤΗΤΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΤΟΥΡΙΣΜΟΥ ΚΑΙ Η ΠΕΡΙΦΕΡΕΙΑΚΗ ΤΗΣ ΔΙΑΣΤΑΣΗ Καθ. Ζαχαράτος Γεράσιμος Δρ. Μαρκάκη Μαρία Πανούση Σοφία Δρ. Σώκλης Γιώργος Εισαγωγή

Διαβάστε περισσότερα

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν 100 80 Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ ΑΔΑ: Β4ΩΦ4691ΟΙ-7Ν8 ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Aρ. Συμβουλίου: 6 o Άρτα, 04/04/2012

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ ΑΔΑ: Β4ΩΦ4691ΟΙ-7Ν8 ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Aρ. Συμβουλίου: 6 o Άρτα, 04/04/2012 ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΔΙΚΟΥ ΛΟΓΑΡΙΑΣΜΟΥ Aρ. Συμβουλίου: 6 o Άρτα, 04/04/2012 ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ Σήμερα 04 Απριλίου 2012 ημέρα Τετάρτη και ώρα 11:00 π.μ. το επταμελές όργαο της

Διαβάστε περισσότερα