Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός"

Transcript

1 Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός Βασίλειος Δαγδιλέλης 1 και Ιωάννης Παπαδόπουλος 2 1 Τμήμα Εκπαιδευτικής και Κοινωνικής Πολιτικής,, Πανεπιστήμιο Μακεδονίας 2 Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζουμε έναν πρακτικό οδηγό για την κατασκευή διδακτικών σεναρίων με τη συμβολή των ΤΠΕ στα Μαθηματικά. Παραθέτουμε μια σειρά από στοιχεία που ενσωματώνει ο οδηγός αυτός με την παρουσίαση σχετικών παραδειγμάτων όπου αυτό κρίνεται απαραίτητο. ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: επιμόρφωση, σενάρια, νέες τεχνολογίες, μαθηματικά ΕΙΣΑΓΩΓΗ Η ιδέα των διδακτικών σεναρίων (μετάφραση των educational scripts), έχει πολλές φορές απασχολήσει την κοινότητα της Διδακτικής των Μαθηματικών και όχι μόνο των Μαθηματικών. Οι επιμορφώσεις των εκπαιδευτικών των τελευταίων ετών και ιδιαίτερα η Επιμόρφωση Β επιπέδου, επανέφεραν το θέμα με έναν επιτακτικό τρόπο: τι ακριβώς είναι ένα διδακτικό σενάριο; Πως κατασκευάζεται; Πως χρησιμοποιείται; Τα ερωτήματα έρχονται και επανέρχονται, καθώς μάλιστα οι απόψεις των ερευνητών και διδασκόντων δε συγκλίνουν. Στην παρούσα προτείνουμε ένα είδος πρακτικού οδηγού για τη δημιουργία τέτοιων διδακτικών σεναρίων διδασκαλίας Μαθηματικών με τη χρήση ΤΠΕ. Ο οδηγός μας έχει προέλθει από τη σύνθεση απόψεων που ήδη έχουν διατυπωθεί στο παρελθόν (Κυνηγός, 2007), συμπεριλαμβανομένων και δικών μας. Επιπλέον, έχει δοκιμαστεί επανειλημμένως στη διδακτική πράξη. Πιο συγκεκριμένα, εκτός από τη σχετική βιβλιογραφική έρευνα, βασιστήκαμε και σε συγκεκριμένες επιμορφωτικές εμπειρίες, όπως της επιμόρφωσης εκπαιδευτικών σε δεξιότητες Πληροφορικής Α και Β επιπέδου, επί μακρύ χρονικό διάστημα, στην Αρχική Επιμόρφωση Εκπαιδευτικών (στα Περιφερειακά Κέντρα Επιμόρφωσης), επί σειρά ετών στα λεγόμενα προγράμματα Εξομείωσης και αλλού. Χαρακτηρίζουμε την προσέγγιση μας ως πρακτικό οδηγό γιατί απευθύνεται στους εκπαιδευτικούς, προσπαθεί να αποτελέσει ένα «εργαλείο» άμεσης χρήσης για την καθημερινή τους εργασία. Τρία είναι κατά την άποψη μας τα βασικά σημεία τα οποία πρέπει να προσεχθούν ιδιαίτερα στην εκπόνηση ενός τέτοιου οδηγού: (1) Η αποφυγή ενός κενού βερμπαλισμού: συχνά, τα προτεινόμενα μοντέλα σεναρίων περιλαμβάνουν τμήματα τα οποία συστηματικά καταλήγουν σε μια επανάληψη στερεοτύπων εκφράσεων με αμφίβολη χρηστικότητα. Τυπικό παράδειγμα αποτελεί η

2 σχεδόν τελετουργική αναφορά σε «κονστρουκτιβιστικές θεωρίες μάθησης» οι οποίες επαναλαμβάνονται στα σενάρια που παράγουν οι εκπαιδευτικοί, με ένα σχεδόν γραφειοκρατικό τρόπο. Δεν αμφισβητούμε βέβαια την αξία μιας ανάλυσης αυτού του επιπέδου. Ωστόσο, η σχεδόν αυτολεξεί αναπαραγωγή των ίδιων γλωσσικών στερεοτύπων στα σενάρια των εκπαιδευτικών, την καθιστά μάλλον ένα είδος τυπικής «υποχρέωσης» παρά πραγματική ανάλυση. (2) Η εφικτότητα και η χρηστικότητά του: τα διδακτικά σενάρια πρέπει να είναι εφικτά, να περιγράφουν καταστάσεις οι οποίες να είναι υλοποιήσιμες μέσα στο δεδομένο σχολικό χρόνο και τις δεδομένες σχολικές συνθήκες στις οποίες διεξάγεται το μάθημα. Επιπλέον, πρέπει η δημιουργία ενός σεναρίου να μην απαιτεί (τουλάχιστον σε μια πρώτη προσέγγιση) υπερβολική καταβολή προσπάθειας, ούτε και υπερβολικό χρόνο. (3) Το σημαντικότερο ίσως σημείο στη δημιουργία σεναρίων, αποτελεί η διαπραγμάτευση των «αδύνατων σημείων». Για παράδειγμα, με ποιο τρόπο δημιουργεί κανείς ένα καινούριο διδακτικό σενάριο για μια έννοια, κατασκευάζει δηλαδή ένα σενάριο ex nihilo; Ο πρακτικός οδηγός που προτείνουμε προσπαθεί να ενσωματώσει, μεταξύ άλλων, και τα στοιχεία αυτά. Ως διδακτικό σενάριο (διδακτική κατάσταση, στη Διδακτική των Μαθηματικών, Brousseau, 1997) θεωρούμε την περιγραφή μιας διδασκαλίας με εστιασμένο γνωστικό(ά) αντικείμενο(α), εκπαιδευτικούς στόχους, διδακτικές αρχές και πρακτικές. Στα διδακτικά σενάρια, περιλαμβάνονται στοιχεία όπως η αλληλεπίδραση και οι ρόλοι των συμμετεχόντων, οι αντιλήψεις των μαθητών και τα ενδεχόμενα διδακτικά εμπόδια και γενικότερα όλα εκείνα τα στοιχεία που θεωρούνται σημαντικά στη σύγχρονη διδακτική θεωρία. Σε μια τέτοια διδασκαλία μπορούν να συνδυάζονται περισσότεροι διδακτικοί πόροι, όπως π.χ. περισσότερα του ενός λογισμικά, σημειώσεις, sites, όργανα (π.χ. εργαστηριακά, πίνακας, διαβήτης, ), προκειμένου να επιτευχθεί ένα μαθησιακό αποτέλεσμα. Ένα σενάριο μπορεί να έχει διάρκεια μιας ή περισσοτέρων διδακτικών ωρών και υλοποιείται, κατά κανόνα, μέσα από μια σειρά εκπαιδευτικών δραστηριοτήτων όπου η δομή και η ροή τους καθώς και οι ρόλοι διδάσκονταδιδασκομένων (κατά περίπτωση μαθητές, σπουδαστές, αλλά και επιμορφούμενοι κλπ) και η αλληλεπίδρασή τους με τα όποια χρησιμοποιούμενα μέσα και υλικό, περιγράφονται στα πλαίσια του διδακτικού σεναρίου. Ένα διδακτικό σενάριο μπορεί επίσης να διαιρεθεί σε διδακτικές φάσεις, αλλά η περιγραφή τους ξεπερνάει τα όρια ενός πρακτικού οδηγού και έτσι, στα πλαίσια της παρούσας, δε θα αναφερθούμε ξανά στις φάσεις ενός σεναρίου. Η χρήση των Νέων Τεχνολογιών καθιστά ακόμη πιο αναγκαία την αποσαφήνιση του τι είναι σενάριο και ποιες οι βασικές του συνιστώσες. Η εμπειρία από τις ποικίλες επιμορφώσεις που έχουν λάβει χώρα σχετικά με τις Νέες Τεχνολογίες και ειδικότερα το πρόγραμμα Επιμόρφωσης Β Επιπέδου για την ενσωμάτωση των Νέων Τεχνολογιών στη Διδακτική πρακτική, έχει αναδείξει την αναγκαιότητα για μια θεωρητική υποστήριξη του όρου «σενάριο». Αναφερόμαστε σε εκείνο το κοινό θεωρητικό υπόβαθρο που θα πρέπει να μοιράζονται επιμορφωτές επιμορφούμενοι προκειμένου να καθίσταται λειτουργική μια προσπάθεια υλοποίησης

3 ενός σεναρίου αφού θα πρέπει το «διάβασμα» ενός «συμβάντος» μέσα στην τάξη (για παράδειγμα μια λύση που προτείνει ένας μαθητής ή η χρήση ενός λογισμικού στη διδασκαλία) να περνά μέσα από το ίδιο οπτικό πρίσμα και για τα δυο «συμβαλλόμενα» μέρη. Στις επόμενες παραγράφους θα προσπαθήσουμε να σκιαγραφήσουμε το μοντέλο ενός σεναρίου για τη διδασκαλία των Μαθηματικών με τη συμβολή της τεχνολογίας παραθέτοντας όπου θεωρείται απαραίτητο συγκεκριμένα παραδείγματα προς την κατεύθυνση αυτή. ΔΙΑΜΟΡΦΩΣΗ ΣΕΝΑΡΙΟΥ Πώς ξεκινώ; Το ερώτημα αυτό αναφέρεται στη δημιουργία ενός σεναρίου από μηδενική βάση, για τη διδασκαλία μιας συγκεκριμένης εννοίας. Θα μπορούσαμε να προτείνουμε κάποιους τρόπους: α) Παρουσίαση και κατανόηση της ιστορικής αναγκαιότητας που οδήγησε στην υιοθέτηση μιας συγκεκριμένης έννοιας (για παράδειγμα η ανάγκη επαναπροσδιορισμού των ορίων των καλλιεργήσιμων περιοχών στην Αίγυπτο μετά τις πλημμύρες του Νείλου, οδηγεί στην ανάπτυξη της έννοιας του εμβαδού), β) Μια αναζήτηση από τον διδάσκοντα στο Internet για οτιδήποτε μπορεί να σχετίζεται με την υπό διδασκαλία έννοια (ιστορικά στοιχεία, έτοιμες προτάσεις διδασκαλίας, applets, αρχεία λογισμικών δυναμικής γεωμετρίας) προκειμένου να έχει μια συνολική άποψη για την προς διδασκαλία έννοια, γ) Εκκινώντας από τις δυσκολίες (συστηματικά λάθη, παρανοήσεις, ) των μαθητών και δημιουργώντας ανάδρομα ένα μάθημα δ) Πρόκληση μιας γνωστικής σύγκρουσης με μια διδακτική κατάσταση που οδηγεί σε αδιέξοδο και την οποία οι μαθητές θα ξεπεράσουν με τη βοήθεια της νέας εννοίας ή μεθόδου (Κολέζα, 2000). Αξίζει εδώ να δοθεί ένα πιο αναλυτικό παράδειγμα από την εισαγωγή στους άρρητους αριθμούς: Δραστηριότητα 1η: Κατασκευή παραλληλογράμμων σταθερού εμβαδού. Σε ένα περιβάλλον δυναμικής γεωμετρίας κατασκευάζεται ένα παραλληλόγραμμο σταθερού εμβαδού πχ 33,7 τ.εκ. Το παραλληλόγραμμο αυτό μπορεί να έχει οιοδήποτε μήκος περιμέτρου κρατώντας πάντοτε σταθερό το εμβαδόν (ο γεωμετρικός τόπος της «τέταρτης κορυφής» είναι μια γνωστή καμπύλη). Διαισθητικά είναι προφανές ότι κάποια στιγμή το παραλληλόγραμμο αυτό θα είναι τετράγωνο (εικ.1). Δραστηριότητα 2 η : Το «κυνήγι» της τετραγωνικής ρίζας. Αφού υπάρχει τετράγωνο εμβαδού 33,7 τ.εκ. μπορούμε επομένως να βρούμε αριθμό που πολλαπλασιαζόμενος με τον εαυτό του δίνει ως εξαγόμενο 33,7. Στα λογιστικά φύλλα (πχ Excel) μπορούμε να «κυνηγήσουμε» μια τετραγωνική ρίζα. Με τη μέθοδο του «εγκιβωτισμού» (μεγαλύτερων προσεγγίσεων) προσπαθούμε να προσδιορίσουμε ακριβώς την τετραγωνική ρίζα του αριθμού. Ωστόσο, αυτό φαίνεται αδύνατο, αφού όσα ψηφία και να χρησιμοποιήσουμε, δε μπορούμε να την εντοπίσουμε. Εξάλλου, οι μαθητές, ενδεχομένως θα αντιληφθούν ότι όσα πιο πολλά ψηφία προσδιορίζουμε, τόσο «πιο πολύ απομακρύνεται η πιθανότητα» να βρούμε όλα τα ψηφία της τετραγωνικής ρίζας. Τελικά υπάρχει ή δεν υπάρχει η τετραγωνική ρίζα; Η απάντηση φυσικά είναι ότι υπάρχει, αλλά ανήκει σε ένα ευρύτερο σύνολο αριθμών, τους αρρήτους αριθμούς.

4 Εικόνα 1 Επιστημολογική προσέγγιση Πρόκειται για την ανάλυση της "θέσης" της προς διδασκαλία έννοιας στα πλαίσια του μαθήματος. Πρέπει να υπάρχει σύνδεση ανάμεσα στην έννοια και στα όσα ακολουθούν και στα οποία θα χρειαστεί η έννοια ή στα όσα έχουν προηγηθεί. Ο εκπαιδευτικός πρέπει να λαμβάνει υπόψή του τη "θέση" του προς διδασκαλία αντικειμένου τόσο μέσα στην επιστήμη και τη σχολική της έκδοση όσο και την παρουσία της σε ένα τεχνολογικό περιβάλλον: π.χ. η έννοια της απόλυτης τιμής είναι σημαντική για την ανάλυση και σε ορισμένες περιπτώσεις στην κλασική άλγεβρα και - κατά κάποιο τρόπο - συνδέεται με τη γενικευμένη έννοια της "απόστασης". Το Πυθαγόρειο θεώρημα συνδέεται με τις τετραγωνικές ρίζες και τους άρρητους αριθμούς στη Β' Γυμνασίου, ενώ στη Β' Λυκείου οι επεκτάσεις του (για πλευρά απέναντι από οξεία ή αμβλεία γωνία) διδάσκονται στη Γεωμετρία (μετρικές σχέσεις). Από την άλλη ένας κύκλος στη σφαίρα της ευκλείδειας γεωμετρίας παραμένει κύκλος ακόμη και όταν θεωρηθεί υπό μεγέθυνση. Αν όμως βρίσκεται στο περιβάλλον του PowerPoint και μεγεθυνθεί αυτό που θα προκύψει είναι τα pixel και όχι ο κύκλος με την κλασική του έννοια. Άρα το ζητούμενο είναι για τον εκπαιδευτικό να είναι σε θέση να αντιληφθεί - ή να γνωρίζει - σχέσεις αυτού του είδους ή αν δεν τις γνωρίζει να ξέρει ότι υπάρχουν και να γνωρίζει πώς θα τις βρει. Επεκτάσεις. Κάθε έννοια συνδέεται άμεσα με μερικές άλλες, τουλάχιστον στη σχολική πραγματικότητα: Καλό λοιπόν είναι να λαμβάνονται υπόψη και πιθανές επεκτάσεις της εννοίας. Πώς η συγκεκριμένη δραστηριότητα μπορεί να αποτελέσει απαρχή για άλλες επιμέρους δραστηριότητες που επεκτείνουν την αρχική; Μπορεί να χρησιμοποιηθεί η μέθοδος ή το αποτέλεσμα για κάποιο άλλο πρόβλημα ή δραστηριότητα; Μπορεί να ενεργοποιηθεί ένας προβληματισμός των μαθητών με αφορμή τη συγκεκριμένη δραστηριότητα προς μια περαιτέρω εμβάθυνση; Για παράδειγμα ένα σενάριο βασισμένο στο ερώτημα αν οι μεσοκάθετοι των πλευρών ενός τριγώνου περνούν ή όχι από το ίδιο σημείο θα μπορούσε να έχει ως επεκτάσεις τις περιπτώσεις όπου το σημείο τομής πέφτει μέσα στο τρίγωνο ή πάνω σε μια από τις πλευρές του ή μια επέκταση προς τον περιγεγραμμένο κύκλο.

5 Πρόβλεψη δυσκολιών. Το σενάριο θα πρέπει να ενσωματώνει τις «συνήθεις», συστηματικές δυσκολίες των μαθητών. Για παράδειγμα, οι περισσότεροι μαθητές κάνουν το λάθος (Α+Β) 2 =Α 2 +Β 2 και "ξεχνούν" το διπλάσιο γινόμενο. Αυτό (μάλλον) οφείλεται στο γεγονός ότι πολλές μαθηματικές ιδιότητες είναι του τύπου F(A*B)=F(Α)*F(B) δηλαδή ισχύει μια "γραμμικότητα". Ανάλογο λάθος κάνουν οι μαθητές και με τις απόλυτες τιμές ή με τη ρίζα του αθροίσματος. Οι εκπαιδευτικοί λοιπόν, πρέπει να γνωρίζουν και να επισημαίνουν τα «συνήθη» εμπόδια που συναντούν οι μαθητές και τα συστηματικά λάθη τους, τα οποία και να συμπεριλαμβάνουν στην περιγραφή διδακτικών σεναρίων. Γιατί να χρησιμοποιηθεί ο υπολογιστής; Το καινοτόμο περιβάλλον δεν αποτελεί από μόνο του λόγο για να υλοποιηθεί μια διδακτική δραστηριότητα με τη χρήση τεχνολογίας. Οι επιλογές θα πρέπει να αξιολογούνται όχι με βάση τον καινοτόμο χαρακτήρα τους, αλλά την εκτιμώμενη διδακτική τους αποτελεσματικότητα. Πρέπει λοιπόν η απόφαση αυτή να δικαιολογείται από το γεγονός ότι η χρήση της τεχνολογίας θα επιτρέψει την υλοποίηση επιθυμητών ενεργειών που δεν θα μπορούσαν να υλοποιηθούν στο παραδοσιακό περιβάλλον. Πρέπει να καθίσταται φανερή η συμβολή της τεχνολογίας στην επίτευξη συγκεκριμένων διδακτικών στόχων. Στο παράδειγμα των μεσοκαθέτων που προαναφέρθηκε, ως συμβολή του υπολογιστή θα μπορούσε να αναφερθεί η γρήγορη κατασκευή τριγώνων, η χωρίς λάθη χάραξη των μεσοκαθέτων, η δυνατότητα δυναμικής μεταχείρισης του σχήματος. Στο «κυνήγι» της τετραγωνικής ρίζας η δυνατότητα υλοποίησης μακροσκελών υπολογισμών με όση προσέγγιση θέλουμε. Ταυτόχρονα αξιολογώντας τις διδακτικές προθέσεις και τις δυνατότητες ενός λογισμικού το σενάριο πρέπει να λαμβάνει υπόψή του θέματα όπως: Χρησιμοποιούνται περισσότερα από ένα λογισμικά ή το ίδιο λογισμικό με πολλούς τρόπους (Dagdilelis & Papadopoulos, 2004); Χρησιμοποιείται το Διαδίκτυο; Ποιοι λόγοι υπαγορεύουν τη χρήση καθενός λογισμικού; Διδακτικά «κέρδη» και «ζημιές» - Κριτική Ανάλυση των χρησιμοποιούμενων ΤΠΕ. Το σενάριο θα πρέπει να αναδεικνύει την ορθολογική χρήση των ΤΠΕ μέσα από το προσδοκώμενο «διδακτικό κέρδος». Προσδοκάται η συμβολή στο γνωστικό επίπεδο ή ανάπτυξη μιας συγκεκριμένης δεξιότητας; Μήπως η χρήση λογισμικού μπορείανάλογα με την περίπτωση - να δημιουργεί πρόσθετα προβλήματα; Απαιτείται πχ ένα χρονικό διάστημα για την εξοικείωση των μαθητών με ένα νέο περιβάλλον εργασίας και ενδεχομένως απαιτούνται πόροι και υποδομή που δεν είναι διαθέσιμοι (όπως π.χ. ένας βιντεοπροτζέκτορας ή ένας Η/Υ ανά μαθητή, πρόσβαση στο Διαδίκτυο στο σπίτι). Ταυτόχρονα, πιθανόν να επέλθει ένας περιορισμός στην εικόνα που έχουν οι μαθητές για τη συγκεκριμένη έννοια. Μήπως είναι πρόωρη η εισαγωγή της αν δεν έχει εξασφαλιστεί άλλη σχετική γνώση ή δεξιότητες; Υπάρχει κίνδυνος να δημιουργηθεί παρανόηση για κάποιο θέμα στους μαθητές; Είναι ενδεχόμενη μια απώλεια σε θέματα δεξιοτήτων (πχ χρήση γεωμετρικών οργάνων ή ορθή επιτέλεση αριθμητικών πράξεων); Στο πρόβλημα των μεσοκαθέτων θα μπορούσαμε να προσδοκούμε ως διδακτικά κέρδη το γεγονός ότι ψάχνοντας να βρουν ένα τρίγωνο στο οποίο οι μεσοκάθετοι των πλευρών να μην περνούν από το ίδιο σημείο, οι μαθητές βλέπουν ένα φαινόμενο που

6 επαναλαμβάνεται και εξηγούν το γιατί. Επίσης η άμεση ανατροφοδότηση από τη διεπαφή αποτρέπει ή ενισχύει μια πορεία επίλυσης. Από την άλλη υπάρχει ένας περιορισμός. Πρέπει να εξασφαλιστεί η γνώση της κατασκευής της μεσοκαθέτου πριν τη χρήση του λογισμικού. Διδακτικός θόρυβος. Ένα ακόμη ζητούμενο είναι η μείωση ή όχι του «διδακτικού θορύβου», όρος που αναφέρεται στις ανεπιθύμητες παράπλευρες δραστηριότητες (πχ οι υπερβολικά μακροσκελείς υπολογισμοί), που μπορούν εξ ολοκλήρου να επισκιάσουν τα πραγματικά αντικείμενα του μαθήματος. Οι έννοιες τις οποίες αντιμετωπίζουμε στη διδακτική διαδικασία, έχουν για τους μαθητές μια «διπλή ζωή», καθώς αρχικά αποτελούν αντικείμενο μάθησης (π.χ. οι μαθητές διδάσκονται την έννοια της μεσοκαθέτου, τι είναι, πώς φέρουμε μια μεσοκάθετο), ενώ αργότερα, δεν αποτελούν πια το αντικείμενο μάθησης, αλλά το μέσο προκειμένου να επιλυθούν πιο σύνθετα προβλήματα.. Ακόμη και ως μέσο όμως, η μεσοκάθετος δημιουργεί ανεπιθύμητο διδακτικό θόρυβο. Η τεχνολογία, μπορεί να συμβάλλει προς την κατεύθυνση της μείωσης του διδακτικού θορύβου στη φάση αυτή. Χρήση εξωτερικών πηγών. Είναι σημαντική παράμετρος το να γνωρίζει ο επιμορφωτής-εκπαιδευτικός από πού μπορεί να αντλήσει πρόσθετες πληροφορίες για την προς διδασκαλία έννοια (π.χ. από το Διαδίκτυο), πού θα βρει - ενδεχομένως - πρόσθετο διδακτικό υλικό, σημειώσεις, αναφορές από παρόμοιες διδασκαλίες (για παράδειγμα, πού θα ψάξει στο Διαδίκτυο;) Εικόνα.2 Πολλαπλές αναπαραστάσεις πολλαπλές προσεγγίσεις. Πολύ συχνά οι έννοιες στα Μαθηματικά έχουν πολλαπλά πλαίσια εκφοράς: το Πυθαγόρειο θεώρημα έχει μια αλγεβρική και μια γεωμετρική πλευρά, η παράγωγος έχει και γεωμετρική ερμηνεία, οι συναρτήσεις έχουν αναλυτική έκφραση (όσες έχουν) και γραφική παράσταση. Το σενάριο λοιπόν πρέπει να λαμβάνει υπόψη του αυτή τη διάσταση. Από την άλλη σε πολλές περιπτώσεις υφίσταντα πολλές προσεγγίσεις ενός προβλήματος, μέσα στο ίδιο πλαίσιο. Ας πάρουμε για παράδειγμα το γνωστό πρόβλημα που παραθέτει ο Polya (1973) της εγγραφής τετραγώνου σε δοθέν τρίγωνο με τις δυο κορυφές του στη βάση και τις άλλες δυο στις υπόλοιπες 2 πλευρές του τριγώνου. Το πρόβλημα θα μπορούσε να προσεγγιστεί τουλάχιστον κατά τρεις διαφορετικούς τρόπους. 1) εγγράφεται τετράγωνο με 3 κορυφές πάνω στις πλευρές (εκ των οποίων οι 2 στη βάση) και αναζητείται ο γεωμετρικός τόπος της τέταρτης (προσέγγιση με Cabri, χρήση σχεδίασης ίχνους, βλ.

7 εικ.2). 2) εγγράφεται ένα παραλληλόγραμμο και διερευνάται πότε γίνεται τετράγωνο. 3) το μήκος της πλευράς υπολογίζεται αλγεβρικά (χάρη στοε Θεώρημα Θαλή και τα όμοια τρίγωνα). Υποκείμενη θεωρία μάθησης. Συνδέεται με τον τρόπο που θεμελιώνεται η οργάνωση του μαθήματος. Αν και συχνά τα σύγχρονα εκπαιδευτικά λογισμικά έχουν την αναφορά τους στον εποικοδομητισμό και τη διερευνητική μάθηση, εν τούτοις αυτή δεν είναι π αντοε η περίπτωση, ενώ ταυτόχρονα η σχεδίαση μιας συγκεκριμένης δραστηριότητας μπορεί να «παρακάμπτει» την αντίστοιχη με την οποία έχει κατασκευαστεί το λογισμικό. Μπορεί να είναι δραστηριότητα εκγύμνασης (drill and practice), ενταγμένη στο πλαίσιο της επίλυσης προβλήματος, καθοδηγούμενη από το δάσκαλο (πιο κοντά σε μια κατά Vygotski προσέγγιση). Πώς τεκμηριώνεται αυτό; Θεμελιώνει το σχεδιασμό σε κάποιες διδακτικές θεωρίες; Δίνει στο μαθητή τη δυνατότητα να εξερευνήσει, να ανταλλάξει απόψεις και να συνεργαστεί με τους συμμαθητές του; Ποιος είναι ο ρόλος του καθηγητή; Με ποιο τρόπο ο υποψήφιος τεκμηριώνει τις απόψεις αυτές; Επισήμανση μικρομεταβολών στην οργάνωση του μαθήματος και στο νόημα των εννοιών. Τα σύγχρονα εκπαιδευτικά περιβάλλοντα επιτρέπουν συχνά τις διαδικασίες επικύρωσης υποθέσεων «πειραματικού τύπου» μεταβάλλοντας ριζικά τις δυνατότητες του καθηγητή που μπορεί, πχ να ζητήσει από τους μαθητές να διαπιστώσουν αρχικά (με δοκιμές) και ύστερα (αν χρειάζεται) να αποδείξουν μια πρόταση. Επίσης οι αριθμοί του Excel δεν είναι ούτε άπειροι ούτε με άπειρα δεκαδικά ψηφία, οι ευθείες στα περιβάλλοντα Δυναμικής Γεωμετρίας δεν είναι απείρου μήκους ούτε και έχουν άπειρα σημεία (δεν έχουν καν σημεία, αλλά pixels, εικονοστοιχεία, που είναι ορατά αν μεγεθύνει κανείς το σχήμα). Εξάλλου, κάθε έννοια που διδάσκεται με τη βοήθεια του Η.Υ. είναι διαμεσολαβημένη από τη διεπαφή και δίνει στο χρήστη την αίσθηση ότι διαχειρίζεται άμεσα έναν μικρόκοσμο ενώ στην πραγματικότητα διαχειρίζεται κατά τρόπο έμμεσο μια συγκεκριμένη υλοποίηση προσομοίωσης ενός συστήματος (Papadopoulos & Dagdilelis, 2006). Οι μαθητές έχουν με μια πρώτη ματιά μπροστά τους στην οθόνη σχήματα με την ίδια ακριβώς εμφάνιση (τετράγωνα, τρίγωνα) που έχουν όμως εντελώς διαφορετική «συμπεριφορά» στο κάθε περιβάλλον. Έτσι, δίνεται έμφαση σε κάποιες όψεις της έννοια,ς ενώ αποκρύπτονται ή υποβαθμίζονται άλλες. Διδακτικό συμβόλαιο (Brousseau, 1997). Είναι το σύνολο των συμπεριφορών του διδάσκοντος που «αναμένονται» από το μαθητή και το αντίστοιχο σύνολο των συμπεριφορών του μαθητή που «αναμένονται» από το δάσκαλο. Το διδακτικό συμβόλαιο δεν είναι ρητά εκφρασμένο και γίνεται αντιληπτό κάθε φορά που, με κάποιο τρόπο, ανατρέπεται. Υπάρχει ενδεχόμενο λοιπόν, σε κάποιο σημείο της ροής της δραστηριότητας,, το διδακτικό συμβόλαιο να ανατραπεί. Αυτό πρέπει να επισημαίνεται ε ένα διδακτικό σενάριο. Στο πρόβλημα των μεσοκαθέτων, για παράδειγμα, η δυνατότητα από το μαθητή να φτάσει με «σύρσιμο» σε ένα πεπλατυσμένο τρίγωνο αποτελεί ανατροπή του συμβολαίου για το τι είναι τρίγωνο. Οργάνωση τάξης εφικτότητα σχεδίασης. Ο ρόλος εκπαιδευτικού είναι καθοριστικός στο σημείο αυτό. Ανάλογα με τις διδακτικές του προθέσεις καλείται να

8 κάνει μια διαχείριση του αριθμού των μαθητών, των διαθέσιμων υπολογιστών, του τρόπου εργασίας (ατομικά ομαδικά), του χρόνου (πόσες διδακτικές ώρες και με τι επιμέρους στόχους κάθε φορά). Το μάθημα είναι πραγματοποιήσιμο ή ανέφικτο;. Και κυρίως, η σχεδίασή του, λαμβάνει υπόψή της τις πραγματικές συνθήκες διεξαγωγής του μαθήματος; ΑΝΤΙ ΓΙΑ ΣΥΜΠΕΡΑΣΜΑΤΑ Ο πρακτικός οδηγός που παρουσιάζουμε δεν είναι πλήρης. Έχουν παραλειφθεί είτε τμήματα περίπου αυτονόητα, είτε τμήματά του τα οποία είναι σημαντικά, αλλά έχουν έναν ευρύτερο χαρακτήρα (όπως η διαθεματικότητα). Μια πλήρης παρουσίασή των στοιχείων αυτών, ξεπερνάει κατά πολύ την έκταση και τους στόχους της παρούσας. Επίσης, ο οδηγός αυτός δεν έχει την έννοια του αναγκαίου: όσα περιγράφονται δηλαδή σε αυτόν, δεν είναι πάντοτε απολύτως αναγκαίο να περιληφθούν σε ένα σενάριο, καθώς είναι ενδεχόμενο ορισμένα από τα τμήματα του να μην είναι εφαρμόσιμα σε ένα σενάριο. Είναι τέλος προφανές ότι στα διάφορα τμήματα του οδηγού υπάρχουν κάποιες επικαλύψεις. Τούτο είναι περίπου αναμενόμενο, αν ληφθεί υπόψη ο αναγκαστικά ασαφής προσδιορισμός των διαφόρων κριτηρίων και τμημάτων του οδηγού. Στη διάρκεια της ανάλυσης του οδηγού και της χρήσης του σε επιμορφωτικά σεμινάρια, διαπιστώσαμε ότι στην πραγματικότητα, ο οδηγός αυτός δεν ισχύει μόνο για τη δημιουργία διδακτικών σεναρίων για τη διδασκαλία των Μαθηματικών, αλλά μπορεί στο μεγαλύτερο μέρος του να αποτελέσει έναν οδηγό για επιμορφωτικά σεμινάρια μπορεί δηλαδή να χρησιμοποιηθεί από έναν επιμορφωτή ο οποίος θα επιμορφώσει εκπαιδευτικούς στη χρήση των ΤΠΕ στη διδασκαλία των Μαθηματικών. Η διαπίστωση αυτή αποτελεί ένα είδος κινήτρου για μας, προκειμένου να επεκτείνουμε το αντικείμενο της έρευνάς μας ΒΙΒΛΙΟΓΡΑΦΙΑ Brousseau, G. (1997). Theory of didactical situations in Mathematics, Kluwer Academic Publishers. Dagdilelis, V. & Papadopoulos, I. (2004). An Open Problem in the Use of Software for Educational Purposes, in E. McKay (Ed.), Proceedings of International Conference on Computers in Education 2004, , RMIT University, Australia. Papadopoulos, I. & Dagdilelis, V. (2006). The Theory of Transactional Distance as a framework for the analysis of computer aided teaching of geometry, International Journal for Technology in Mathematics Education, 13 (4), Polya, G. (1973). How to solve it, Princeton: Princeton University Press. Κολέζα, Ε. (2000). Γνωσιολογική και Διδακτική Προσέγγιση των Στοιχειωδών Μαθηματικών Εννοιών, Εκδ. Ελληνικά Γράμματα. Κυνηγός, Χ. (2007) Το μάθημα της διερεύνησης. Παιδαγωγική αξιοποίηση της Σύγχρονης Τεχνολογίας για τη διδακτική των Μαθηματικών: Από την έρευνα στη σχολική τάξη. Εκδ. Ελληνικά Γράμματα.

ΘΕΩΡΙΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙI ΙΣΑΒΕΛΛΑ ΚΟΤΙΝΗ ΣΧ. ΣΥΜΒΟΥΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΩΡΙΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙI ΙΣΑΒΕΛΛΑ ΚΟΤΙΝΗ ΣΧ. ΣΥΜΒΟΥΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙI ΙΣΑΒΕΛΛΑ ΚΟΤΙΝΗ ΣΧ. ΣΥΜΒΟΥΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΙΟΣ 2013 Τεχνολογίες Πληροφορίας και Επικοινωνιών Οι εκπαιδευτικοί χρησιμοποιούν τα εργαλεία ΤΠΕ για χαμηλού επιπέδου

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

Εργαλεία Ψηφιακής Τεχνολογίας στη διδασκαλία των Μαθηματικών. Ι. Παπαδόπουλος

Εργαλεία Ψηφιακής Τεχνολογίας στη διδασκαλία των Μαθηματικών. Ι. Παπαδόπουλος Εργαλεία Ψηφιακής Τεχνολογίας στη διδασκαλία των Μαθηματικών Ι. Παπαδόπουλος ypapadop@eled.auth.gr 2 3 Γιατί να εντάξουμε την τεχνολογία στη Μαθηματική Εκπαίδευση Παρέχουν πολλαπλές και αλληλεξαρτώµενες

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

το σύστηµα ελέγχει διαρκώς το µαθητή,

το σύστηµα ελέγχει διαρκώς το µαθητή, Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει

Διαβάστε περισσότερα

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών 3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών Παρουσίαση βασισμένη στο κείμενο: «Προδιαγραφές ψηφιακής διαμόρφωσης των

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

Τάξη Τμήμα Διάρκεια: δ. ώρα/ες. Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών. Ποιοι τετράγωνοι αριθμοί υπάρχουν μέχρι το 100;

Τάξη Τμήμα Διάρκεια: δ. ώρα/ες. Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών. Ποιοι τετράγωνοι αριθμοί υπάρχουν μέχρι το 100; Φύλλο εργασίας Τάξη Τμήμα Διάρκεια: δ. ώρα/ες Ημερομηνία / / Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών Ομάδα 1 η Δραστηριότητα 1.1 Θυμάστε τους τετράγωνους αριθμούς; Ποιοι τετράγωνοι αριθμοί

Διαβάστε περισσότερα

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο 6 η ΣΥΝΕΔΡΙΑ Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο ΣΤΟΧΟΙ Οι επιμορφούμενοι μετά το πέρας της Συνεδρίας θα πρέπει: να γνωρίζουν τις δυνατότητες που τους προσφέρει το Φωτόδεντρο.

Διαβάστε περισσότερα

Τα διδακτικά σενάρια

Τα διδακτικά σενάρια 2.2.4.1 Τα διδακτικά σενάρια Το ζήτηµα της διδακτικής αξιοποίησης του λογισµικού αποτελεί σηµείο προβληµατισµού ερευνητών και εκπαιδευτικών που ασχολούνται µε την ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Όλγα Κασσώτη Εργασία που κατατίθεται ως παραδοτέο της παρακολούθησης εκπαιδευτικού προγράμματος στο πλαίσιο υλοποίησης της Πράξης με τίτλο: «Επιμόρφωση των Εκπαιδευτικών

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04) «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για

Διαβάστε περισσότερα

Ενότητα 1: Παρουσίαση μαθήματος. Διδάσκων: Βασίλης Κόμης, Καθηγητής

Ενότητα 1: Παρουσίαση μαθήματος. Διδάσκων: Βασίλης Κόμης, Καθηγητής Διδακτική της Πληροφορικής: Ερευνητικές προσεγγίσεις στη μάθηση και τη διδασκαλία Μάθημα επιλογής B εξάμηνο, Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας.

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας. Α/Α ΣΤΟΧΟΙ (επιθυμητές γνώσεις-δεξιότητες-ικανότ ητες) ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ (Τίτλοι) ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΙΑΡΚΕΙΑ (ενδεικτικά σε ώρες) Το Πρόγραμμα πιστοποιήθηκε από την

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Ε. Κολέζα, Γ. Βρέταρος, θ. Δρίγκας, Κ. Σκορδούλης Εισαγωγή Ο εκπαιδευτικός κατά τη διάρκεια της σχολικής

Διαβάστε περισσότερα

Πράξη: «Επιμόρφωση εκπαιδευτικών για την αξιοποίηση και εφαρμογή των ψηφιακών τεχνολογιών στη διδακτική πράξη (Επιμόρφωση Β επιπέδου Τ.Π.Ε.

Πράξη: «Επιμόρφωση εκπαιδευτικών για την αξιοποίηση και εφαρμογή των ψηφιακών τεχνολογιών στη διδακτική πράξη (Επιμόρφωση Β επιπέδου Τ.Π.Ε. Πράξη: «Επιμόρφωση εκπαιδευτικών για την αξιοποίηση και εφαρμογή των ψηφιακών τεχνολογιών στη διδακτική πράξη Επιχειρησιακό Πρόγραμμα «Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Δια Βίου Μάθηση», ΕΣΠΑ

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΣΕΝΑΡΙΟΥ 9 ΔΟΜΕΣΕΠΙΛΟΓΗΣΣΤΟ SCRATCH

ΕΝΟΤΗΤΑ ΣΕΝΑΡΙΟΥ 9 ΔΟΜΕΣΕΠΙΛΟΓΗΣΣΤΟ SCRATCH ΕΝΟΤΗΤΑ ΣΕΝΑΡΙΟΥ 9 ΔΟΜΕΣΕΠΙΛΟΓΗΣΣΤΟ SCRATCH ΙΣΑΒΕΛΛΑ ΚΟΤΙΝΗ ΣΟΦΙΑ ΤΖΕΛΕΠΗ ΣΧ. ΣΥΜΒΟΥΛΟΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ikotini@sch.gr stzelepi@sch.gr Περιεχόμενα Σεναρίου 2 1. ΤΙΤΛΟΣ ΔΙΔΑΚΤΙΚΟΥ ΣΕΝΑΡΙΟΥ 2. ΕΚΤΙΜΩΜΕΝΗ ΔΙΑΡΚΕΙΑ

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ02 (78 ώρες)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ02 (78 ώρες) ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ02 (78 ώρες) 1.α 3 ώρες Η εισαγωγή των ΤΠΕ στην εκπαίδευση και τη διδασκαλία των φιλολογικών µαθηµάτων Επισκόπηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΩΤΕΙΝΗ ΜΠΕΪΚΑΚΗ Επιβλέπων καθηγητής: Αντωνιάδης Νικόλαος ΔΕΚΕΜΒΡΙΟΣ 2006 Η ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΕΠΟΧΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Εκπαίδευση από απόσταση Η τηλεμάθηση Ιδρυματική εκπαίδευση

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο:

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: Τμήμα: ευτεροβάθμιας Ευβοίας Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: 2231081842 Χώρος υλοποίησης: 3 ο ημοτικό Σχολείο Χαλκίδας Υπεύθυνος: Σιέκρη Φρειδερίκη Τηλέφωνο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα

Διαβάστε περισσότερα

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Μάθηση και γνώση: μια συνεχής και καθοριστική αλληλοεπίδραση Αντώνης Λιοναράκης Στην παρουσίαση που θα ακολουθήσει θα μιλήσουμε

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Διδακτική της Χημείας

Διδακτική της Χημείας Διδακτική της Χημείας Ενότητα 5: Νεότερες Θεωρητικές Προσεγγίσεις Ζαχαρούλα Σμυρναίου Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας 1. Τα Σενάρια και οι Προδιαγραφές τους... 3 1.1 Ορισμός της έννοιας του

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO 1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει

Διαβάστε περισσότερα

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Δρ. Χαράλαμπος Μουζάκης Διδάσκων Π.Δ.407/80 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Στόχοι ενότητας Το λογισμικό

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β Ημερήσιου και Γ Εσπερινού Γενικού Λυκείου II. Διαχείριση διδακτέας ύλης Κεφάλαιο 7 ο (Προτείνεται να διατεθούν 6 διδακτικές ώρες). 7.1-7.6 Στις παραγράφους αυτές γίνεται πρώτη

Διαβάστε περισσότερα

Τμήμα: Προσχολικής & Πρωτοβάθμιας Φωκίδας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο:

Τμήμα: Προσχολικής & Πρωτοβάθμιας Φωκίδας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: Τμήμα: Προσχολικής & Πρωτοβάθμιας Φωκίδας Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: 2231081842 Χώρος υλοποίησης: ΕΚΦΕ Φωκίδας Υπεύθυνος: Μπεμπή Ευαγγελία Τηλέφωνο επικοινωνίας:

Διαβάστε περισσότερα

1 ΕΙΣΑΓΩΓΗ 2 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ «ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ» ΜΕ ΤΟ ΜΙΚΡΟΚΟΣΜΟ «TORRICELLI» ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΑΙΑ ΙΙ

1 ΕΙΣΑΓΩΓΗ 2 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ «ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ» ΜΕ ΤΟ ΜΙΚΡΟΚΟΣΜΟ «TORRICELLI» ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΑΙΑ ΙΙ «ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ» ΜΕ ΤΟ ΜΙΚΡΟΚΟΣΜΟ «TORRICELLI» ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΑΙΑ ΙΙ 1 ΕΙΣΑΓΩΓΗ Εμπλεκόμενες γνωστικές περιοχές: Γεωγραφία: Η ατμόσφαιρα Τάξεις - Συμβατότητα με το Α.Π.Σ. Στ τάξη Δημοτικού

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΣΥΝΤΕΛΕΣΤΕΣ Συγγραφική Ομάδα Βλάμος Παναγιώτης Δρούτσας Παναγιώτης Πρέσβης Γεώργιος Ρεκούμης Κωνσταντίνος Φιλολογική Επιμέλεια Βελάγκου Ευγενία Σκίτσα Βρανάς Θεοδόσης Υπεύθυνος Παιδαγωγικού

Διαβάστε περισσότερα

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Η ανάλυση της κριτικής διδασκαλίας Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Διαδικασία η γνώση ως ανάπτυξη υψηλών νοητικών λειτουργιών (

Διαβάστε περισσότερα

Τι ώρα είναι; 1. Τίτλος διδακτικού σεναρίου. 2. Εκτιμώμενη διάρκεια διδακτικού σεναρίου

Τι ώρα είναι; 1. Τίτλος διδακτικού σεναρίου. 2. Εκτιμώμενη διάρκεια διδακτικού σεναρίου Τι ώρα είναι; Σενάριο που χρησιμοποιεί Internet, πρόγραμμα επεξεργασίας εικόνας (προτείνεται Paint.NET) και το Scratch. Τo σχεδίασε ο εκπαιδευτικός κλάδου ΠΕ20 Μαλλιαρίδης Κωνσταντίνος. 1. Τίτλος διδακτικού

Διαβάστε περισσότερα

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση. Ενότητα 6: Πλαίσιο Σχεδιασμού και αναφοράς Σεναρίου

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση. Ενότητα 6: Πλαίσιο Σχεδιασμού και αναφοράς Σεναρίου Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Μάθημα επιλογής Α εξάμηνο, Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην

Διαβάστε περισσότερα

Μαθησιακές δραστηριότητες με υπολογιστή

Μαθησιακές δραστηριότητες με υπολογιστή ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθησιακές δραστηριότητες με υπολογιστή Εκπαιδευτικά υπερμεσικά περιβάλλοντα Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες 1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες Θέμα της δραστηριότητας Η δραστηριότητα αυτή είναι μια εισαγωγή στις άπειρες διαδικασίες. Η εισαγωγή αυτή επιτυγχάνεται με την εφαρμογή της μεθόδου

Διαβάστε περισσότερα

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. Σκεπτικό της δραστηριότητας Βασική ιδέα του σεναρίου

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. Σκεπτικό της δραστηριότητας Βασική ιδέα του σεναρίου ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ Τίτλος: Ο Σωκράτης και η εποχή του Συγγραφέας: Καλλιόπη Στυλιανή Κοντιζά Γνωστικό Αντικείμενο: Ανθολόγιο Φιλοσοφικών Κειμένων Τάξη: Γ Γυμνασίου Κείμενο: Κεφάλαιο 3 ο : Σωκράτης και

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου)

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Συστάδα Β1.3: Μαθηματικά, Πληροφορική, Οικονομία Διοίκηση Επιχειρήσεων Συνεδρία 5 ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΧΡΗΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ

Διαβάστε περισσότερα

Τμήμα: Σύγχρονο εξ αποστάσεως επιμορφωτικό πρόγραμμα Προσχολικής & Πρωτοβάθμιας

Τμήμα: Σύγχρονο εξ αποστάσεως επιμορφωτικό πρόγραμμα Προσχολικής & Πρωτοβάθμιας Τμήμα: Σύγχρονο εξ αποστάσεως επιμορφωτικό πρόγραμμα Προσχολικής & Πρωτοβάθμιας Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: 2231081842 Τρόπος υλοποίησης: Σύγχρονα Υπεύθυνος:

Διαβάστε περισσότερα

ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη

ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη Συμπλήρωση (Ομάδα Επιμορφωτών): ΧΡΥΣΑΦΕΝΙΑ ΜΑΝΩΛΟΠΟΥΛΟΥ Κατάθεση/Υποβολή: ΑΛΕΞΑΝΔΡΟΣ ΚΟΝΤΟΥΛΗΣ Α. ΣΤΟΙΧΕΙΑ ΠΡΟΓΡΑΜΜΑΤΟΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ

ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Κιουτσιούκη Δήμητρα, 485 Τελική δραστηριότητα Φάση 1 :Ατομική μελέτη 1. Πώς θα περιγράφατε το ρόλο της τεχνολογίας στην εκπαιδευτική καινοτομία; Οι Web

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

Παιδαγωγικό Υπόβαθρο ΤΠΕ. Κυρίαρχες παιδαγωγικές θεωρίες

Παιδαγωγικό Υπόβαθρο ΤΠΕ. Κυρίαρχες παιδαγωγικές θεωρίες Παιδαγωγικό Υπόβαθρο ΤΠΕ Κυρίαρχες παιδαγωγικές θεωρίες Θεωρίες μάθησης για τις ΤΠΕ Συμπεριφορισμός (behaviorism) Γνωστικές Γνωστικής Ψυχολογίας (cognitive psychology) Εποικοδομητισμός (constructivism)

Διαβάστε περισσότερα

Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση

Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση Δρ Κώστας Χαμπιαούρης Επιθεωρητής Δημοτικής Εκπαίδευσης Συντονιστής Άξονα Αναλυτικών

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Άρθρα - Υλικό Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Χειραπτικά εργαλεία Υλικά/εργαλεία στο νέο Πρόγραμμα σπουδών

Διαβάστε περισσότερα

Συστήµατα Τηλεκπαίδευσης: Γενική επισκόπηση Επισηµάνσεις Διάλεξη 9

Συστήµατα Τηλεκπαίδευσης: Γενική επισκόπηση Επισηµάνσεις Διάλεξη 9 1 Συστήµατα Τηλεκπαίδευσης: Γενική επισκόπηση Επισηµάνσεις Διάλεξη 9 Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή 2 Τηλεκπαίδευση Χρήση της τηλεµατικής τεχνολογίας (τηλεπικοινωνίες

Διαβάστε περισσότερα

Σενάριο για την επεξεργασία εικόνας με το Paint.NET που σχεδίασε ο εκπαιδευτικός κλάδου ΠΕ20 Μαλλιαρίδης Κωνσταντίνος.

Σενάριο για την επεξεργασία εικόνας με το Paint.NET που σχεδίασε ο εκπαιδευτικός κλάδου ΠΕ20 Μαλλιαρίδης Κωνσταντίνος. Μπάλες Μπιλιάρδου Σενάριο για την επεξεργασία εικόνας με το Paint.NET που σχεδίασε ο εκπαιδευτικός κλάδου ΠΕ20 Μαλλιαρίδης Κωνσταντίνος. 1. Τίτλος διδακτικού σεναρίου Μπάλες μπιλιάρδου 2. Εκτιμώμενη διάρκεια

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα