Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός"

Transcript

1 Διδακτικά σενάρια και ΤΠΕ στα Μαθηματικά: ένας πρακτικός οδηγός Βασίλειος Δαγδιλέλης 1 και Ιωάννης Παπαδόπουλος 2 1 Τμήμα Εκπαιδευτικής και Κοινωνικής Πολιτικής,, Πανεπιστήμιο Μακεδονίας 2 Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζουμε έναν πρακτικό οδηγό για την κατασκευή διδακτικών σεναρίων με τη συμβολή των ΤΠΕ στα Μαθηματικά. Παραθέτουμε μια σειρά από στοιχεία που ενσωματώνει ο οδηγός αυτός με την παρουσίαση σχετικών παραδειγμάτων όπου αυτό κρίνεται απαραίτητο. ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: επιμόρφωση, σενάρια, νέες τεχνολογίες, μαθηματικά ΕΙΣΑΓΩΓΗ Η ιδέα των διδακτικών σεναρίων (μετάφραση των educational scripts), έχει πολλές φορές απασχολήσει την κοινότητα της Διδακτικής των Μαθηματικών και όχι μόνο των Μαθηματικών. Οι επιμορφώσεις των εκπαιδευτικών των τελευταίων ετών και ιδιαίτερα η Επιμόρφωση Β επιπέδου, επανέφεραν το θέμα με έναν επιτακτικό τρόπο: τι ακριβώς είναι ένα διδακτικό σενάριο; Πως κατασκευάζεται; Πως χρησιμοποιείται; Τα ερωτήματα έρχονται και επανέρχονται, καθώς μάλιστα οι απόψεις των ερευνητών και διδασκόντων δε συγκλίνουν. Στην παρούσα προτείνουμε ένα είδος πρακτικού οδηγού για τη δημιουργία τέτοιων διδακτικών σεναρίων διδασκαλίας Μαθηματικών με τη χρήση ΤΠΕ. Ο οδηγός μας έχει προέλθει από τη σύνθεση απόψεων που ήδη έχουν διατυπωθεί στο παρελθόν (Κυνηγός, 2007), συμπεριλαμβανομένων και δικών μας. Επιπλέον, έχει δοκιμαστεί επανειλημμένως στη διδακτική πράξη. Πιο συγκεκριμένα, εκτός από τη σχετική βιβλιογραφική έρευνα, βασιστήκαμε και σε συγκεκριμένες επιμορφωτικές εμπειρίες, όπως της επιμόρφωσης εκπαιδευτικών σε δεξιότητες Πληροφορικής Α και Β επιπέδου, επί μακρύ χρονικό διάστημα, στην Αρχική Επιμόρφωση Εκπαιδευτικών (στα Περιφερειακά Κέντρα Επιμόρφωσης), επί σειρά ετών στα λεγόμενα προγράμματα Εξομείωσης και αλλού. Χαρακτηρίζουμε την προσέγγιση μας ως πρακτικό οδηγό γιατί απευθύνεται στους εκπαιδευτικούς, προσπαθεί να αποτελέσει ένα «εργαλείο» άμεσης χρήσης για την καθημερινή τους εργασία. Τρία είναι κατά την άποψη μας τα βασικά σημεία τα οποία πρέπει να προσεχθούν ιδιαίτερα στην εκπόνηση ενός τέτοιου οδηγού: (1) Η αποφυγή ενός κενού βερμπαλισμού: συχνά, τα προτεινόμενα μοντέλα σεναρίων περιλαμβάνουν τμήματα τα οποία συστηματικά καταλήγουν σε μια επανάληψη στερεοτύπων εκφράσεων με αμφίβολη χρηστικότητα. Τυπικό παράδειγμα αποτελεί η

2 σχεδόν τελετουργική αναφορά σε «κονστρουκτιβιστικές θεωρίες μάθησης» οι οποίες επαναλαμβάνονται στα σενάρια που παράγουν οι εκπαιδευτικοί, με ένα σχεδόν γραφειοκρατικό τρόπο. Δεν αμφισβητούμε βέβαια την αξία μιας ανάλυσης αυτού του επιπέδου. Ωστόσο, η σχεδόν αυτολεξεί αναπαραγωγή των ίδιων γλωσσικών στερεοτύπων στα σενάρια των εκπαιδευτικών, την καθιστά μάλλον ένα είδος τυπικής «υποχρέωσης» παρά πραγματική ανάλυση. (2) Η εφικτότητα και η χρηστικότητά του: τα διδακτικά σενάρια πρέπει να είναι εφικτά, να περιγράφουν καταστάσεις οι οποίες να είναι υλοποιήσιμες μέσα στο δεδομένο σχολικό χρόνο και τις δεδομένες σχολικές συνθήκες στις οποίες διεξάγεται το μάθημα. Επιπλέον, πρέπει η δημιουργία ενός σεναρίου να μην απαιτεί (τουλάχιστον σε μια πρώτη προσέγγιση) υπερβολική καταβολή προσπάθειας, ούτε και υπερβολικό χρόνο. (3) Το σημαντικότερο ίσως σημείο στη δημιουργία σεναρίων, αποτελεί η διαπραγμάτευση των «αδύνατων σημείων». Για παράδειγμα, με ποιο τρόπο δημιουργεί κανείς ένα καινούριο διδακτικό σενάριο για μια έννοια, κατασκευάζει δηλαδή ένα σενάριο ex nihilo; Ο πρακτικός οδηγός που προτείνουμε προσπαθεί να ενσωματώσει, μεταξύ άλλων, και τα στοιχεία αυτά. Ως διδακτικό σενάριο (διδακτική κατάσταση, στη Διδακτική των Μαθηματικών, Brousseau, 1997) θεωρούμε την περιγραφή μιας διδασκαλίας με εστιασμένο γνωστικό(ά) αντικείμενο(α), εκπαιδευτικούς στόχους, διδακτικές αρχές και πρακτικές. Στα διδακτικά σενάρια, περιλαμβάνονται στοιχεία όπως η αλληλεπίδραση και οι ρόλοι των συμμετεχόντων, οι αντιλήψεις των μαθητών και τα ενδεχόμενα διδακτικά εμπόδια και γενικότερα όλα εκείνα τα στοιχεία που θεωρούνται σημαντικά στη σύγχρονη διδακτική θεωρία. Σε μια τέτοια διδασκαλία μπορούν να συνδυάζονται περισσότεροι διδακτικοί πόροι, όπως π.χ. περισσότερα του ενός λογισμικά, σημειώσεις, sites, όργανα (π.χ. εργαστηριακά, πίνακας, διαβήτης, ), προκειμένου να επιτευχθεί ένα μαθησιακό αποτέλεσμα. Ένα σενάριο μπορεί να έχει διάρκεια μιας ή περισσοτέρων διδακτικών ωρών και υλοποιείται, κατά κανόνα, μέσα από μια σειρά εκπαιδευτικών δραστηριοτήτων όπου η δομή και η ροή τους καθώς και οι ρόλοι διδάσκονταδιδασκομένων (κατά περίπτωση μαθητές, σπουδαστές, αλλά και επιμορφούμενοι κλπ) και η αλληλεπίδρασή τους με τα όποια χρησιμοποιούμενα μέσα και υλικό, περιγράφονται στα πλαίσια του διδακτικού σεναρίου. Ένα διδακτικό σενάριο μπορεί επίσης να διαιρεθεί σε διδακτικές φάσεις, αλλά η περιγραφή τους ξεπερνάει τα όρια ενός πρακτικού οδηγού και έτσι, στα πλαίσια της παρούσας, δε θα αναφερθούμε ξανά στις φάσεις ενός σεναρίου. Η χρήση των Νέων Τεχνολογιών καθιστά ακόμη πιο αναγκαία την αποσαφήνιση του τι είναι σενάριο και ποιες οι βασικές του συνιστώσες. Η εμπειρία από τις ποικίλες επιμορφώσεις που έχουν λάβει χώρα σχετικά με τις Νέες Τεχνολογίες και ειδικότερα το πρόγραμμα Επιμόρφωσης Β Επιπέδου για την ενσωμάτωση των Νέων Τεχνολογιών στη Διδακτική πρακτική, έχει αναδείξει την αναγκαιότητα για μια θεωρητική υποστήριξη του όρου «σενάριο». Αναφερόμαστε σε εκείνο το κοινό θεωρητικό υπόβαθρο που θα πρέπει να μοιράζονται επιμορφωτές επιμορφούμενοι προκειμένου να καθίσταται λειτουργική μια προσπάθεια υλοποίησης

3 ενός σεναρίου αφού θα πρέπει το «διάβασμα» ενός «συμβάντος» μέσα στην τάξη (για παράδειγμα μια λύση που προτείνει ένας μαθητής ή η χρήση ενός λογισμικού στη διδασκαλία) να περνά μέσα από το ίδιο οπτικό πρίσμα και για τα δυο «συμβαλλόμενα» μέρη. Στις επόμενες παραγράφους θα προσπαθήσουμε να σκιαγραφήσουμε το μοντέλο ενός σεναρίου για τη διδασκαλία των Μαθηματικών με τη συμβολή της τεχνολογίας παραθέτοντας όπου θεωρείται απαραίτητο συγκεκριμένα παραδείγματα προς την κατεύθυνση αυτή. ΔΙΑΜΟΡΦΩΣΗ ΣΕΝΑΡΙΟΥ Πώς ξεκινώ; Το ερώτημα αυτό αναφέρεται στη δημιουργία ενός σεναρίου από μηδενική βάση, για τη διδασκαλία μιας συγκεκριμένης εννοίας. Θα μπορούσαμε να προτείνουμε κάποιους τρόπους: α) Παρουσίαση και κατανόηση της ιστορικής αναγκαιότητας που οδήγησε στην υιοθέτηση μιας συγκεκριμένης έννοιας (για παράδειγμα η ανάγκη επαναπροσδιορισμού των ορίων των καλλιεργήσιμων περιοχών στην Αίγυπτο μετά τις πλημμύρες του Νείλου, οδηγεί στην ανάπτυξη της έννοιας του εμβαδού), β) Μια αναζήτηση από τον διδάσκοντα στο Internet για οτιδήποτε μπορεί να σχετίζεται με την υπό διδασκαλία έννοια (ιστορικά στοιχεία, έτοιμες προτάσεις διδασκαλίας, applets, αρχεία λογισμικών δυναμικής γεωμετρίας) προκειμένου να έχει μια συνολική άποψη για την προς διδασκαλία έννοια, γ) Εκκινώντας από τις δυσκολίες (συστηματικά λάθη, παρανοήσεις, ) των μαθητών και δημιουργώντας ανάδρομα ένα μάθημα δ) Πρόκληση μιας γνωστικής σύγκρουσης με μια διδακτική κατάσταση που οδηγεί σε αδιέξοδο και την οποία οι μαθητές θα ξεπεράσουν με τη βοήθεια της νέας εννοίας ή μεθόδου (Κολέζα, 2000). Αξίζει εδώ να δοθεί ένα πιο αναλυτικό παράδειγμα από την εισαγωγή στους άρρητους αριθμούς: Δραστηριότητα 1η: Κατασκευή παραλληλογράμμων σταθερού εμβαδού. Σε ένα περιβάλλον δυναμικής γεωμετρίας κατασκευάζεται ένα παραλληλόγραμμο σταθερού εμβαδού πχ 33,7 τ.εκ. Το παραλληλόγραμμο αυτό μπορεί να έχει οιοδήποτε μήκος περιμέτρου κρατώντας πάντοτε σταθερό το εμβαδόν (ο γεωμετρικός τόπος της «τέταρτης κορυφής» είναι μια γνωστή καμπύλη). Διαισθητικά είναι προφανές ότι κάποια στιγμή το παραλληλόγραμμο αυτό θα είναι τετράγωνο (εικ.1). Δραστηριότητα 2 η : Το «κυνήγι» της τετραγωνικής ρίζας. Αφού υπάρχει τετράγωνο εμβαδού 33,7 τ.εκ. μπορούμε επομένως να βρούμε αριθμό που πολλαπλασιαζόμενος με τον εαυτό του δίνει ως εξαγόμενο 33,7. Στα λογιστικά φύλλα (πχ Excel) μπορούμε να «κυνηγήσουμε» μια τετραγωνική ρίζα. Με τη μέθοδο του «εγκιβωτισμού» (μεγαλύτερων προσεγγίσεων) προσπαθούμε να προσδιορίσουμε ακριβώς την τετραγωνική ρίζα του αριθμού. Ωστόσο, αυτό φαίνεται αδύνατο, αφού όσα ψηφία και να χρησιμοποιήσουμε, δε μπορούμε να την εντοπίσουμε. Εξάλλου, οι μαθητές, ενδεχομένως θα αντιληφθούν ότι όσα πιο πολλά ψηφία προσδιορίζουμε, τόσο «πιο πολύ απομακρύνεται η πιθανότητα» να βρούμε όλα τα ψηφία της τετραγωνικής ρίζας. Τελικά υπάρχει ή δεν υπάρχει η τετραγωνική ρίζα; Η απάντηση φυσικά είναι ότι υπάρχει, αλλά ανήκει σε ένα ευρύτερο σύνολο αριθμών, τους αρρήτους αριθμούς.

4 Εικόνα 1 Επιστημολογική προσέγγιση Πρόκειται για την ανάλυση της "θέσης" της προς διδασκαλία έννοιας στα πλαίσια του μαθήματος. Πρέπει να υπάρχει σύνδεση ανάμεσα στην έννοια και στα όσα ακολουθούν και στα οποία θα χρειαστεί η έννοια ή στα όσα έχουν προηγηθεί. Ο εκπαιδευτικός πρέπει να λαμβάνει υπόψή του τη "θέση" του προς διδασκαλία αντικειμένου τόσο μέσα στην επιστήμη και τη σχολική της έκδοση όσο και την παρουσία της σε ένα τεχνολογικό περιβάλλον: π.χ. η έννοια της απόλυτης τιμής είναι σημαντική για την ανάλυση και σε ορισμένες περιπτώσεις στην κλασική άλγεβρα και - κατά κάποιο τρόπο - συνδέεται με τη γενικευμένη έννοια της "απόστασης". Το Πυθαγόρειο θεώρημα συνδέεται με τις τετραγωνικές ρίζες και τους άρρητους αριθμούς στη Β' Γυμνασίου, ενώ στη Β' Λυκείου οι επεκτάσεις του (για πλευρά απέναντι από οξεία ή αμβλεία γωνία) διδάσκονται στη Γεωμετρία (μετρικές σχέσεις). Από την άλλη ένας κύκλος στη σφαίρα της ευκλείδειας γεωμετρίας παραμένει κύκλος ακόμη και όταν θεωρηθεί υπό μεγέθυνση. Αν όμως βρίσκεται στο περιβάλλον του PowerPoint και μεγεθυνθεί αυτό που θα προκύψει είναι τα pixel και όχι ο κύκλος με την κλασική του έννοια. Άρα το ζητούμενο είναι για τον εκπαιδευτικό να είναι σε θέση να αντιληφθεί - ή να γνωρίζει - σχέσεις αυτού του είδους ή αν δεν τις γνωρίζει να ξέρει ότι υπάρχουν και να γνωρίζει πώς θα τις βρει. Επεκτάσεις. Κάθε έννοια συνδέεται άμεσα με μερικές άλλες, τουλάχιστον στη σχολική πραγματικότητα: Καλό λοιπόν είναι να λαμβάνονται υπόψη και πιθανές επεκτάσεις της εννοίας. Πώς η συγκεκριμένη δραστηριότητα μπορεί να αποτελέσει απαρχή για άλλες επιμέρους δραστηριότητες που επεκτείνουν την αρχική; Μπορεί να χρησιμοποιηθεί η μέθοδος ή το αποτέλεσμα για κάποιο άλλο πρόβλημα ή δραστηριότητα; Μπορεί να ενεργοποιηθεί ένας προβληματισμός των μαθητών με αφορμή τη συγκεκριμένη δραστηριότητα προς μια περαιτέρω εμβάθυνση; Για παράδειγμα ένα σενάριο βασισμένο στο ερώτημα αν οι μεσοκάθετοι των πλευρών ενός τριγώνου περνούν ή όχι από το ίδιο σημείο θα μπορούσε να έχει ως επεκτάσεις τις περιπτώσεις όπου το σημείο τομής πέφτει μέσα στο τρίγωνο ή πάνω σε μια από τις πλευρές του ή μια επέκταση προς τον περιγεγραμμένο κύκλο.

5 Πρόβλεψη δυσκολιών. Το σενάριο θα πρέπει να ενσωματώνει τις «συνήθεις», συστηματικές δυσκολίες των μαθητών. Για παράδειγμα, οι περισσότεροι μαθητές κάνουν το λάθος (Α+Β) 2 =Α 2 +Β 2 και "ξεχνούν" το διπλάσιο γινόμενο. Αυτό (μάλλον) οφείλεται στο γεγονός ότι πολλές μαθηματικές ιδιότητες είναι του τύπου F(A*B)=F(Α)*F(B) δηλαδή ισχύει μια "γραμμικότητα". Ανάλογο λάθος κάνουν οι μαθητές και με τις απόλυτες τιμές ή με τη ρίζα του αθροίσματος. Οι εκπαιδευτικοί λοιπόν, πρέπει να γνωρίζουν και να επισημαίνουν τα «συνήθη» εμπόδια που συναντούν οι μαθητές και τα συστηματικά λάθη τους, τα οποία και να συμπεριλαμβάνουν στην περιγραφή διδακτικών σεναρίων. Γιατί να χρησιμοποιηθεί ο υπολογιστής; Το καινοτόμο περιβάλλον δεν αποτελεί από μόνο του λόγο για να υλοποιηθεί μια διδακτική δραστηριότητα με τη χρήση τεχνολογίας. Οι επιλογές θα πρέπει να αξιολογούνται όχι με βάση τον καινοτόμο χαρακτήρα τους, αλλά την εκτιμώμενη διδακτική τους αποτελεσματικότητα. Πρέπει λοιπόν η απόφαση αυτή να δικαιολογείται από το γεγονός ότι η χρήση της τεχνολογίας θα επιτρέψει την υλοποίηση επιθυμητών ενεργειών που δεν θα μπορούσαν να υλοποιηθούν στο παραδοσιακό περιβάλλον. Πρέπει να καθίσταται φανερή η συμβολή της τεχνολογίας στην επίτευξη συγκεκριμένων διδακτικών στόχων. Στο παράδειγμα των μεσοκαθέτων που προαναφέρθηκε, ως συμβολή του υπολογιστή θα μπορούσε να αναφερθεί η γρήγορη κατασκευή τριγώνων, η χωρίς λάθη χάραξη των μεσοκαθέτων, η δυνατότητα δυναμικής μεταχείρισης του σχήματος. Στο «κυνήγι» της τετραγωνικής ρίζας η δυνατότητα υλοποίησης μακροσκελών υπολογισμών με όση προσέγγιση θέλουμε. Ταυτόχρονα αξιολογώντας τις διδακτικές προθέσεις και τις δυνατότητες ενός λογισμικού το σενάριο πρέπει να λαμβάνει υπόψή του θέματα όπως: Χρησιμοποιούνται περισσότερα από ένα λογισμικά ή το ίδιο λογισμικό με πολλούς τρόπους (Dagdilelis & Papadopoulos, 2004); Χρησιμοποιείται το Διαδίκτυο; Ποιοι λόγοι υπαγορεύουν τη χρήση καθενός λογισμικού; Διδακτικά «κέρδη» και «ζημιές» - Κριτική Ανάλυση των χρησιμοποιούμενων ΤΠΕ. Το σενάριο θα πρέπει να αναδεικνύει την ορθολογική χρήση των ΤΠΕ μέσα από το προσδοκώμενο «διδακτικό κέρδος». Προσδοκάται η συμβολή στο γνωστικό επίπεδο ή ανάπτυξη μιας συγκεκριμένης δεξιότητας; Μήπως η χρήση λογισμικού μπορείανάλογα με την περίπτωση - να δημιουργεί πρόσθετα προβλήματα; Απαιτείται πχ ένα χρονικό διάστημα για την εξοικείωση των μαθητών με ένα νέο περιβάλλον εργασίας και ενδεχομένως απαιτούνται πόροι και υποδομή που δεν είναι διαθέσιμοι (όπως π.χ. ένας βιντεοπροτζέκτορας ή ένας Η/Υ ανά μαθητή, πρόσβαση στο Διαδίκτυο στο σπίτι). Ταυτόχρονα, πιθανόν να επέλθει ένας περιορισμός στην εικόνα που έχουν οι μαθητές για τη συγκεκριμένη έννοια. Μήπως είναι πρόωρη η εισαγωγή της αν δεν έχει εξασφαλιστεί άλλη σχετική γνώση ή δεξιότητες; Υπάρχει κίνδυνος να δημιουργηθεί παρανόηση για κάποιο θέμα στους μαθητές; Είναι ενδεχόμενη μια απώλεια σε θέματα δεξιοτήτων (πχ χρήση γεωμετρικών οργάνων ή ορθή επιτέλεση αριθμητικών πράξεων); Στο πρόβλημα των μεσοκαθέτων θα μπορούσαμε να προσδοκούμε ως διδακτικά κέρδη το γεγονός ότι ψάχνοντας να βρουν ένα τρίγωνο στο οποίο οι μεσοκάθετοι των πλευρών να μην περνούν από το ίδιο σημείο, οι μαθητές βλέπουν ένα φαινόμενο που

6 επαναλαμβάνεται και εξηγούν το γιατί. Επίσης η άμεση ανατροφοδότηση από τη διεπαφή αποτρέπει ή ενισχύει μια πορεία επίλυσης. Από την άλλη υπάρχει ένας περιορισμός. Πρέπει να εξασφαλιστεί η γνώση της κατασκευής της μεσοκαθέτου πριν τη χρήση του λογισμικού. Διδακτικός θόρυβος. Ένα ακόμη ζητούμενο είναι η μείωση ή όχι του «διδακτικού θορύβου», όρος που αναφέρεται στις ανεπιθύμητες παράπλευρες δραστηριότητες (πχ οι υπερβολικά μακροσκελείς υπολογισμοί), που μπορούν εξ ολοκλήρου να επισκιάσουν τα πραγματικά αντικείμενα του μαθήματος. Οι έννοιες τις οποίες αντιμετωπίζουμε στη διδακτική διαδικασία, έχουν για τους μαθητές μια «διπλή ζωή», καθώς αρχικά αποτελούν αντικείμενο μάθησης (π.χ. οι μαθητές διδάσκονται την έννοια της μεσοκαθέτου, τι είναι, πώς φέρουμε μια μεσοκάθετο), ενώ αργότερα, δεν αποτελούν πια το αντικείμενο μάθησης, αλλά το μέσο προκειμένου να επιλυθούν πιο σύνθετα προβλήματα.. Ακόμη και ως μέσο όμως, η μεσοκάθετος δημιουργεί ανεπιθύμητο διδακτικό θόρυβο. Η τεχνολογία, μπορεί να συμβάλλει προς την κατεύθυνση της μείωσης του διδακτικού θορύβου στη φάση αυτή. Χρήση εξωτερικών πηγών. Είναι σημαντική παράμετρος το να γνωρίζει ο επιμορφωτής-εκπαιδευτικός από πού μπορεί να αντλήσει πρόσθετες πληροφορίες για την προς διδασκαλία έννοια (π.χ. από το Διαδίκτυο), πού θα βρει - ενδεχομένως - πρόσθετο διδακτικό υλικό, σημειώσεις, αναφορές από παρόμοιες διδασκαλίες (για παράδειγμα, πού θα ψάξει στο Διαδίκτυο;) Εικόνα.2 Πολλαπλές αναπαραστάσεις πολλαπλές προσεγγίσεις. Πολύ συχνά οι έννοιες στα Μαθηματικά έχουν πολλαπλά πλαίσια εκφοράς: το Πυθαγόρειο θεώρημα έχει μια αλγεβρική και μια γεωμετρική πλευρά, η παράγωγος έχει και γεωμετρική ερμηνεία, οι συναρτήσεις έχουν αναλυτική έκφραση (όσες έχουν) και γραφική παράσταση. Το σενάριο λοιπόν πρέπει να λαμβάνει υπόψη του αυτή τη διάσταση. Από την άλλη σε πολλές περιπτώσεις υφίσταντα πολλές προσεγγίσεις ενός προβλήματος, μέσα στο ίδιο πλαίσιο. Ας πάρουμε για παράδειγμα το γνωστό πρόβλημα που παραθέτει ο Polya (1973) της εγγραφής τετραγώνου σε δοθέν τρίγωνο με τις δυο κορυφές του στη βάση και τις άλλες δυο στις υπόλοιπες 2 πλευρές του τριγώνου. Το πρόβλημα θα μπορούσε να προσεγγιστεί τουλάχιστον κατά τρεις διαφορετικούς τρόπους. 1) εγγράφεται τετράγωνο με 3 κορυφές πάνω στις πλευρές (εκ των οποίων οι 2 στη βάση) και αναζητείται ο γεωμετρικός τόπος της τέταρτης (προσέγγιση με Cabri, χρήση σχεδίασης ίχνους, βλ.

7 εικ.2). 2) εγγράφεται ένα παραλληλόγραμμο και διερευνάται πότε γίνεται τετράγωνο. 3) το μήκος της πλευράς υπολογίζεται αλγεβρικά (χάρη στοε Θεώρημα Θαλή και τα όμοια τρίγωνα). Υποκείμενη θεωρία μάθησης. Συνδέεται με τον τρόπο που θεμελιώνεται η οργάνωση του μαθήματος. Αν και συχνά τα σύγχρονα εκπαιδευτικά λογισμικά έχουν την αναφορά τους στον εποικοδομητισμό και τη διερευνητική μάθηση, εν τούτοις αυτή δεν είναι π αντοε η περίπτωση, ενώ ταυτόχρονα η σχεδίαση μιας συγκεκριμένης δραστηριότητας μπορεί να «παρακάμπτει» την αντίστοιχη με την οποία έχει κατασκευαστεί το λογισμικό. Μπορεί να είναι δραστηριότητα εκγύμνασης (drill and practice), ενταγμένη στο πλαίσιο της επίλυσης προβλήματος, καθοδηγούμενη από το δάσκαλο (πιο κοντά σε μια κατά Vygotski προσέγγιση). Πώς τεκμηριώνεται αυτό; Θεμελιώνει το σχεδιασμό σε κάποιες διδακτικές θεωρίες; Δίνει στο μαθητή τη δυνατότητα να εξερευνήσει, να ανταλλάξει απόψεις και να συνεργαστεί με τους συμμαθητές του; Ποιος είναι ο ρόλος του καθηγητή; Με ποιο τρόπο ο υποψήφιος τεκμηριώνει τις απόψεις αυτές; Επισήμανση μικρομεταβολών στην οργάνωση του μαθήματος και στο νόημα των εννοιών. Τα σύγχρονα εκπαιδευτικά περιβάλλοντα επιτρέπουν συχνά τις διαδικασίες επικύρωσης υποθέσεων «πειραματικού τύπου» μεταβάλλοντας ριζικά τις δυνατότητες του καθηγητή που μπορεί, πχ να ζητήσει από τους μαθητές να διαπιστώσουν αρχικά (με δοκιμές) και ύστερα (αν χρειάζεται) να αποδείξουν μια πρόταση. Επίσης οι αριθμοί του Excel δεν είναι ούτε άπειροι ούτε με άπειρα δεκαδικά ψηφία, οι ευθείες στα περιβάλλοντα Δυναμικής Γεωμετρίας δεν είναι απείρου μήκους ούτε και έχουν άπειρα σημεία (δεν έχουν καν σημεία, αλλά pixels, εικονοστοιχεία, που είναι ορατά αν μεγεθύνει κανείς το σχήμα). Εξάλλου, κάθε έννοια που διδάσκεται με τη βοήθεια του Η.Υ. είναι διαμεσολαβημένη από τη διεπαφή και δίνει στο χρήστη την αίσθηση ότι διαχειρίζεται άμεσα έναν μικρόκοσμο ενώ στην πραγματικότητα διαχειρίζεται κατά τρόπο έμμεσο μια συγκεκριμένη υλοποίηση προσομοίωσης ενός συστήματος (Papadopoulos & Dagdilelis, 2006). Οι μαθητές έχουν με μια πρώτη ματιά μπροστά τους στην οθόνη σχήματα με την ίδια ακριβώς εμφάνιση (τετράγωνα, τρίγωνα) που έχουν όμως εντελώς διαφορετική «συμπεριφορά» στο κάθε περιβάλλον. Έτσι, δίνεται έμφαση σε κάποιες όψεις της έννοια,ς ενώ αποκρύπτονται ή υποβαθμίζονται άλλες. Διδακτικό συμβόλαιο (Brousseau, 1997). Είναι το σύνολο των συμπεριφορών του διδάσκοντος που «αναμένονται» από το μαθητή και το αντίστοιχο σύνολο των συμπεριφορών του μαθητή που «αναμένονται» από το δάσκαλο. Το διδακτικό συμβόλαιο δεν είναι ρητά εκφρασμένο και γίνεται αντιληπτό κάθε φορά που, με κάποιο τρόπο, ανατρέπεται. Υπάρχει ενδεχόμενο λοιπόν, σε κάποιο σημείο της ροής της δραστηριότητας,, το διδακτικό συμβόλαιο να ανατραπεί. Αυτό πρέπει να επισημαίνεται ε ένα διδακτικό σενάριο. Στο πρόβλημα των μεσοκαθέτων, για παράδειγμα, η δυνατότητα από το μαθητή να φτάσει με «σύρσιμο» σε ένα πεπλατυσμένο τρίγωνο αποτελεί ανατροπή του συμβολαίου για το τι είναι τρίγωνο. Οργάνωση τάξης εφικτότητα σχεδίασης. Ο ρόλος εκπαιδευτικού είναι καθοριστικός στο σημείο αυτό. Ανάλογα με τις διδακτικές του προθέσεις καλείται να

8 κάνει μια διαχείριση του αριθμού των μαθητών, των διαθέσιμων υπολογιστών, του τρόπου εργασίας (ατομικά ομαδικά), του χρόνου (πόσες διδακτικές ώρες και με τι επιμέρους στόχους κάθε φορά). Το μάθημα είναι πραγματοποιήσιμο ή ανέφικτο;. Και κυρίως, η σχεδίασή του, λαμβάνει υπόψή της τις πραγματικές συνθήκες διεξαγωγής του μαθήματος; ΑΝΤΙ ΓΙΑ ΣΥΜΠΕΡΑΣΜΑΤΑ Ο πρακτικός οδηγός που παρουσιάζουμε δεν είναι πλήρης. Έχουν παραλειφθεί είτε τμήματα περίπου αυτονόητα, είτε τμήματά του τα οποία είναι σημαντικά, αλλά έχουν έναν ευρύτερο χαρακτήρα (όπως η διαθεματικότητα). Μια πλήρης παρουσίασή των στοιχείων αυτών, ξεπερνάει κατά πολύ την έκταση και τους στόχους της παρούσας. Επίσης, ο οδηγός αυτός δεν έχει την έννοια του αναγκαίου: όσα περιγράφονται δηλαδή σε αυτόν, δεν είναι πάντοτε απολύτως αναγκαίο να περιληφθούν σε ένα σενάριο, καθώς είναι ενδεχόμενο ορισμένα από τα τμήματα του να μην είναι εφαρμόσιμα σε ένα σενάριο. Είναι τέλος προφανές ότι στα διάφορα τμήματα του οδηγού υπάρχουν κάποιες επικαλύψεις. Τούτο είναι περίπου αναμενόμενο, αν ληφθεί υπόψη ο αναγκαστικά ασαφής προσδιορισμός των διαφόρων κριτηρίων και τμημάτων του οδηγού. Στη διάρκεια της ανάλυσης του οδηγού και της χρήσης του σε επιμορφωτικά σεμινάρια, διαπιστώσαμε ότι στην πραγματικότητα, ο οδηγός αυτός δεν ισχύει μόνο για τη δημιουργία διδακτικών σεναρίων για τη διδασκαλία των Μαθηματικών, αλλά μπορεί στο μεγαλύτερο μέρος του να αποτελέσει έναν οδηγό για επιμορφωτικά σεμινάρια μπορεί δηλαδή να χρησιμοποιηθεί από έναν επιμορφωτή ο οποίος θα επιμορφώσει εκπαιδευτικούς στη χρήση των ΤΠΕ στη διδασκαλία των Μαθηματικών. Η διαπίστωση αυτή αποτελεί ένα είδος κινήτρου για μας, προκειμένου να επεκτείνουμε το αντικείμενο της έρευνάς μας ΒΙΒΛΙΟΓΡΑΦΙΑ Brousseau, G. (1997). Theory of didactical situations in Mathematics, Kluwer Academic Publishers. Dagdilelis, V. & Papadopoulos, I. (2004). An Open Problem in the Use of Software for Educational Purposes, in E. McKay (Ed.), Proceedings of International Conference on Computers in Education 2004, , RMIT University, Australia. Papadopoulos, I. & Dagdilelis, V. (2006). The Theory of Transactional Distance as a framework for the analysis of computer aided teaching of geometry, International Journal for Technology in Mathematics Education, 13 (4), Polya, G. (1973). How to solve it, Princeton: Princeton University Press. Κολέζα, Ε. (2000). Γνωσιολογική και Διδακτική Προσέγγιση των Στοιχειωδών Μαθηματικών Εννοιών, Εκδ. Ελληνικά Γράμματα. Κυνηγός, Χ. (2007) Το μάθημα της διερεύνησης. Παιδαγωγική αξιοποίηση της Σύγχρονης Τεχνολογίας για τη διδακτική των Μαθηματικών: Από την έρευνα στη σχολική τάξη. Εκδ. Ελληνικά Γράμματα.

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας.

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας. Α/Α ΣΤΟΧΟΙ (επιθυμητές γνώσεις-δεξιότητες-ικανότ ητες) ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ (Τίτλοι) ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΙΑΡΚΕΙΑ (ενδεικτικά σε ώρες) Το Πρόγραμμα πιστοποιήθηκε από την

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04) «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Ε. Κολέζα, Γ. Βρέταρος, θ. Δρίγκας, Κ. Σκορδούλης Εισαγωγή Ο εκπαιδευτικός κατά τη διάρκεια της σχολικής

Διαβάστε περισσότερα

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Δρ. Χαράλαμπος Μουζάκης Διδάσκων Π.Δ.407/80 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Στόχοι ενότητας Το λογισμικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη

ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη Συμπλήρωση (Ομάδα Επιμορφωτών): ΧΡΥΣΑΦΕΝΙΑ ΜΑΝΩΛΟΠΟΥΛΟΥ Κατάθεση/Υποβολή: ΑΛΕΞΑΝΔΡΟΣ ΚΟΝΤΟΥΛΗΣ Α. ΣΤΟΙΧΕΙΑ ΠΡΟΓΡΑΜΜΑΤΟΣ

Διαβάστε περισσότερα

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Μάθηση και γνώση: μια συνεχής και καθοριστική αλληλοεπίδραση Αντώνης Λιοναράκης Στην παρουσίαση που θα ακολουθήσει θα μιλήσουμε

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ Μάθηµα: Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Γ Φάσης) ΜΙΧΑΗΛ ΣΚΟΥΜΙΟΣ

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

Μέθοδος πιστοποίησης δεξιοτήτων και γνώσεων επιµορφωτών Β Επιπέδου

Μέθοδος πιστοποίησης δεξιοτήτων και γνώσεων επιµορφωτών Β Επιπέδου «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Μέθοδος πιστοποίησης δεξιοτήτων

Διαβάστε περισσότερα

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 169 Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών - Τεύχος 1 (Γενικό Μέρος) Ενότητα 3.6.2 Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 1. Εισαγωγή Στο παρόν κεφάλαιο περιγράφονται

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε.

Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Ζαφειρόπουλος Χρήστος Μαθηματικός Γυμνασίου & Λυκείου Καράτουλα zafeiropouloschristos@yahoo.gr ΠΕΡΙΛΗΨΗ Το Πυθαγόρειο Θεώρημα ξεκινώντας την ιστορική

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων 2ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ - ΠΑΤΡΑ 28-30/4/2011 1283 Αξιοποίηση Διαδραστικού πίνακα στη διδασκαλία Συναρτήσεων - Γραφικών παραστάσεων Σ. Παπαδημητρίου Διεύθυνση Εκπαιδευτικής Ραδιοτηλεόρασης, ΥΠΔΒΜΘ, sofipapadi@gmail.com

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ο καιρός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης. ΑΠΑΝΤΗΣΗ

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely;

Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely; Ημερίδα«Η διδασκαλία της Πληροφορικής στην Α/θμια και Β/θμια εκπαίδευση» Ομάδα Ηλεκτρονικής Μάθησης Τμήμα Κοινωνικής και Εκπαιδευτικής Πολιτικής, Πανεπιστήμιο Πελοποννήσου ΣχέδιοεργασίαςγιατηνΒ ήγ Γυμνασίου

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

ΤΠΕ στα ηµοτικά Σχολεία. Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19

ΤΠΕ στα ηµοτικά Σχολεία. Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19 ΤΠΕ στα ηµοτικά Σχολεία Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19 Παρουσίαση ιαθεµατικό Ενιαίο Πλαίσιο Προγράµµατος Σπουδών Αναλυτικό Πρόγραµµα Σπουδών, ΕΠΠΣ-ΑΠΣ Υλικό Επιµόρφωσης

Διαβάστε περισσότερα

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Γώγουλος Γ., Κοτσιφάκης Γ., Κυριακάκη Γ., Παπαγιάννης Α., Φραγκονικολάκης Μ., Χίνου Π. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Η Πληροφορική στην Ελληνική Δευτεροβάθμια Εκπαίδευση - Γυμνάσιο Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 495 H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ Τσιπουριάρη Βάσω Ανώτατη Σχολή Παιδαγωγικής

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

Εργαστηριακή Εισήγηση. «Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch»

Εργαστηριακή Εισήγηση. «Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch» Εργαστηριακή Εισήγηση «Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch» Σαρημπαλίδης Ιωάννης Καθηγητής Πληροφορικής, Γενικό Λύκειο Πεντάπολης johnsaribalidis@yahoo.gr ΠΕΡΙΛΗΨΗ To προτεινόμενο διδακτικό

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) 1. 9 Εκπαιδευτική χρήση βασικών εργαλείων πληροφορικής, πολυµεσικών εργαλείων και του διαδικτύου

Διαβάστε περισσότερα

ΙΑ ΡΟΜΗ ΥΛΟΠΟΙΗΣΗΣ ΤΟΥ ΑΝΑΛΥΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΚΛΑ ΟΣ ΠΕ03

ΙΑ ΡΟΜΗ ΥΛΟΠΟΙΗΣΗΣ ΤΟΥ ΑΝΑΛΥΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΚΛΑ ΟΣ ΠΕ03 ΙΑ ΡΟΜΗ ΥΛΟΠΟΙΗΣΗΣ ΤΟΥ ΑΝΑΛΥΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΚΛΑ ΟΣ ΠΕ03 Στο Πρόγραμμα Σπουδών που ακολουθεί είναι το εγκεκριμένο για τα Κ.Σ.Ε. Στη συγκεκριμένη πρόταση το

Διαβάστε περισσότερα

Διδάσκοντας με τη βοήθεια λογισμικού παρουσιάσεων

Διδάσκοντας με τη βοήθεια λογισμικού παρουσιάσεων 178 Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών - Τεύχος 1 (Γενικό Μέρος) Ενότητα 3.6.3 Διδάσκοντας με τη βοήθεια λογισμικού παρουσιάσεων 1. Εισαγωγή Στο παρόν κεφάλαιο περιγράφονται «καλές

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση

Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση Καθηγητής Αθανάσιος Τζιμογιάννης Πανεπιστήμιο Πελοποννήσου ΙΤΥΕ «Διόφαντος» ΗΜΕΡΙΔΑ ΕΠΙΜΟΡΦΩΣΗΣ ΣΧΟΛΙΚΩΝ

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας

Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας Εισαγωγικά Μαρία Παπαλεοντίου, Φιλόλογος Π.Ι.Κ. Προβληματιζόμαστε... Τι εννοούμε με τον όρο Τεχνολογίες Πληροφορίας και Επικοινωνίας (Τ.Π.Ε.) και τι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

Η αξιολόγηση και πιστοποίηση. των εκπαιδευομένων επιμορφωτών στα ΠΑΚΕ

Η αξιολόγηση και πιστοποίηση. των εκπαιδευομένων επιμορφωτών στα ΠΑΚΕ Η αξιολόγηση και πιστοποίηση των εκπαιδευομένων επιμορφωτών στα ΠΑΚΕ Περιγραφή του συστήματος αξιολόγησης των εκπαιδευομένων επιμορφωτών στα ΠΑΚΕ Η αξιολόγηση των εκπαιδευομένων βασίζεται σε μια συστηματικά

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν

Διαβάστε περισσότερα

Οδηγός Επιμόρφωσης για τη Φυσική Αγωγή: Επιμόρφωση Νηπιαγωγών & Εκπαιδευτικών ΠΕ11 Α & Β φάση

Οδηγός Επιμόρφωσης για τη Φυσική Αγωγή: Επιμόρφωση Νηπιαγωγών & Εκπαιδευτικών ΠΕ11 Α & Β φάση 2011 2012 Οδηγός Επιμόρφωσης για τη Φυσική Αγωγή: Επιμόρφωση Νηπιαγωγών & Εκπαιδευτικών ΠΕ11 Α & Β φάση Επιστημονικό Πεδίο: Σχολική & Κοινωνική Ζωή Ανδρέας Γ. Αυγερινός Συντονιστής για τη Φυσική Αγωγή

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

Δείγματα Ερωτημάτων. των τεστ πιστοποίησης

Δείγματα Ερωτημάτων. των τεστ πιστοποίησης Δείγματα Ερωτημάτων των τεστ πιστοποίησης ΑΝΑΘΕΤΟΥΣΑ ΑΡΧΗ: Ειδική Υπηρεσία Εφαρμογής Προγραμμάτων ΚΠΣ του ΥπΕΠΘ ΦΟΡΕΙΣ ΥΛΟΠΟΙΗΣΗΣ: Ερευνητικό Ακαδημαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών (ΕΑΙΤΥ), Εθνικό

Διαβάστε περισσότερα

Τεχνολογία στην Εκπαίδευση Εισαγωγή. Χαρίκλεια Τσαλαπάτα 24/9/2012

Τεχνολογία στην Εκπαίδευση Εισαγωγή. Χαρίκλεια Τσαλαπάτα 24/9/2012 Τεχνολογία στην Εκπαίδευση Εισαγωγή Χαρίκλεια Τσαλαπάτα 24/9/2012 Μάθηση Γενικότερος όρος από την «εκπαίδευση» Την εκπαίδευση την αντιλαμβανόμαστε σαν διαδικασία μέσα στην τάξη «Μάθηση» παντού και συνεχώς

Διαβάστε περισσότερα

Σχεδιάζω δραστηριότητες και ασκήσεις αυτοαξιολόγησης στο εκπαιδευτικό υλικό για αποτελεσματική μάθηση

Σχεδιάζω δραστηριότητες και ασκήσεις αυτοαξιολόγησης στο εκπαιδευτικό υλικό για αποτελεσματική μάθηση Σχεδιάζω δραστηριότητες και ασκήσεις αυτοαξιολόγησης στο εκπαιδευτικό υλικό για αποτελεσματική μάθηση Μαρία Ι. Κουτσούμπα Αναπλ. Καθηγήτρια ΣΕΦΑΑ ΕΚΠΑ / ΣΕΠ ΕΑΠ Δραστηριότητες και ασκήσεις αυτό-αξιολόγησης

Διαβάστε περισσότερα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ Κάθε αναφορά απόψεις που προέρχεται από εξωτερικές πηγές -βιβλία, περιοδικά, ηλεκτρονικά αρχεία, πρέπει να επισημαίνεται, τόσο μέσα στο κείμενο όσο και στη βιβλιογραφία,

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Θεμελίωση μιας λύσης ενός προβλήματος από μια πολύπλευρη (multi-faceted) και διαθεματική (multi-disciplinary)

Διαβάστε περισσότερα

Απόστολος Μιχαλούδης

Απόστολος Μιχαλούδης ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη

Διαβάστε περισσότερα

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.

Διαβάστε περισσότερα

"Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΑΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ ΣΕ ΦΟΙΤΗΤΕΣ ΤΟΥ Π.Τ.Δ.Ε ΣΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ".

Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΑΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ ΣΕ ΦΟΙΤΗΤΕΣ ΤΟΥ Π.Τ.Δ.Ε ΣΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. "Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΑΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ ΣΕ ΦΟΙΤΗΤΕΣ ΤΟΥ Π.Τ.Δ.Ε ΣΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ". Σίμος Αναγνωστάκης, Ε.Ε.Δι.Π., sanagn@edc.uoc.gr Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστήμιο

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ Ι ΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ Ι ΑΚΤΙΚΗ ΠΡΑΞΗ ΠΙΣΤΟΠΟΙΗΣΗ ΕΚΠΑΙ ΕΥΤΙΚΩΝ Κριτήρια αξιολόγησης θέµατος ελεύθερης ανάπτυξης & Οδηγίες Βαθµολόγησης Κλάδος ΠΕ60-70 Εισαγωγή Στη διεθνή ερευνητική πρακτική χρησιµοποιούνται, συνήθως, δύο µέθοδοι αξιολόγησης

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS

ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS ΕΘΝΙΚΟ ΚΕΝΤΡΟ TIMSS 2015 ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS Τι είναι η Έρευνα TIMSS; Η Έρευνα Trends in International Mathematics and Science Study (TIMSS) του Διεθνούς Οργανισμού για την Αξιολόγηση

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΓΕΩΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΠΑΡΑΡΤΗΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΓΕΩΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΠΑΡΑΡΤΗΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΕΩΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΠΑΡΑΡΤΗΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ «Ανοικτή και εξ Αποστάσεως Εκπαίδευση: το μέλλον της επιμόρφωσης των εκπαιδευτικών στην προοπτική της Διά Βίου Μάθησης». δρ. Κιουλάνης Σπύρος, Δ/ντής

Διαβάστε περισσότερα