ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA"

Transcript

1 S V E U Č I L I Š T E U Z A GR E U F A K U L T E T E L E K T R O T E H NI K E I R A Č U N A R S T V A Z A V O D Z A E L E K T R OST R OJ A R S T V O I A U T O M A T I Z A C I J U ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA Vježba 5 Modelianje tofaznog ainkonog otoa Auto:.c. Dai Žako Zageb, 2004.

2 Analiza elektičnih tojeva pijeno ačunala Laboatoijka vježba 5 Modelianje tofaznog ainkonog otoa Stana 2 1. Cilj vježbe Cilj laboatoijke vježbe je keiati ateatički odel tofaznog kaveznog ainkonog otoa te iuliati evezianje otoa. Jednadžbe kojia je opian ateatički odel potebno je piijeniti u MATLA/SIMULINK pogako okuženju i iuliati elektoehaničke pijelazne pojave koje nataju piliko evezianja otoa. 2. Mateatički odel ainkonog otoa u pe-unit utavu Tofazni ainkoni oto e odelia u dvoono dq koodinatno utavu. Koodinatni utav ože otiati poizvoljno bzino ω. Najčešće e koite tacionani koodinatni utav i utav koji otia inkono bzino. Rezultati dobiveni u bilo koje koodinatno utavu u ekvivalentni i ogu e lako tanfoiati iz jednog utava u ugi. Oi toga, ateatički odel e ože keiati paaetia definiani u tvani SI jedinicaa ili paaetia definiani u jedinični vijednotia (pe-unit). Pednoti pe-unit odela u u olakšanoj upoedbi otoa azličitih naga te u bolje uvidu u elativne veličine paaetaa otoa. Najčešće koišteni pe-unit utav je bazian na nazivnoj nazi na oovini otoa. Onovne bazne vijednoti u onda: 2 azni napon, U = 2U fn = Uln všna vijednot nazivnog faznog napona, 3 azna naga, P = Pn nazivna ehanička naga na oovini otoa, azna elektična kutna bzina, ω = ωn = 2π fn nazivna elektična kutna bzina. Iz onovnih vijednoti lijede izvedene bazne vijednoti: azna tuja, azna ipedancija, I = 2 P 2 Pn 3U = 3 U, Z fn 2 = U 3U fn I = P, n ω azna ehanička kutna bzina, ω = (p boj pai polova), p P Pn azni oent, M = = p ω ω n Važno je piijetiti da u ovo pe-unit utavu: 1. Za ve poačune e koite ite jednadžbe kao i za odel a tvani jedinicaa, oi što e u izazia u pe-unit utavu više ne pojavljuju boj faza i boj polova. 2. Nazivna tuja je nešto veća od 1.0 pu, je I ne uključuje utjecaj faktoa nage i koinoti. 3. Nazivni oent je nešto veći od 1.0 pu, je je M bazian na inkonoj bzini, a ne na nazivnoj bzini. Nazivni oent je jednak

3 Analiza elektičnih tojeva pijeno ačunala Laboatoijka vježba 5 Modelianje tofaznog ainkonog otoa Stana 3 Mn 1 Pn 1 P 1 M 1 M = n( pu) M = M ω = M ω ( 1 ) = M 1 = 1 gdje je n nazivno klizanje. Jednadžba gibanja u pe-unit utavu e odificia na ljedeći način: n n n n ω d dω 1 ω ω M Mt J ω dω ( pu) J = M Mt J = = M( pu) Mt( pu) dt M p dt M M p dt Odatle lijedi izaz za nadojeni oent inecije u pe-unit utavu koji e definia kao T J ω (1) (2) = (3) M p Mjena jedinica za T je ekunda. Duga veličina koja e četo koiti u jednadžbi gibanja u pe-unit odelia je kontanta inecije H koja e definia kao oje pohanjene ehaničke enegije u vtnji pi bzini ω i bazne vijednoti nage P, tj. 1 1 ω 2 Jω J p J ω H = = = = T (4) P P 2 M p 2 Za pe-unit odel ainkonog otoa u dq koodinatno utavu e ogu piati jednadžbe gdje u 2 dψ u = i ωψ dt (5) dψ u = i ωψ dt (6) dψ u = i ( ω ω ) ψ dt (7) dψ u = i ( ω ω ) ψ dt (8) M = ψ i ψ i (9) ψ = Li L i (10) ψ = Li Li (11) ψ = Li L i (12) ψ = Li L i (13) L = Ll L (14) L = Ll L (15)

4 Analiza elektičnih tojeva pijeno ačunala Laboatoijka vježba 5 Modelianje tofaznog ainkonog otoa Stana 4 Jednadžba gibanja glai d ω 1 = dt T ( M M ) gdje je ω pe-unit vijednot ehaničke bzine vtnje otoa, a T nadojeni oent inecije. U lučaju kaveznog ainkonog otoa naponi u i u u jednaki nuli. Nadojene hee dinaičkog odela u d i q oia izvedene iz naponkih jednadžbi u pikazane na lici 1. Shee u pikazane u koodinatno utavu koji otia općenito bzino ω. u i ωψ ( ) L l i i L L l t ω ω ψ i u (16) a) u i ωψ ( ) L l i i L L l ω ω ψ i u - b) Slika 1. Nadojena hea ainkonog otoa, a) q o, b) d o Četo e u liteatui naponke jednadžbe otoa izažavaju pooću agnetkog toka po ekundi i eaktancije, ujeto toka ψ i induktiviteta L. U to lučaju jednadžbe (5) do (9) e pišu u obliku u u d ω = ψ (17) 1 i ω dt ω d ω = (18) 1 i ω dt ω d ω ω u 1 d ω ω u = i ω dt ω 1 = i ω dt ω (19) (20) M = i i (21)

5 Analiza elektičnih tojeva pijeno ačunala Laboatoijka vježba 5 Modelianje tofaznog ainkonog otoa Stana 5 gdje u = i i (22) = i i (23) = i i (24) = i i (25) = l (26) = l (27) Za iulaciju na ačunalu je pogodnije tuje tatoa i otoa izaziti kao funkcije tokova po ekundi koji e koite kao vaijable tanja. Uziajući u obzi da je ože e piati i = i i (28) q = i i (29) d 1 = q l i 1 = d l i 1 = q l i 1 = ( d ) l (33) Uvštavanje (30) do (33) u (28) i (29) dobiva e q = M l l (34) d = M l l (35) gdje je 1 = M l l (36) Jednadžbe (17) do (20) tada potaju ω = ω u ( q ) ψ l ω (37) ω = ω u ( d ) ψ l ω (38) (30) (31) (32)

6 Analiza elektičnih tojeva pijeno ačunala Laboatoijka vježba 5 Modelianje tofaznog ainkonog otoa Stana 6 ω ω = ω u ( q ) ψ l ω (39) ω ω = ω u ( d ) ψ l ω (40) zina vtnje otoa e ačuna iz jednadžbe gibanja ( M M ) ω = 1 (41) t T 2.1 Model ainkonog otoa u tacionano tanju Dinaičke pojave u tojevia e najčešće iuliaju uz petpotavku da je toj u početno tenutku adio u nekoj tacionanoj adnoj točki. Iznoi vaijabli tanja u tacionano tanju, u ovo lučaju ulančenih tokova po ekundi, u ujedno i početne vijednoti tih vaijabli u tenutku natupanja pijelazne pojave za čiju iulaciju je potebno ješavati utav difeencijalnih jednadžbi. U lučaju ainkonog otoa tacionana tanje je definiano iznoo napona nainuti na tezaljke otoa i bzino vtnje, tj. klizanje. Stuje tatoa i otoa i ulančeni tokovi e onda ačunaju iz nadojene hee za tacionano tanje pikazane na lici 2. U I l I I l I Slika 2. Nadojena hea ainkonog otoa u tacionano tanju U tacionano tanju naponi i tuje e ogu pikazati pooću fazoa. Može e petpotaviti da fazo napona eže U ia fazni poak jednak nuli, tj. da e nalazi u ealnoj oi fazokog dijagaa. Fazo U je koplekni boj koji petavlja položaj vha otiajućeg vektoa napona eže u koodinatno utavu koji takođe otia inkono bzino. Pi toe je petpotavljeno da je napon inuna veličina koja e ijenja fekvencijo onovnog haonika. To znači da e u koodinatno utavu koji otia inkono bzino ože piati 0 U = U ju = pu (42) Stuja tatoa I i tuja otoa I e onda ačunaju ješavanje elektičnog kuga na lici 2 uz poznate paaete otoa. Iz poznatih fazoa tuje tatoa i otoa e onda ogu oediti d i q koponente tuje, tj. I = I ji (43) 0 0

7 Analiza elektičnih tojeva pijeno ačunala Laboatoijka vježba 5 Modelianje tofaznog ainkonog otoa Stana 7 I = I ji (44) 0 0 Početne vijednoti ulančenog toka po ekundi u onda Početni izno oenta otoa je Početna bzina u pu je gdje je klizanje. = I I I (45) 0 l = I I I (46) 0 l = I I I (47) 0 l = I I I (48) 0 l M = I I 3. Pipea za laboatoijku vježbu (49) ω 0 = 1 (50) Na teelju jednadžbi (30) do (41) nactajte blokovku heu odela tofaznog ainkonog otoa opianog u pethodno poglavlju. 4. Zadatak vježbe Na teelju ateatičkog odela tofaznog ainkonog otoa opianog u uputi za vježbu potebno je keiati ekvivalentni odel u MATLA/SIMULINK-u. Za oto u definiani ljedeći nazivni podaci: 460 V (linijki) 62.2 kw 50 Hz 4 pola = = pu l = = 0.1 pu l = 3.0 pu J=2 kg 2 Nazivna adna točka: n = I n = 1.17 pu coϕ n = 0.88 U početno tenutku oto adi u tacionano tanju i azvija nazivni oent pi nazivnoj bzini. Na tezaljke otoa dovodi e ietični tofazni napon tako da je u tenutku t=0 napon faze A jednak nuli. U tenutku t=0.3 zaijene e dvije faze čie počinje evezianje. Moto je opteećen potencijalni teeto koji ia i eaktivnu koponentu tenja u pijenono ehanizu. Ukupni oent tenja pijenonog ehaniza i vlatitog tenja otoa iznoi 0.1 pu. Napoena: Piliko evezianja teba uzeti u obzi činjenicu da će e u tenutku kada e poijeni je vtnje otoa poijeniti i je eaktivne koponente oenta teeta i oenta tenja otoa dok će potencijalni oent otati itog jea i iznoa.

8 Analiza elektičnih tojeva pijeno ačunala Laboatoijka vježba 5 Modelianje tofaznog ainkonog otoa Stana 8 Pikažite valne oblike tuja i a, i b i i c u pu vijednotia, bzinu vtnje otoa n u /in i oent otoa M u pu. Za etodu integacije odabeite ode15, akialni koak je 0.1, a elativna toleancija je 1e-6. Vijee tajanja iulacije je 2.5. Za oba lučaja koentiajte dobivene valne oblike i navedite fizikalno objašnjenje o toe što e zbiva ainkoni kavezni otoo kada u e pi opteećenju naglo zaijene dvije faze. Obatite pažnju na odziv tuje tatoa i oenta otoa te koentiajte kakve ve paktične poblee ože izazvati ovakav potupak što e tiče aog otoa, pogonkog ehaniza i eže. Koentiajte tacionane vijednoti bzine vtnje i azvijenog oenta pije i polije evezianja te obazložite u koji pogonki ežiia adi oto pije i polije evezianja. Pitanja za dikuiju U potokolu za laboatoijku vježbu odgovoite na ljedeće pitanje: 1. Upoedite dobivene ezultate onia iz Laboatoijke vježbe 3 u kojoj je koišten gotovi odel iz MATLA/SIMULINK odula SiPoweSyte. 2. Što bi e dogodilo kada bi e evezianje obavilo pi čito eaktivno teetu čiji oent je jednak nazivno oentu otoa? Obazložite odgovo i po potebi iuliajte navedeni lučaj. Napoena: Pi pozitivnoj bzini vtnje eaktivni teet djeluje kontantni pozitivni oento, dok pi negativnoj bzini djeluje kontantni negativni oento itog iznoa.

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA S V E U Č I L I Š T E U Z A GR E U F A K U L T E T E L E K T R O T E H NI K E I R A Č U N A R S T V A Z A V O D Z A E L E K T R OST R OJ A R S T V O I A U T O M A T I Z A C I J U ANALIZA ELEKTRIČNIH STROJEVA

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

PROCJENA VARIJABLI STANJA VEKTORSKI UPRAVLJANOG ASINKRONOG MOTORA

PROCJENA VARIJABLI STANJA VEKTORSKI UPRAVLJANOG ASINKRONOG MOTORA Sveučilište u Zagebu Fakultet elektotehnike i ačunatva DINKO VUKADINOVIĆ PROCJENA VARIJABI STANJA VEKTORSKI UPRAVJANOG ASINKRONOG MOTORA Magitaki ad ZAGREB,. Magitaki ad je izađen u Zavodu za elektoenegetiku

Διαβάστε περισσότερα

KOČENJE ASINHRONOG MOTORA

KOČENJE ASINHRONOG MOTORA Potoje ti načina kočenja: KOČENJE ASINHRONOG OTORA 1. Rekupeativno;. Potivtujno na dva načina; 3. Dinamičko ili kočenje jednomenom tujom. 1. REKUPERATIVNO Pokazano je da ainhoni moto adi kao ainhoni geneato

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

2. OSNOVNE TEORIJSKE POSTAVKE

2. OSNOVNE TEORIJSKE POSTAVKE SADR AJ Uvod Onovne teoijke potavke 3 Model ainhonog otoa 3 Klakova tanfoacija 5 3 Pakova tanfoacija 6 4 Relativizacija jedna ina 5 Indiektna vektoka kontola 6 Koini ki odel pege IVKAM 5 7 Ode ivanje paaetaa

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

SLOŽENO KRETANJE TAČKE

SLOŽENO KRETANJE TAČKE SLOŽENO KRETANJE TAČKE DEFINISANJE SLOŽENOG KRETANJA TAČKE BRZINA TAČKE PRI SLOŽENOM KRETANJU a) Relativna bzina b) Penosna bzina c) Apsolutna bzina d) Odeđivanje zavisnosti apsolutne od elativne i penosne

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Kinetička energija: E

Kinetička energija: E Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M

Διαβάστε περισσότερα

Sa slike vidi se: r h r h. r r. za slobodan pad s visine h:

Sa slike vidi se: r h r h. r r. za slobodan pad s visine h: Zadatak (Ljiljana, ednja škola) Uteg ae kg ii na niti koju o iz etikalnog položaja otklonili za kut α 3. Nađi napetot niti kad o uteg iputili te on polazi položaje anoteže. (g 9.8 / ) Rješenje kg, α 3,

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

( ) 2. σ =. Iz formule za površinsku gustoću odredimo naboj Q na kugli. 2 oplošje kugle = = =

( ) 2. σ =. Iz formule za površinsku gustoću odredimo naboj Q na kugli. 2 oplošje kugle = = = Zadatak 0 (Maija, ginazija) Koliki ad teba utošiti da e u paznini (vakuuu) penee naboj 0. 0-7 iz bekonačnoti u točku koja je c udaljena od povšine kugle polujea c? Na kugli je plošna (povšinka) gutoća

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

ELEKTROMOTO ELEKTRO RNI MOTO POGONI POG

ELEKTROMOTO ELEKTRO RNI MOTO POGONI POG ELEKTROOTORNI POGONI Pogoni a A Statika Dinamički modeli doc. d Peta atić peo@etfbl.net P R O G R A UVOD OSNOVNI ELEENTI EP IZBOR OTORA ZA EP POGONI SA JS OPŠTE UPRAVLJANJE, KOČENJE; STATIKA DINAIKA I

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

ELEKTROMAGNETSKE POJAVE

ELEKTROMAGNETSKE POJAVE ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

= = = Za h = 0 dobije se prva kozmička brzina:

= = = Za h = 0 dobije se prva kozmička brzina: adatak 08 (Ljilja, ednja škola) Koliku bzinu oa iati ujetni eljin atelit koji e giba po kužnici na iini h iznad elje? Kolika je pa kozička bzina? (poluje elje R = 6.4 0 6, aa elje = 6 0 4 kg, gaitacijka

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

2 k k r. Q = N e e. e k C. Rezultat: 1.25

2 k k r. Q = N e e. e k C. Rezultat: 1.25 Zadatak 0 (Mia, ginazija) Dvije kuglice nabijene jednaki pozitivni naboje na udaljenosti.5 u vakuuu eđusobno se odbijaju silo od 0. N. Za koliko se boj potona azlikuje od boja elektona u svakoj od nabijenih

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

f na pojedinu os trofaznog abc sustava daje trenutačnu vrijednost fazne veličine u toj osi (slika

f na pojedinu os trofaznog abc sustava daje trenutačnu vrijednost fazne veličine u toj osi (slika VEKTORSKO PRAVJANJE ASINKRONIM STROJEM Već dg nz godna ankon tojeva (otoa) e daje pednot azlčt ndtjk pjenaa zbog njhove obne kontkcje, gnot pogon nke cjene. Razvoj pad cjena eđaja enegetke elektonke azvoj

Διαβάστε περισσότερα

b) Napon generatora i frekvenciju ako se u stanju navedenom pod a) otpornost otpornika promeni na vrednost 10 Ω.

b) Napon generatora i frekvenciju ako se u stanju navedenom pod a) otpornost otpornika promeni na vrednost 10 Ω. VEŽBE 6. TERMN Zadatak. Troazni inhroni generator 38 V, Y, 5 Hz, 3 in -, Ω, naaja troazni otrošač koji e atoji od tri otornika otornoti Ω regnuta u zvezdu. Pogonka ašina generatora ia ehaničku karakteritiku

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

3. Uticaj nepoznavanja vremenske konstante rotora na rad pogona sa davačem položaja

3. Uticaj nepoznavanja vremenske konstante rotora na rad pogona sa davačem položaja 3. Uticaj nepoznavanja na ad pogona sa davače položaja 3 3. Uticaj nepoznavanja veenske konstante otoa na ad pogona sa davače položaja U ovo poglavlju je izvšena analiza paaetaske osetljivosti algoita

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009. Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove

Διαβάστε περισσότερα

0.01 T 1. = 4 π. Rezultat: C.

0.01 T 1. = 4 π. Rezultat: C. Zadatak 4 (ntonija, ginazija) Zavojnica poizvodi agnetsko polje od T. Ona ia naotaja po etu duljine. Koliko jaka stuja polazi zavojnico?....99 C. 3.979 D. 7.96 (peeabilnost paznine µ = 4 π -7 (T ) / )

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

( ) ( + ) vadimo korijen i uzimamo samo. m M. R h. = G, budući da tijela imaju jednake mase vrijedi F

( ) ( + ) vadimo korijen i uzimamo samo. m M. R h. = G, budući da tijela imaju jednake mase vrijedi F adatak 00 (Ivan elektotehnička škola) Dva tijela jednakih aa nalaze e na udaljenoti Izeđu njih djeluje avitacijka ila F Kakva će biti ila ako e azak eđu tijelia ti puta poveća? ješenje 00 inačica Foula

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

2. GUSTOĆA, TLAK I KONSTANTE ELASTIČNOSTI ZEMLJE

2. GUSTOĆA, TLAK I KONSTANTE ELASTIČNOSTI ZEMLJE . GUSTOĆA, TLAK I KONSTANTE ELASTIČNOSTI ZEMLJE Diekni jeenjia ože se obuhaii soj Zeje od 10-ak kioeaa, pa se naše znanje zasnia ugano na eoijski azaanjia pojaa koje se događaju na pošini Zeje. Pi o se

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα