Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων"

Transcript

1

2 Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Σενάριο 8 (Τροποποιηµένο): Η γραµµική συνάρτηση ψ=αx Γνωστική περιοχή: Άλγεβρα Α Λυκείου. - Η γραµµική συνάρτηση ψ=αx. Θέµα: Το προτεινόµενο θέµα αφορά στην αναζήτηση σηµείων συνευθειακών µε την αρχή των αξόνων, µέσα από ένα σύνολο σηµείων µε γνωστές συντεταγµένες στο καρτεσιανό επίπεδο. Τεχνολογικά εργαλεία: Το σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function Probe (FP). Σκεπτικό Βασική ιδέα: Αν διαθέτουµε ένα µεγάλο αριθµό σηµείων των οποίων είναι γνωστές οι συντεταγµένες στο καρτεσιανό επίπεδο, µπορούµε να δηµιουργήσουµε έναν πίνακα µε δύο στήλες εκ των οποίων, η πρώτη θα περιέχει τις τετµηµένες και η άλλη τις τεταγµένες. Επεξεργασία: Μένιος ελιγκάς 1

3 Η απεικόνιση των διατεταγµένων αυτών ζευγών, θα µπορούσε να υποδείξει τον τρόπο µε τον οποίο µπορούµε να οµαδοποιήσουµε τις γραφικές παραστάσεις των γραµµικών συναρτήσεων, µέσω των συνευθειακών σηµείων τα οποία δηµιουργούνται. Η κλίση της κάθε µιας ευθείας που ορίζεται από τα σηµεία, προσδιορίζει τον συντελεστή διεύθυνσης της κάθε συνάρτησης. Το σενάριο που θα παρουσιαστεί στηρίζεται σε ένα πρόβληµα, µέσα από το οποίο θα δοθούν οι απαντήσεις στο προτεινόµενο θέµα. Προστιθέµενη αξία: Η προστιθέµενη αξία του συγκεκριµένου σεναρίου, στηρίζεται στα εξής: Στην προσέγγιση ενός µαθηµατικού θέµατος, µέσα από ένα πρόβληµα. Στην αξιοποίηση της τεχνολογίας, που θα δώσει τη δυνατότητα για µοντελοποίηση, καθώς και για τη διασύνδεση των πολλαπλών αναπαραστάσεων µιας συνάρτησης. Στη συνεργασία, που προβλέπεται µεταξύ των µαθητών αλλά και µε τον καθηγητή τους, η οποία αναµένεται να προσδώσει πρόσθετη παιδαγωγική αξία, σύµφωνα µε την κοινωνικοπολιτισµική θεώρηση της µάθησης. Στην αναληπτική - διερευνητική µάθηση µε την οποία θα εµπλακούν οι µαθητές, αφού θα χρειαστεί να κάνουν εικασίες, δοµικές, επαληθεύσεις και διερευνήσεις. Επεξεργασία: Μένιος ελιγκάς 2

4 Πλαίσιο εφαρµογής Σε ποιους απευθύνεται: Το σενάριο απευθύνεται στους µαθητές της Α Λυκείου. Χρόνος υλοποίησης: Για την εφαρµογή του σεναρίου, µε την προϋπόθεση ότι υπάρχουν οι προαπαιτούµενες γνώσεις, εκτιµάται ότι θα χρειαστούν 2 διδακτικές ώρες. Χώρος υλοποίησης: Το σενάριο προτείνεται να διεξαχθεί εξ ολοκλήρου στο εργαστήριο υπολογιστών, στο οποίο θα πρέπει να υπάρχουν τουλάχιστον τόσοι υπολογιστές ώστε, να µπορούν να εργαστούν οι µαθητές ανά τρεις. Σε κάθε υπολογιστή θα πρέπει να υπάρχει ο φάκελος µε το λογισµικό, το οποίο δεν χρειάζεται εγκατάσταση. Προαπαιτούµενες γνώσεις: Ως προς τα µαθηµατικά, οι µαθητές θα πρέπει να γνωρίζουν: Την έννοια του πίνακα τιµών και της γραφικής παράστασης συνάρτησης. Την γραµµική συνάρτηση ψ=αx σε σχέση µε τη µορφή της γραφικής της παράστασης και το συντελεστή διεύθυνσης. Τα ανάλογα ποσά και τη σχέση τους µε τη γραµµική συνάρτηση. Επεξεργασία: Μένιος ελιγκάς 3

5 Ως προς το λογισµικό, οι µαθητές θα πρέπει να γνωρίζουν: Τη συµπλήρωση των στηλών του πίνακα τιµών. Την αποστολή σηµείων σε γράφηµα Την αλλαγή κλίµακας στο Γράφηµα του FP. Τον ορισµό µεταβλητών στους άξονες. Τη δηµιουργία γραφικών παραστάσεων γράφοντας τον τύπο. Τη λειτουργία της οριζόντιας παραµόρφωσης και της µεταφοράς µιας γραφικής παράστασης. Απαιτούµενα βοηθητικά υλικά και εργαλεία: Στην κάθε οµάδα προτείνεται να δοθεί ένα φύλλο εργασίας το οποίο θα περιγράφει το πρόβληµα, θα έχει τις οδηγίες, τα βήµατα εργασίας και τα ερωτήµατα προς τους µαθητές. Το φύλλο εργασίας, θα πρέπει να αφήνει µια αρκετά µεγάλη ελευθερία στους µαθητές ώστε, να θέτουν τα δικά τους ερωτήµατα και να απαντούν σ αυτά. Επιπλέον, καλό θα είναι, οι µαθητές, να διαθέτουν ένα τετράδιο σηµειώσεων. Κοινωνική ενορχήστρωση της τάξης: Οι µαθητές, εργαζόµενοι σε οµάδες και καθοδηγούµενοι από το φύλλο εργασίας, καλούνται να επινοήσουν τρόπους αξιοποίησης των δυνατοτήτων του ψηφιακού εργαλείου, το οποίο διαθέτουν. Εποµένως, η διερεύνηση αυτή θα γίνει συνεργατικά. Επεξεργασία: Μένιος ελιγκάς 4

6 Για να υπάρχει κοινός στόχος και καλή συνεργασία, οι µαθητές της κάθε οµάδας προτείνεται να συµπληρώσουν ένα κοινό φύλλο εργασίας. Στην περίπτωση που υπάρχει διαθέσιµος διαδραστικός πίνακας, το σύνολο των µαθητών της τάξης µετατρέπεται σε µία κοινότητα τα µέλη της οποίας µµελετούν, σχολιάζουν και προτείνουν δράσεις πάνω στις αναπαραστάσεις των εννοιών που εµφανίζονται στον πίνακα. Στη διάρκεια της υλοποίησης του σεναρίου, ο ρόλος του εκπαιδευτικού θα είναι να καθοδηγεί τους µαθητές και να συνεργάζεται µαζί τους, να τους βοηθάει στη χρήση του λογισµικού, να δίνει ανατροφοδότηση και να τους ενθαρρύνει στο να κάνουν εικασίες και δοκιµές αλλά και να συνεργάζονται µεταξύ τους. Στόχοι: Γνωστικοί Οι µαθητές: Να χρησιµοποιήσουν τις γνώσεις τους στη γραµµική συνάρτηση ώστε, να εντοπίζουν συνευθειακά σηµεία στο καρτεσιανό επίπεδο ή µέσα από έναν πίνακα τιµών. Να συνδέσουν την κλίση της ευθείας ψ=αx, µε την τιµή µονάδας στα ανάλογα ποσά. Κατ επέκταση, να χρησιµοποιήσουν τη γραµµική συνάρτηση ψ=αx για να δηµιουργήσουν τη γραφική παράσταση της ψ=αx+β και να κατανοήσουν την ιδιαίτερη σχέση των δύο αυτών συναρτήσεων. Επεξεργασία: Μένιος ελιγκάς 5

7 Κοινωνικοί Οι µαθητές: Να ασκηθούν στη συνεργασία και την διαπραγµάτευση των ιδεών τους ώστε, η γνώση να αποκτήσει έναν διυποκειµενικό χαρακτήρα. Να αποκτήσουν τη δεξιότητα παρουσίασης των αποτελεσµάτων τους στην τάξη. Να αντιµετωπίσουν τον καθηγητή τους ως συνεργάτη και καθοδηγητή της εκπαιδευτικής διαδικασίας, σε αντίθεση µε τον συνηθισµένο του ρόλο, της αυθεντίας µετάδοσης της γνώσης. Τεχνολογικοί Οι µαθητές: Να αξιοποιήσουν τις δυνατότητες του λογισµικού FP για τη µοντελοποίηση προβληµάτων και τη διασύνδεση, µέσω των παραθύρων του Πίνακας και Γράφηµα, των πολλαπλών αναπαραστάσεων µιας συνάρτησης. Να χρησιµοποιήσουν την Αριθµοµηχανή του λογισµικού, για τη δηµιουργία κουµπιών που να συνδέουν τις µεταβλητές των συναρτήσεων. Επεξεργασία: Μένιος ελιγκάς 6

8 Ανάλυση του σεναρίου - Ροή εφαρµογής των δραστηριοτήτων Προεργασία Ο διδάσκων, θα πρέπει να έχει ετοιµάσει έναν πίνακα µε αριθµούς σε 2 στήλες και 20 γραµµές, που θα αντιστοιχούν στις συντεταγµένες 20 σηµείων. Θα έχει φροντίσει ώστε, τα σηµεία αυτά να δηµιουργούν τρεις οµάδες ευθειών που διέρχονται από την αρχή των αξόνων, δηλαδή οι λόγοι των συντεταγµένων θα παρουσιάζουν συνολικά 3 διαφορετικά αποτελέσµατα. Ακόµη, ένα από τα ζεύγη τιµών προτείνεται να αντιστοιχεί σε ένα σηµείο το οποίο δεν θα ανήκει σε καµία από τις τρεις προηγούµενες ευθείες. Στην αρχή, ο διδάσκων επιχειρεί να κινητοποιήσει τους µαθητές επισηµαίνοντας ότι στην δραστηριότητα αυτή εκτός από το αποτέλεσµα έχει σηµασία και ο χρόνος υλοποίησης, ο οποίος θα πρέπει να ελαχιστοποιηθεί µε τη βοήθεια των υπολογιστικών εργαλείων που διαθέτουν. Επεξεργασία: Μένιος ελιγκάς 7

9 Το Πρόβληµα Ο καθηγητής, θέτει στους µαθητές, µέσω του φύλλου εργασίας, το παρακάτω πρόβληµα: Ένας πωλητής είναι υπεύθυνος για την πώληση τριών προϊόντων Α, Β, Γ τα οποία διαθέτει σε διαφορετικές τιµές. Κάθε φορά που κάνει µία πώληση καταγράφει την ποσότητα π (σε κιλά) και δίπλα το ποσόν τ (σε Ευρώ) που εισέπραξε. Όταν ολοκληρώσει 20 πωλήσεις, παρέδωσε τον πίνακα που είχε κατασκευάσει στον προϊστάµενό του ο οποίος, θέλησε να ελέγξει δύο πράγµατα: α) Πόσες πωλήσεις είχαν γίνει από κάθε προϊόν. β) Αν σε κάποια πώληση είχε γίνει λάθος στον υπολογισµό. Επίσης, θέλει να κατασκευάσει ένα εργαλείο, το οποίο θα υπολογίζει άµεσα την τιµή κάθε φορά που πουλάει ένα από αυτά τα προϊόντα ώστε, να διευκολύνει τον υπάλληλο. Ζητάµε από τους µαθητές, αξιοποιώντας τις γνώσεις τους και τις δυνατότητες του λογισµικού, να βοηθήσουν τον προϊστάµενο στην επίλυση του παραπάνω προβλήµατος. Η δραστηριότητα αυτή, περιγράφεται στις φάσεις που ακολουθούν. Επεξεργασία: Μένιος ελιγκάς 8

10 1η Φάση: Απαντήσεις στα ερωτήµατα Α. Ο διδάσκων ζητά από τους µαθητές να συζητήσουν τους τρόπους µε τους οποίους θα µπορούσαν να εντοπίσουν οµάδες συνευθειακών σηµείων µε την αρχή των αξόνων, µέσα από µια οµάδα σηµείων των οποίων οι συντεταγµένες καταγράφονται σε έναν πίνακα τιµών ή απεικονίζονται σε ένα καρτεσιανό σύστηµα συντεταγµένων. Β. Αξιοποίηση του λογισµικού Οι µαθητές, ακολουθώντας τα παρακάτω βήµατα, θα αξιοποιήσουν τις δυνατότητες του λογισµικού για το συγκεκριµένο πρόβληµα. Βήµα 1: Κατασκευή του πίνακα τιµών Ο διδάσκων, ζητά από τους µαθητές να περάσουν στις στήλες του πίνακα τιµών του λογισµικού τα 20 έτοιµα ζεύγη τιµών που αντιστοιχούν στις 20 διαφορετικές πωλήσεις, καθώς και να κατασκευάσουν µια τρίτη στήλη µε το πηλίκο των τιµών των δύο άλλων στηλών. Στη συνέχεια, ζητείται από τους µαθητές ερµηνεύσουν τα αποτελέσµατα της τρίτης στήλης και να εντοπίσουν τις πωλήσεις που αντιστοιχούν σε καθένα από τα τρία προϊόντα. Επεξεργασία: Μένιος ελιγκάς 9

11 Έτσι, οι µαθητές θα πρέπει να παρατηρήσουν ότι το πηλίκο τ/π παίρνει τρεις διαφορετικές τιµές 0,6, 2,1 και 1,2. Οι τιµές αυτές, αντιστοιχούν στην τιµή µονάδας του καθενός από τα τρία είδη προϊόντος. Επίσης, ζητείται από τους µαθητές να προσδιορίσουν τη σχέση που συνδέει την τιµή µε την ποσότητα στο κάθε προϊόν, καθώς και τη µορφή των γραφικών παραστάσεων που αντιστοιχούν στα τρία αυτά είδη. Έτσι, οι σταθεροί λόγοι ανά οµάδα, παραπέµπουν σε ποσά ανάλογα, πράγµα που σηµαίνει ότι οι µαθητές πρέπει να προβλέψουν ότι οι συντεταγµένες των σηµείων θα συνδέονται µε σχέσεις της µορφής y=αx, όπου το α θα παίρνει τις τιµές 0.6, 2.1 και 1.2. Επίσης, πρέπει να προβλέψουν ότι, τα σηµεία της κάθε οµάδας θα ανήκουν σε ευθεία που διέρχεται από την αρχή των αξόνων. Ένας όµως από τους λόγους δίνει διαφορετικό αποτέλεσµα (από τις τρείς παραπάνω τιµές) οπότε, οι µαθητές θα πρέπει να συνδέσουν αυτό το µεµονωµένο σηµείο µε λανθασµένο υπολογισµό του υπαλλήλου. Προφανώς, το σηµείο αυτό δεν θα ανήκει σε καµιά από τις ευθείες. Βήµα 2: Κατασκευή του Γραφήµατος Στο σηµείο αυτό, θα ήταν σκόπιµο, να γίνει διαπραγµάτευση για το εύρος των τιµών σε κάθε ένα από τους άξονες, αλλά και η απαιτούµενη ακρίβεια ώστε, οι µαθητές να επιλέξουν την κατάλληλη κλίµακα, µε το αντίστοιχο εργαλείο του λογισµικού. Επεξεργασία: Μένιος ελιγκάς 10

12 Στη συνέχεια, οι µαθητές αποστέλλουν τα σηµεία στους άξονες, κατασκευάζουν την ευθεία y=x και µε το εργαλείο του ελαστικού χειρισµού της αυξοµείωσης περιστρέφουν την ευθεία ώστε, να προσαρµοστεί πάνω στα σηµεία. Μέσω της περιστροφής της ευθείας y=x, οι µαθητές ανακαλύπτουν τις τρεις οµάδες συνευθειακών σηµείων, ενώ συγχρόνως το λογισµικό τους δίνει τη δυνατότητα να εντοπίσουν και τις εξισώσεις των τριών ευθειών που προκύπτουν: y=2,1x y=0,6x y=1,2x. Εικόνα 1: Tα σηµεία στο Γράφηµα του FP. Επεξεργασία: Μένιος ελιγκάς 11

13 Εικόνα 2: Περιστροφές της ψ=x. Στο σηµείο αυτό, έχει την δυνατότητα ο εκπαιδευτικός να οδηγήσει τους µαθητές στην ανάκληση της έννοιας της κλίσης ευθείας, η οποία ισούται µε το σταθερό λόγο τ/π και µπορεί να την προσεγγίσει µέσα από τις δυνατότητες του λογισµικού. Εικόνα 3: Κλίση ευθείας από το λογισµικό Επεξεργασία: Μένιος ελιγκάς 12

14 Εδώ, το σηµαντικό είναι ότι, το ορθογώνιο τρίγωνο το οποίο κατασκευάζει το λογισµικό, έχει πλευρές των οποίων τα µέτρα είναι ανάλογα προς τις συντεταµένες των σηµείων της οµάδας. Γ Απαντήσεις Στη συνέχεια, οι µαθητές διαπραγµατεύονται τους δύο τρόπους µε τους οποίους µπορούν να απαντήσουν στα αρχικά ερωτήµατα. Ο ένας τρόπος είναι ο αριθµητικός (πίνακας τιµών) και ο άλλος τρόπος είναι o γεωµετρικός (µέσω της γραφικής παράστασης). 2η Φάση: Κατασκευή εργαλείων υπολογισµού των τιµών Μετά, ο διδάσκων, ζητά από τους µαθητές να συζητήσουν τις δυνατότητες του λογισµικού για την κατασκευή εργαλείων τα οποία θα µπορούσαν να βοηθήσουν τον υπάλληλο ώστε, να έχει άµεσα την τιµή πώλησης και να µην χρειάζεται να κάνει πράξεις κατά την πώληση των τριών αυτών προϊόντων. Το σηµαντικό κατά τη φάση αυτή είναι, να διαπραγµατευτούν οι µαθητές µε πόσους τρόπους µπορούν να κατασκευάσουν τέτοιους πίνακες και να υλοποιήσουν µία τουλάχιστον τέτοια κατασκευή. α) Ένας τρόπος, θα µµπορούσε να είναι η χρήση της αριθµοµηχανής, µέσω της οποίας θα κατασκευάσουν τρία κουµπιά, που το καθένα θα υπολογίζει την είσπραξη από την πώληση του κάθε προϊόντος. Επεξεργασία: Μένιος ελιγκάς 13

15 Εικόνα 4: Η κατασκευή των τριών κουµπιών. β) Ένας άλλος τρόπος, µπορεί να υλοποιηθεί µε την χρήση του παραθύρου του πίνακα, αν οι µαθητές γεµίσουν µία στήλη µε τιµές π.χ. από 0,5 µέχρι 10 µε αύξηση 0,5. Στην συνέχεια, θα γεµίσουν τις τρεις επόµενες στήλες µε την βοήθεια των τύπων των τριών συναρτήσεων. Εδώ, είναι σηµαντικό, να υπογραµµιστεί η σηµασία του συντελεστή α (τιµή µονάδας) της συνάρτησης ψ=αx, όταν το x εκφράζει ποσότητα και το ψ τιµή. γ) Τέλος, ένας άλλος τρόπος είναι, η κατασκευή των γραφικών παραστάσεων των τριών συναρτήσεων και στη συνέχεια η αποκοπή σηµείων από τις γραφικές παραστάσεις, µε βήµα το οποίο θα αποφασίσουν οι µαθητές. Οι δραστηριότητες της δεύτερης φάσης, έχουν στόχο να οικειοποιηθούν οι µαθητές τις πολλαπλές αναπαραστάσεις της γραµµικής συνάρτησης, η οποία γίνεται πλέον εργαλείο επίλυσης πρακτικών προβληµάτων. Επεξεργασία: Μένιος ελιγκάς 14

16 Ο εκπαιδευτικός, µπορεί να προτείνει την αριθµοµηχανή ώστε, να εξοικειωθούν οι µαθητές και µε τις δυνατότητες του εργαλείο αυτού του λογισµικού και ειδικότερα µε την κατασκευή κουµπιού. 3 η Φάση Επέκταση του σεναρίου Σχέση της ψ=αx µε την ψ=αx+β Η φάση αυτή, θα µπορούσε να αποτελέσει µία επέκταση του σεναρίου ώστε, να γίνει µετάβαση από τη γραµµική συνάρτηση στην ψ=αx+β. Ο διδάσκων, πληροφορεί τους µαθητές ότι, ειδικά για το προϊόν µε τιµή µονάδος 0,6 είναι απαραίτητη µία ορισµένη συσκευασία η οποία, για οποιαδήποτε ποσότητα αγοράς χρεώνεται 0,5Є επιπλέον. Από τους µαθητές ζητείται να διαπραγµατευτούν τις µετατροπές που θα πρέπει να κάνουν στον τύπο της συνάρτησης ψ=0,6x, στη γραφική της παράσταση και στον πίνακα τιµών της ώστε, να περιγράψουν σωστά τα καινούργια δεδοµένα. Εδώ, οι µαθητές, θα πρέπει, µε την βοήθεια του διδάσκοντα, να οδηγηθούν στο συµπέρασµα ότι, στον τύπο πρέπει να προστεθεί η τιµή 0,5 και η γραφική παράσταση πρέπει να µµετακινηθεί παράλληλα προς τα πάνω ώστε, να µη µεταβληθεί η τιµή µονάδος (το α) του προϊόντος και να αυξηθούν οµοιόµορφα όλες οι τιµές κατά 0,5. Επεξεργασία: Μένιος ελιγκάς 15

17 Εικόνα 5: Oι γραφικές παραστάσεις των συναρτήσεων ψ=0,6x και ψ=0,6x+0.5. Επεξεργασία: Μένιος ελιγκάς 16

18 Ενδεικτικό Φύλλο Εργασίας Πρόβληµα Ένας πωλητής, είναι υπεύθυνος για την πώληση τριών προϊόντων Α, Β, Γ τα οποία διαθέτει σε διαφορετικές τιµές το καθένα. Κάθε φορά που κάνει µία πώληση καταγράφει την ποσότητα π (σε κιλά) και δίπλα το ποσόν τ (σε ευρώ) που εισέπραξε. Όταν ολοκληρώσει 20 πωλήσεις, παραδίδει τον πίνακα που έχει κατασκευάσει, στον προϊστάµενό του ο οποίος, θέλει να ελέγξει δύο πράγµατα: α) Πόσες πωλήσεις έχει κάνει ο πωλητής από κάθε προϊόν και β) Αν σε κάποια πώληση, έχει γίνει λάθος στον υπολογισµό. Επίσης, θέλει να κατασκευάσει ένα εργαλείο, το οποίο να υπολογίζει άµεσα την τιµή από την πώληση των τριών αυτών προϊόντων ώστε, να διευκολύνει τον υπάλληλο. ραστηριότητα: Θα προσπαθήσουµε να βοηθήσουµε τον προϊστάµενο, αξιοποιώντας τις δυνατότητες του εκπαιδευτικού λογισµικού Function Probe. Ποσότητα π (σε κιλά) Ποσόν τ (σε ευρώ) 0,8 1,68 0,2 0,24 1,6 1,92 1,3 0,78 5,5 11,55 1,9 3,99 11,5 6,9 3,8 4,56 3,4 2,04 6,2 4,96 2,2 2,64 3,5 7,35 5,3 3,18 6,8 4,08 5,7 6,84 4,7 9,87 1, ,3 8,1 9, Επεξεργασία: Μένιος ελιγκάς 17

19 1 η Φάση Απαντήσεις στα ερωτήµατα Α. Συζητήστε και απαντήστε στις παρακάτω ερωτήσεις. Ερώτηση 1. Αν έχουµε τις συντεταγµένες πολλών σηµείων σε δυο στήλες ενός πίνακα, πώς µπορούµε να εντοπίσουµε οµάδες σηµείων τα οποία είναι συνευθειακά µε την αρχή των αξόνων; Απάντηση Ερώτηση 2. Αν απεικονίσουµε τα σηµεία αυτά στο καρτεσιανό σύστηµα συντεταγµένων, πώς µπορούµε να ξεχωρίσουµε γραφικά οµάδες σηµείων που είναι συνευθειακά µε την αρχή των αξόνων; Απάντηση Β. Ακολουθήστε βήµα-βήµα τις παρακάτω οδηγίες ώστε, να χρησιµοποιήσετε το λογισµικό Function Probe, για να προσεγγίσετε το πρόβληµα. Επεξεργασία: Μένιος ελιγκάς 18

20 Βήµα 1: Κατασκευή του πίνακα τιµών Περάστε τις τιµές των δυο στηλών (π και τ) σε δυο στήλες του Πίνακα του λογισµικού. Φτιάξτε, επίσης, µια τρίτη στήλη µε το λόγο τιµή/ποσότητα (τ/π), στην οποία οι τιµές θα συµπληρωθούν αυτόµατα πατώντας το ΕΝΤΕR. Ερώτηση 1. Παρατηρώντας τις τιµές στον πίνακα του λογισµικού: α) Μπορείτε να ξεχωρίσετε τις πωλήσεις (σηµεία (π, τ)) που αντιστοιχούν στο κάθε ένα από τα τρία είδη του προϊόντος; β) Υπάρχει κάποια πώληση, που δεν αντιστοιχεί σε κανένα είδος; Αιτιολογήστε τις απαντήσεις σας. Ερώτηση 2. Αν απεικονίσουµε τα σηµεία (π, τ) στο καρτεσιανό επίπεδο, µπορείτε να προβλέψετε αν θα παρουσιάζονταν κάποιες κανονικότητες δηλ. αν εµφανίζονταν οµάδες σηµείων που να ανήκουν στην ίδια καµπύλη (γραφική παράσταση); Επεξεργασία: Μένιος ελιγκάς 19

21 Aν ναι, ποιες οµάδες σηµείων θα δηµιουργούνταν, τι µορφή θα είχαν αυτά τα γραφήµατα και ποιες θα ήταν οι εξισώσεις τους; Υπάρχει κάποιο σηµείο που δεν θα ανήκε σε κανένα από τα γραφήµατα αυτά; Αιτιολογήστε τις απαντήσεις σας. Απάντηση Βήµα 2: Κατασκευή του Γραφήµατος Από το παράθυρο Γράφηµα του λογισµικού και το µενού Γράφηµα, να ορίσετε τις Μεταβλητές και να κάνετε την κατάλληλη Αλλαγή κλίµακας ανάλογα µε το εύρος των τιµών που χρειάζεστε στον κάθε άξονα, αλλά και µε βάση την απαιτούµενη ακρίβεια. Στη συνέχεια, από το παράθυρο Πίνακας και από το µενού Αποστολή, επιλέξτε Σηµεία σε γράφηµα. Τότε θα απεικονιστούν τα σηµεία, στο Γράφηµα του λογισµικού. Κατασκευάστε την ευθεία y=x, χρησιµοποιώντας το εικονίδιο νέου τύπου και µε το εργαλείο του ελαστικού χειρισµού περιστρέψτε την ώστε, να προσαρµοστεί πάνω στα σηµεία. Επεξεργασία: Μένιος ελιγκάς 20

22 Έτσι, σας δίνεται η δυνατότητα να εντοπίσετε τις οµάδες των συνευθειακών σηµείων, ενώ συγχρόνως, το λογισµικό σας δίνει και τις εξισώσεις των τριών ευθειών που προκύπτουν. Ερώτηση 3. Επιβεβαιώθηκαν οι απαντήσεις προβλέψεις σας στα ερωτήµατα του βήµατος 1; Aν όχι γράψτε το λόγο. Απάντηση Ερώτηση 4. Τι παριστάνει ο καθένας από τους λόγους τ/π στην αντίστοιχη γραφική παράσταση; Απάντηση Γ Απαντήσεις στα ερωτήµατα του προβλήµατος Χρησιµοποιώντας τα δεδοµένα του πίνακα και του γραφήµατος του λογισµικού, παρουσιάστε τα αποτελέσµατά σας στον προϊστάµενο, σχετικά µε τα ερωτήµατά του και εξηγήστε τον πως µπορεί ο ίδιος να βρει τις απαντήσεις. Επεξεργασία: Μένιος ελιγκάς 21

23 2η Φάση Κατασκευή εργαλείων υπολογισµού των τιµών Α. Συζητήστε και καταγράψτε τις δυνατότητες του λογισµικού Function Probe για την κατασκευή εργαλείων τα οποία, θα µπορούσαν να βοηθήσουν τον υπάλληλο να υπολογίζει άµεσα την τιµή πώλησης των προϊόντων Α, Β, Γ.... Β. Χρησιµοποιήστε την Αριθµοµηχανή, για να κατασκευάσετε τρια κουµπιά τα οποία, θα παράγουν ζεύγη τιµών για κάθε ένα από τα τρία προϊόντα. Επεξεργασία: Μένιος ελιγκάς 22

24 Σύνοψη των δραστηριοτήτων και αξιολόγηση Ως προς την διαδικασία υλοποίησης: Η δοµή του σεναρίου, η σειρά των δραστηριοτήτων και τα ερωτήµατα που τίθενται στους µαθητές, αποτελούν αντικείµενο αξιολόγησης από τον ίδιο τον διδάσκοντα. Κρατώντας σηµειώσεις για τις δυσκολίες υλοποίησης συγκεκριµένων δραστηριοτήτων, µπορεί να εκτιµήσει τα σηµεία στα οποία οι µαθητές δήλωναν ή εκδήλωναν δυσκολίες κατανόησης ή εφαρµογής. Στην συνέχεια, µε κατάλληλες επεµβάσεις στις δραστηριότητες, επιχειρεί να θεραπεύσει τα προβλήµατα που προέκυψαν, απλοποιώντας διαδικασίες ή περιγράφοντας µε µεγαλύτερη σαφήνεια τις ερωτήσεις των δραστηριοτήτων. Πιο συγκεκριµένα, µετά την ολοκλήρωση των φάσεων της δραστηριότητας, ο διδάσκων µπορεί να ζητήσει από τους µαθητές να απαντήσουν σε συγκεκριµένα ερωτήµατα σχετικά µε: Τις δυσκολίες που συνάντησαν στη χρήση του λογισµικού και στη συνεργασία µεταξύ τους και τον τρόπο που τις αντιµετώπισαν. Τυχόν νέα µαθηµατικά δεδοµένα που προέκυψαν κατά την διάρκεια της δραστηριότητας ή αν χρειάστηκαν γνώσεις τις οποίες δεν γνώριζαν ή δεν ήταν επαρκώς εξοικειωµένοι. Το νέο ρόλο του καθηγητή. Επεξεργασία: Μένιος ελιγκάς 23

25 Ως προς τα εργαλεία: Η εφαρµογή µέσα σε πραγµατικές συνθήκες µιας δραστηριότητας, παρουσιάζει µη αναµενόµενες δυσκολίες οι οποίες µπορεί να οφείλονται στο ψηφιακό εργαλείο που χρησιµοποιείται. Οι δυσκολίες που θα παρουσιαστούν, θα καταγραφούν από τον διδάσκοντα ο οποίος, είτε θα βελτιώσει τις απαιτήσεις του σεναρίου είτε, θα σχεδιάσει µια περισσότερο κατευθυνόµενη πορεία εφαρµογής του ίδιου σεναρίου. Ως προς την προσαρµογή και επεκτασιµότητα Ο εκπαιδευτικός µετά από κάθε εφαρµογή του σεναρίου επανεκτιµά τη δοµή του σεναρίου και σχεδιάζει νέες δυνατότητες και επεκτάσεις. Το συγκεκριµένο σενάριο θα µπορούσε να αποτελέσει την βάση πάνω στην οποία είναι δυνατόν να οργανωθεί η διδασκαλία της ψ=αχ+β. Επεξεργασία: Μένιος ελιγκάς 24

Φύλλο Εργασίας Μαθητών

Φύλλο Εργασίας Μαθητών Φύλλο Εργασίας Μαθητών Ονοµατεπώνυµα (οµάδας):...... Τάξη:.. Ηµεροµηνία:. Πρόβληµα Ένας πωλητής, είναι υπεύθυνος για την πώληση τριών προϊόντων Α, Β, Γ τα οποία διαθέτει σε διαφορετικές τιµές το καθένα.

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. 9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα:

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σκεπτικό: Βασική

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σκεπτικό: Βασική Σενάριο 8. Τριγωνοµετρικές. συναρτήσεις; Γνωστική περιοχή: Άλγεβρα Β' Λυκείου. Η συνάρτηση ψ= ρηµ(λχ+κ) Γραφική παράσταση τριγωνοµετρικών συναρτήσεων Γραφική επίλυση τριγωνοµετρικής εξίσωσης. Θέµα: To

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. Σενάριο 2: Ο ερευνητής και οι χελώνες ΚΑΡΕΤΑ_ΚΑΡΕΤΑ Συγγραφέας: Καλλιόπη Αρδαβάνη, Επιμορφώτρια Μαθηματικών (Β επιπέδου). Γνωστική περιοχή: Άλγεβρα Ανεξάρτητη και εξαρτημένη μεταβλητή. Πεδίο ορισμού και

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com Επιμόρφωση Β Επιπέδου Κλάδος: ΠΕ03 Περίοδος: Δεκέμβριος 2010 Ιούνιος 2011 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΝΑΡΙΟΥ 1. Τίτλος σεναρίου: Μελέτη της εκθετικής

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης.

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης. Τίτλος σεναρίου : Η συνάρτηση f (x)=α ημ(ωx)+ β Γνωστική περιοχή : Θέμα : Τεχνολογικά εργαλεία : Πλαίσιο εφαρμογής Σε ποιους απευθύνεται : Διδάσκων : Χρόνος υλοποίησης : Χώρος υλοποίησης : 1 Σκεπτικό Βασική

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Εργασία στο εκπαιδευτικό λογισµικό Function Probe

Εργασία στο εκπαιδευτικό λογισµικό Function Probe Γιάννης Π. Πλατάρος -1-20/10/2003 ΚΑΤΑΣΚΕΥΗ ΑΝΑΛΥΤΙΚΗΣ ΕΚΦΡΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΙΑΤΡΙΚΟ ΠΡΟΒΛΗΜΑ Εργασία στο εκπαιδευτικό λογισµικό Function Probe Περίληψη: ίνεται στους µαθητές η διαπραγµάτευση ενός προβλήµατος

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. 1. Τίτλος Αεροπορικό ταξίδι.ταυτότητα του σεναρίου. Συγγραφέας: Βλάστος Αιμίλιος. Γνωστική περιοχή των μαθηματικών: Άλγεβρα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. 1. Τίτλος Αεροπορικό ταξίδι.ταυτότητα του σεναρίου. Συγγραφέας: Βλάστος Αιμίλιος. Γνωστική περιοχή των μαθηματικών: Άλγεβρα ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ 1. Τίτλος Αεροπορικό ταξίδι.ταυτότητα του σεναρίου. Συγγραφέας: Βλάστος Αιμίλιος Γνωστική περιοχή των μαθηματικών: Άλγεβρα Θέματα: Μεταβλητές, Συναρτήσεις,. γραφική παράσταση, Σύστημα

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14 Μιχαηλίδου Αγγελική Λάλας Γεώργιος Περιγραφή Πλαισίου Σχολείο: 2 ο Πρότυπο Πειραματικό Γυμνάσιο Αθηνών Τμήμα: Β 3 Υπεύθυνος καθηγητής: Δημήτριος Διαμαντίδης Συνοδός: Δημήτριος Πρωτοπαπάς

Διαβάστε περισσότερα

4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ

4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόµενος να επιλέξει την ορθή απάντηση από περιορισµένο αριθµό προτεινόµενων απαντήσεων ή να συσχετίσει µεταξύ

Διαβάστε περισσότερα

4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα

4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα 4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα Θέμα της δραστηριότητας Η δραστηριότητα αυτή αφορά στην εισαγωγή των εννοιών του ολικού και του τοπικού ακροτάτου. Στόχοι της δραστηριότητας Μέσω αυτής της

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 Ταυτότητα του σεναρίου Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)...... 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν

Διαβάστε περισσότερα

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση. Ενότητα 6: Πλαίσιο Σχεδιασμού και αναφοράς Σεναρίου

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση. Ενότητα 6: Πλαίσιο Σχεδιασμού και αναφοράς Σεναρίου Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Μάθημα επιλογής Α εξάμηνο, Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην

Διαβάστε περισσότερα

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ 268 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ Σ. Τσοβόλας Φυσικός, Επιμορφωτής ΤΠΕ Θ. Μαστρογιάννης Επιμορφωτής ΤΠΕ Στον πυρήνα του προγράμματος υπάρχει μια περιοχή εργασίας

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο 6 η ΣΥΝΕΔΡΙΑ Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο ΣΤΟΧΟΙ Οι επιμορφούμενοι μετά το πέρας της Συνεδρίας θα πρέπει: να γνωρίζουν τις δυνατότητες που τους προσφέρει το Φωτόδεντρο.

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 176 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Σωτηρόπουλος Παναγιώτης 1 -

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.

Διαβάστε περισσότερα

Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q

Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Ηλεκτρονική - Αυτοματισμός (Ε.Ε.) Δημιουργός: ΑΝΑΡΓΥΡΟΣ ΜΑΡΜΑΡΙΝΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

Διαβάστε περισσότερα

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά Χάρτινα χειροποίητα κουτιά Περίληψη: Στη δραστηριότητα αυτή οι μαθητές διερευνούν τη χωρητικότητα κουτιών σχήματος ορθογωνίου παραλληλεπιπέδου που προκύπτουν από ένα χαρτόνι συγκεκριμένων διαστάσεων. Οι

Διαβάστε περισσότερα

Το ανοργάνωτο Parking

Το ανοργάνωτο Parking Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.

Διαβάστε περισσότερα

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού»

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» «Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» Ματοσσιάν Αλμπέρ-Ντικράν 1, Κουτσκουδής Παναγιώτης 2 1 Καθηγητής Μαθηματικών, Πρότυπο Πειραματικό Γενικό Λύκειο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αναπνευστικό σύστηµα» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Κατασκευή δυναµικής γραµµατοσειράς

Κατασκευή δυναµικής γραµµατοσειράς Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών αντικειµένων.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ο καιρός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης. ΑΠΑΝΤΗΣΗ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

Πειραματική διερεύνηση των φαινομένων που αφορούν αμείωτες ταλαντώσεις

Πειραματική διερεύνηση των φαινομένων που αφορούν αμείωτες ταλαντώσεις ΠΕΙΡΑΜΑΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΣΤΟ INTERACTIVE PHYSICS2005 1 ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΣΕΝΑΡΙΟΥ 1.1 ΤΙΤΛΟΣ ΔΙΔΑΚΤΙΚΟΥ ΣΕΝΑΡΙΟΥ Πειραματική διερεύνηση των φαινομένων που αφορούν αμείωτες ταλαντώσεις 1.2 ΕΜΠΛΕΚΟΜΕΝΕΣ

Διαβάστε περισσότερα

E

E ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ του Βιτσαξή Μιχάλη Γυµνάσιο µε Λυκειακές Τάξεις Βιλλίων Λύκειο Νέας Περάµου E mail:fermatmike@yahoo.gr Καθηγητής /θµιας Εκπαίδευσης Επιµορφούµενος στο ΚΣΕ: 4 ο ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ

Διαβάστε περισσότερα

Τα διδακτικά σενάρια

Τα διδακτικά σενάρια 2.2.4.1 Τα διδακτικά σενάρια Το ζήτηµα της διδακτικής αξιοποίησης του λογισµικού αποτελεί σηµείο προβληµατισµού ερευνητών και εκπαιδευτικών που ασχολούνται µε την ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία

Διαβάστε περισσότερα

Μαθησιακές δραστηριότητες με υπολογιστή

Μαθησιακές δραστηριότητες με υπολογιστή ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθησιακές δραστηριότητες με υπολογιστή Κατευθυντήριες γραμμές σχεδίασης μαθησιακών δραστηριοτήτων Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις

Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις Καθηγητής Τ. Α. Μικρόπουλος Προδιαγραφές Βασικό και αφετηριακό σημείο για τη σχεδίαση μαθησιακών δραστηριοτήτων

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου)

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Συστάδα Β1.3: Μαθηματικά, Πληροφορική, Οικονομία Διοίκηση Επιχειρήσεων Συνεδρία 5 ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΧΡΗΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις Συγγραφή: Ομάδα Υποστήριξης

Διαβάστε περισσότερα

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα.

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα. 9.1.3 Σενάριο 3. Διερεύνηση των κανονικών πολυγώνων σε περιβάλλον που αξιοποιεί λογισμικό συμβολικής έκφρασης, την κοινωνική δικτύωση και τη συλλογική διαπραγμάτευση. Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου.

Διαβάστε περισσότερα

Γραφήματα οικογένειας παραβολών

Γραφήματα οικογένειας παραβολών Γραφήματα οικογένειας παραβολών Η βολή ενός αντικειμένου στον αέρα έχει ως αποτέλεσμα μια καμπυλωμένη τροχιά, η οποία είναι πάντοτε μια παραβολή. Η παραβολή είναι το γράφημα μιας δευτεροβάθμιας συνάρτησης,

Διαβάστε περισσότερα

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών 3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών Παρουσίαση βασισμένη στο κείμενο: «Προδιαγραφές ψηφιακής διαμόρφωσης των

Διαβάστε περισσότερα

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες»

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΓΕΩΡΓΙΟΣ ΜΠΟΛΟΤΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

Γουλή Ευαγγελία. 1. Εισαγωγή. 2. Παρουσίαση και Σχολιασµός των Εργασιών της Συνεδρίας

Γουλή Ευαγγελία. 1. Εισαγωγή. 2. Παρουσίαση και Σχολιασµός των Εργασιών της Συνεδρίας 1. Εισαγωγή Σχολιασµός των εργασιών της 16 ης παράλληλης συνεδρίας µε θέµα «Σχεδίαση Περιβαλλόντων για ιδασκαλία Προγραµµατισµού» που πραγµατοποιήθηκε στο πλαίσιο του 4 ου Πανελλήνιου Συνεδρίου «ιδακτική

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Δρ. Χαράλαμπος Μουζάκης Διδάσκων Π.Δ.407/80 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Στόχοι ενότητας Το λογισμικό

Διαβάστε περισσότερα