Υπολογιστική Γεωμετρία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπολογιστική Γεωμετρία"

Transcript

1 Υπολογιστική Γεωμετρία 1ο Μέρος: Κυρτότητα(γ) Γιάννης Εμίρης Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εαρ.2015 Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

2 Outline 1 Δυϊσμός Απλή Πόλωση Γενίκευση της Πόλωσης 2 Γραμμική βελτιστοποίηση/ ΓΠ Εισαγωγή Αλγόριθμοι Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

3 Δυϊσμός Ορισμός Δυϊσμός στο επίπεδο είναι μια αντιστοίχηση σημείων με ευθείες τ.ώ. ένασημείο pαντιστοιχείταιστημοναδικήευθεία p, μιαευθεία hαντιστοιχείταιστομοναδικόσημείο h καιισχύει (p ) = p, (h ) = h. Επιπλέονμπορείναισχύει p h h p. Παρακάτω θα δούμε μετασχηματισμούς σημείων σε ευθείες και τούμπαλιν που ικανοποιούν τον ορισμό. Σε γενική διάσταση, πρόκειται για αντιστοίχηση σημείων και υπερεπιπέδων. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

4 Απλή Πόλωση Ορισμός(Απλή Πόλωση) Εστω O η αρχή των αξόνων. Ορίζουμε 1-1 αντιστοιχία μεταξύ p R d {O}και(υπερ)επιπέδου p R d πουδενπερνάαπότο O: p := {x R d : p x = 1}. Επιπλέον,τοπολικόυπερεπιπέδου h : O / h,είναιτοσημείο h R d {0}: h y = 1, y h. Λήμμα Στοεπίπεδο, h 0 0διότι O h,άρα: p = (p 1,p 2 ) p : p 1 x +p 2 y = 1, h : h 1 x +h 2 y = h 0 h = (h 1 /h 0,h 2 /h 0 ). Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

5 Παράδειγμα Ι Για p 1 = (p 1,0)ηp 1 : x = 1/p 1είναικάθετηστον x-άξοναστο (1/p 1,0). Για q = (0,p 2 ),ηq : y = 1/p 2 είναικάθετηστον y-άξοναστο (0,1/p 2 ). Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

6 Παράδειγμα ΙΙ Για p = (p 1,p 1 ),ηp περιέχειτα (x,y) : xp 1 +yp 1 = 1,δηλ.κάθετη στηνευθεία x = yστο (1/2p 1,1/2p 2 ). Παράδειγμαγια p = (1,1): Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

7 Παράδειγμα ΙΙΙ Εστωηευθεία h : 3x y 2 = 0.Αυτήαντιστοιχείστοσημείο h = ( 3 2, 1 2 )καιαυτόστηνευθεία h : 3 2 x 1 2 y = 1. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

8 Ιδιότητες της Απλής Πόλωσης Λήμμα Για το μετασχηματισμό απλής πόλωσης ισχύει: (p ) = p,(h ) = h,άραηπόλωσηαποτελείμετασχηματισμό δυϊσμού, p h h p, p ημιχώροτου hπουπεριλαμβάνειτο Oανν h αντίστοιχο ημιχώροτου p. Απόδειξη. Στο επίπεδο: p = (p 1,p 2 ) p : p 1 x +p 2 y = 1 p = (p 1,p 2 ), h : h 1 x +h 2 y +h 0 = 0 h = ( h 1 h 0, h 2 h 0 ) h : h 1 h 0 x + h 2 h 0 y = 1. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

9 ΚΠ Θεώρημα Ουπολογισμόςτηςτομής nημιχώρωνστον R d είναιυπολογιστικά ισοδύναμοςμετοκπ nσημείων R d. Απόδ. Δυϊσμός μεταξύ κορυφών και ακμών άνω περιβλήματος σημείων και μη φραγμένου πολυγώνου που ορίζεται ως τομή ημιεπιπέδων: p 1 p i h 1 h 2 p i h 1 h 2 p 1 p 1 p 2 h h p i p 1 p 2 Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

10 Outline 1 Δυϊσμός Απλή Πόλωση Γενίκευση της Πόλωσης 2 Γραμμική βελτιστοποίηση/ ΓΠ Εισαγωγή Αλγόριθμοι Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

11 Γενίκευση σε ημιχώρους Ορισμός p # =Δυϊκόσημείου p =ημιχώροςτου p,πουπεριλαμβάνει Oστον δυϊκό χώρο: p # := {x R d : x p 1}. P # =Δυϊκόσυνόλουσημείων P R d : P # := {x R d : x p 1, p P} = p P p #. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

12 Παράδειγμα Γιατο p 1 = (2,0)ηευθεία p1 είναιηp 1 : x = 1 2,ενώγιατο p = (1 2, 1 2 )η ευθεία p είναιηp : 1 2 x + 1 2y = 1πουπερνάαπότο (1,1).Τα ημιεπίπεδα p #,p # 1 είναιπροςτααριστεράτωναντίστοιχωνευθειών.το μηφραγμένοπολύγωνο {p 1,p} # = p # 1 p# σημειώνεταιμετην καμπύλη γραμμή. p# p p p1# p 1 p 1 Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

13 Ιδιότητες Γενικευμένης Πόλωσης Λήμμα p 1,...,p n οικορυφέςτου P p i ταυπερεπίπεδατωνεδρώντου P # : P =ΚΠ(p 1,...,p n ) P # = i p # i. h 1,...,h m υπερεπίπεδαεδρώντου P : O P h i οικορυφέςτου P # : P = i h i ( 1) P # =ΚΠ(h # 1,...,h# m ), μεκορυφέςτα h i,όπου h i( 1) := {x R d : x h i 1}. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

14 Συνέπειες Θεώρημα Ουπολογισμόςτηςτομής nημιχώρωνστον R d είναιυπολογιστικά ισοδύναμοςμετονυπολογισμόκπ nσημείων R d. Πόρισμα Ο υπολογισμός του γράφου των κορυφών πολυέδρου, το οποίο δίνεται ως τομή nημιχώρωνστο R d,έχειπολυπλοκότητα Ω(nlogn+n d/2 ). Οι αλγόριθμοι υπολογισμού του ΚΠd, για n δεδομένα σημεία, εφαρμόζουν στον υπολογισμό του γράφου των κορυφών από την τομή n ημιχώρων. Θεώρημα(Minkowski-Weyl) ΗαυστηρήισοδυναμίαπρέπειναλάβειυπόψηπωςτοΚΠσημείωνείναι φραγμένο ενώ η τομή ημιχώρων δύναται να είναι μη-φραγμένη. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

15 Ασκήσεις Άσκηση Ποιο είναι το πολικό αντικείμενο μιας σφαίρας; Υπό ποιες συνθήκες η πόλωση της σφαίρας ταυτίζεται με την αρχική σφαίρα; Άσκηση Εστωπολύεδρο P R d και b P Bγιαεγγεγραμμένηκαι περιγεγραμμένησφαίρα bκαι B.Τότεδείξτεπως B P b,όπου B,b ηεγγεγραμμένηκαιπεριγεγραμμένησφαίρατου P,αντίστοιχα. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

16 Outline 1 Δυϊσμός Απλή Πόλωση Γενίκευση της Πόλωσης 2 Γραμμική βελτιστοποίηση/ ΓΠ Εισαγωγή Αλγόριθμοι Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

17 Γραμμική βελτιστοποίηση/ ΓΠ Ορισμός(Προβλήματος) Το πρόβλημα της ΓΒ ορίζεται σε(γεωμετρικο) χώρο d διαστάσεων: Υπάρχουνάγνωστεςποσότητες x 1,...,x d. Δεδομένα a i,j R: i = 1,...,n,j = 1,...,d,ορίζουν nγραμμικές εξισώσεις ή ανισότητες, δηλ. περιορισμούς x 1 a i,1 + +x d a i,d i b i, i {<,,=,,>}, i = 1,...,n. Αντικειμενική συνάρτηση f(x 1,...,x d ) = x 1 c 1 + +x d c d Ζητείταισημείο x R d,πουικανοποιείτους nπεριορισμούςκαι ελαχιστοποιεί την αντικειμενική συνάρτηση. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

18 Παράδειγμα Σχήμα: Τρισδιάστατο«εφικτό» πολύεδρο(που ορίζεται από τους περιορισμούς) και υπολογισμός βέλτιστης κορυφής(με Simplex). Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

19 Παράδειγμα 8 περιορισμοί ανισοτήτων και συνάρτηση βελτιστοποίησης [Καρασούλου]: x 1 +x 2 5 x 1 +4x x 1 +x x 1 4x 2 24 x 3 4 x 1,x 2,x 3 0 maxf = x 1 +x 2 +x 3 minf = x 1 x 2 x 3. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

20 Ιδιότητες Ορισμός Εφικτή περιοχή = σύνολο σημείων: ικανοποιούν τους περιορισμούς Γραμμικοί περιορισμοί εφικτή περιοχή = τομή κλειστών ημιχώρων, ανοικτών ημιχώρων κ υπερεπιπέδων. Εφικτή περιοχή = πολύεδρο, όχι απαραίτητα φραγμένο. Περιορισμοί εφικτοί/μη ανν εφικτή περιοχή μη/κενή. Πρόβλημα μη φραγμένο ανν φραγμένη λύση, δηλ. βέλτιση τιμή αντικειμενικής συνάρτησης ±. Αν υπάρχει βέλτιστη λύση και η Αντικειμενική συνάρτηση αρκετά γενική Μοναδική βέλτιστη λύση: Κορυφή πολυέδρου εφικτής περιοχής. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

21 Outline 1 Δυϊσμός Απλή Πόλωση Γενίκευση της Πόλωσης 2 Γραμμική βελτιστοποίηση/ ΓΠ Εισαγωγή Αλγόριθμοι Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

22 Simplex Αλγόριθμος Simplex[Dantzig 63] Βρίσκει κορυφή της εφικτής περιοχής, κινείται προς κορυφή με μικρότερη τιμή για τη συνάρτηση ελαχιστοποίησης. καλύτερη γειτονική κορυφή βρέθηκε βέλτιστο. Χείριστη περίπτωση: εκθετικός ως προς d λόγω πολυπλοκότητας εφικτής περιοχής, από θεώρημα MacMullen για πολύεδρο n εδρών, πολυωνυμικός ως προς n. Δυϊσμός: εκθετικός ως προς n, πολυωνυμικός ως προς d. Στην πράξη είναι«συνήθως» ταχύς. Ανοικτό πρόβλημα η αναμενόμενη πολυπλοκότητα. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

23 Πολυωνυμικοί αλγόριθμοι (Ασθενώς) πολυωνυμικοί δηλ. ως προς d, n, bitsize. Ελλειψοειδής[Khachiyan 79] Γενική αναπαράσταση εφικτής περιοχής, ακόμα και μέσω Μαντείου(membership oracle). Υπάρχει φράγμα σε συνάρτηση της ακτίνας της περιγεγραμμένης και της εγγεγραμμένης σφαίρας που αποφεύγει το bitsize. Εσωτερικών σημείων[karmarkar 84] Ταχύτερος. Αναπαράσταση εισόδου ως τομή ημιχώρων. Ανοικτό ισχυρά πολυωνυμικός αλγόριθμος; δηλ. ως προς d, n; Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

24 Μια σταθερή παράμετρος Αυξητικός αλγόριθμος [Megiddo 84] Αυξητικόςγεωμετρικός = O(n),για d = O(1),εκθετικόςωςπρος d (βλ. παρακάτω). ΟΔυϊσμόςδίνει: O(d),αν n = O(1). Απλούστερος πιθανοκρατικός = O(d! n) [Seidel 91]. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

25 Ακραία σημεία ΚΠ Αναγωγή σε ΓΒ Σημείο p j ειναιεσωτερικότουκπ(p 1,...,p j 1,p j+1,...,p n )αννείναι κυρτός συνδυασμός τους, δηλ. ανν λ i 0 : p j = λ i p i, λ i = 1. i j Πρόκειταιγια n 1ανισότητεςκαι d +1εξισώσεις. Πόρισμα Το παραπανω είναι ένα πρόβλημα ΓΒ(ερώτημα αν η εφικτή περιοχή ειναι κενή ή όχι). Άρα υπάρχει(ασθενώς) πολυωνυμικός αλγόριθμος για τονυπολογισμότωνακραίωνσημείωνσυνόλου p 1,...,p n R d. i j Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

26 Αυξητικός Τρειςθέσειςτουτρέχοντοςβέλτιστου x i 1 ωςπροςτονέοπεριορισμό H i (εκτόςγραμμοσκιασμένου),όπου x i τονέοβέλτιστο: x i 1 x i 1 = x i x i 1 = x i x i H i H i H i Η μεσαία περίπτωση είναι εκφυλισμένη. Σε όλες τις περιπτώσεις η νέα εφικτή περιοχή είναι γνήσιο υποσύνολο της τρέχουσας. Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική Γεωμετρία Πανεπιστήμιο Αθηνών) Εαρ / 26

Υπολογιστική Γεωμετρία

Υπολογιστική Γεωμετρία Υπολογιστική Γεωμετρία 1ο Μέρος(β): Κυρτότητα σε γενική διάσταση Γιάννης Εμίρης Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εαρ. 2016 Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n Υπολογιστική Γεωμετρία (σημειώσεις διαλέξεων ) Διδάσκων: Ι.Εμίρης Πέμπτη, 7 Απριλίου 2016 1 Ζητήματα πολυπλοκότητας 1. ΚΠ2 Τομή ημιεπιπέδων 2. ΚΠ3, ΚΠd n [d/2+1] (worst case) - Αλλά!! Αν έχουμε σημεία

Διαβάστε περισσότερα

Υπολογιστική Γεωμετρία

Υπολογιστική Γεωμετρία Υπολογιστική Γεωμετρία 1ο Μέρος(α): Κυρτότητα στο επίπεδο Γιάννης Εμίρης Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εαρ.2016 Γιάννης Εμίρης (Τμήμα Πληροφορικής και Τηλεπικοινωνιών Υπολογιστική

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

( ) x 1 1. cone( (10.1) ( ) x ) := D (10.2) D Ax b 0 Ax 0 b. i λ i 1

( ) x 1 1. cone( (10.1) ( ) x ) := D (10.2) D Ax b 0 Ax 0 b. i λ i 1 Θεωρία Γραμμικού Προγραμματισμού Διάλεξη 0: 2..204 Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Ευάγγελος Αναγνωστόπουλος, Πέτρος Μπαρμπαγιάννης & Σ. Κ. 0. Θεώρημα Minkowski-Weyl για πολύεδρα Ορισμός 0. Αν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Η μέθοδος Simplex Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος

Διαβάστε περισσότερα

Δυϊκότητα. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Δυϊκότητα. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Δυϊκότητα Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιστοποίηση Άνω Φράγματος Έχει το ΓΠ εφικτή λύση με κόστος 2; Ναι, π.χ. [0, 1, 3, 0, 2, 0,

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1 Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Χαρακτηριστικά αλγορίθμων τύπου simplex (5) Αν το βασικό σημείο ικανοποιεί ακριβώς n-m ανισότητες

Διαβάστε περισσότερα

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)]. 3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ Άσκηση 11.1.2. (i) Είναι η συνάρτηση d : R R R με τύπο d(x, y) = (x y) 2 μετρική στο R; (ii) Ίδια ερώτηση για την d : R R R με τύπο d(x, y) = x y

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα ΚΕΦΑΛΑΙΟ 4 Ακέραια Πολύεδρα 1 Ορισμός 4.1 (Convex Hull) Έστω ένα σύνολο S C R n. Ένα σημείο x του R n είναι κυρτός συνδυασμός (convex combination) σημείων του S, αν υπάρχει ένα πεπερασμένο σύνολο σημείων

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός Πανεπιστήμιο Αιγαίου URL: http://www.aegean.gr Γραμμικός Προγραμματισμός Ευστράτιος Ιωαννίδης Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών 832 Καρλόβασι Σάμος Copyright Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών

Διαβάστε περισσότερα

Π(n) : 1 + a + + a n = αν+1 1

Π(n) : 1 + a + + a n = αν+1 1 Διακριτά Μαθηματικά [Rosen, κεφ. 5] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέμβριος 2017 Επαγωγή και Αναδρομή [Rosen, κεφ. 5] Μαθηματική επαγωγή [Rosen 5.1] Μέθοδος απόδειξης μιας μαθηματικής

Διαβάστε περισσότερα

2. dim(p ) = n rank(a = )

2. dim(p ) = n rank(a = ) Θεωρία Γραμμικού Προγραμματισμού Διάλεξη 12: 19.11.2014 Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Μανιάτης Σπυρίδων & Μυρισιώτης Δημήτριος 12.1 Παραδείγματα πολυτόπων Υπενθυμίζουμε το θεώρημα που αποδείχθηκε

Διαβάστε περισσότερα

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1 Διακριτά Μαθηματικά [Rosen, κεφ. 5] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέμβριος 2018 Επαγωγή και Αναδρομή [Rosen, κεφ. 5] Μαθηματική επαγωγή [Rosen 5.1] Μέθοδος απόδειξης μιας μαθηματικής

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε πίνακες οι οποίοι δεν θα είναι γραμμικές εξισώσεις. Θα πρέπει λοιπόν να δούμε την γεωμετρική ερμηνεία των ανισώσεων. Μια ανίσωση διαιρεί τον n-διάστατο χώρο σε δύο

Διαβάστε περισσότερα

Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν τη γραµµική αντικειµενική συνάρτηση. n j = j = 1, 2,, n

Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν τη γραµµική αντικειµενική συνάρτηση. n j = j = 1, 2,, n KΕΦΑΛΑΙΟ 6 Γραµµικός Προγραµµατισµός 6. ΕΙΣΑΓΩΓΗ Ο γραµµικός προγραµµατισµός (Γ.Π.) είναι µια µέθοδος βελτιστοποίησης που εφαρµόζεται για την επίλυση προβληµάτων στα οποία η αντικειµενική συνάρτηση και

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) + KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 τελευταία ενημέρωση: 21/10/2016

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους

Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους Επαµεινώνδας. Φριτζίλας Μ Ε Βιοπληροφορικής Τµήµα Βιολογίας ΕΚΠΑ 17 Φεβρουαρίου 2005 Τί σηµαίνει ο τίτλος ; γεωµετρικός περιορισµός:

Διαβάστε περισσότερα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων.

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. 1. Ποιά από τα παρακάτω σύνολα είναι συμπαγή; Μία κλειστή μπάλα, μία ανοικτή μπάλα, ένα ανοικτό ορθ. παραλληλεπίπεδο, ένα ευθ. τμήμα (στον R n ), μία

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού

Διαβάστε περισσότερα

για NP-Δύσκολα Προβλήματα

για NP-Δύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com

Διαβάστε περισσότερα

Θεωρία Αποφάσεων και Βελτιστοποίηση

Θεωρία Αποφάσεων και Βελτιστοποίηση Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση

Διαβάστε περισσότερα

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1, ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 11: Σχέσεις Πρωτεύοντος και Δυϊκού Προβλήματος, Χαρακτηριστικά Αλγορίθμων τύπου Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: μέθοδος simplex Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 4 η /2017 Η γεωμετρία των προβλημάτων γραμμικού

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

Approximation Algorithms for the k-median problem

Approximation Algorithms for the k-median problem Approximation Algorithms for the k-median problem Ζακυνθινού Λυδία Παυλάκος Γεώργιος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεωρία Υπολογισμού 2011-2012 Το πρόβλημα

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός

Διαβάστε περισσότερα

Το δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους

Το δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους Το δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους ΣΗΜΜΥ Ιανουάριος, 2013 Αρχικό πρόβλημα βελτιστοποίησης με περιορισμούς: Πρωτεύον min f(x)st x X, g j 0, j = 1 r Για να λύσουμε το πρόβλημα,

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 30 Απριλίου 2015 1 / 48 Εύρεση Ελάχιστου

Διαβάστε περισσότερα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 τελευταία ενημέρωση: 21/10/2016 1 Γραφική μέθοδος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ Ενότητα: Όρια και συνέχεια συναρτήσεων Διδάσκων: Ιωάννης Γιαννούλης Τμήμα: Μαθηματικών Κεφάλαιο 2 Ορια και συνέχεια συναρτήσεων 2.1 Πραγµατικές συναρτήσεις

Διαβάστε περισσότερα

= lim. e 1. e 2. = lim. 2t 3

= lim. e 1. e 2. = lim. 2t 3 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ, 6/06/017 Θέμα 1. Δίνεται η συνάρτηση f : R R με f(0, 0) = 0 και f(x, y) = x3 + y 3 x + y αν (x, y) (0, 0). (i) Δείξτε ότι η f είναι συνεχής στο (0, 0). (ii) Αν u

Διαβάστε περισσότερα

Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018

Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Αλγόριθμοι Ρυθμός αύξησης συναρτήσεων [Rosen 3.2] Αριθμητικές συναρτήσεις Τάξη αριθμητικών συναρτήσεων

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΕΙΚΟΣΤΟ ΟΓΔΟΟ ΜΑΘΗΜΑ ΟΡΙΣΜΟΣ. Έστω μετρικός χώρος (X, d) και A X. Ονομάζουμε εσωτερικό του A το σύνολο Ονομάζουμε σύνορο του A το σύνολο A = {x x εσωτερικό του A}. A = {x

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης

Διαβάστε περισσότερα

Τμήμα Εφαρμοσμένης Πληροφορικής

Τμήμα Εφαρμοσμένης Πληροφορικής Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Στόχοι Εργαστηρίου ημιουργία Τυχαίων Βέλτιστων Γ.Π. Περιγραφή μεθόδου για δημιουργία βέλτιστων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος ΔιακριτάΜαθηματικά Γιάννης Εμίρης http://eclass.uoa.gr/ Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ Νοέμβριος 2016 Διακριτά Μαθηματικά ΕπαγωγήκαιΑναδρομή [Rosen,κεφ. 5] Διακριτά Μαθηματικά Μαθηματικήεπαγωγή

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1 1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX 2.1 Βασικές έννοιες - Ορισμοί Ο αλγόριθμος Simplex για τα προβλήματα γραμμικού προγραμματισμού, βλέπε Dntzig (1963), αποδίδει αρκετά καλά στην πράξη, ιδιαίτερα σε προβλήματα

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x. Infimum Ορισμός κάτω φράγματος συνόλου A Το σύνολο A R είναι κάτω φραγμένο αν k R : x A k x k = κάτω φράγμα Ορισμός infimum του συνόλου A inf A = infimum του συνόλου A Το μεγαλύτερο από τα κάτω φράγματα

Διαβάστε περισσότερα

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ 4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ Ευθείες γραµµές και παραβολικά τµήµατα µπορούν να µοντελοποιηθούν µε τη χρήση κυβικών πολυωνυµικών τµηµάτων. Τα κυκλικά ελλειπτικά ή υπερβολικά τµήµατα όµως προσεγγίζονται

Διαβάστε περισσότερα

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε

Διαβάστε περισσότερα

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την

Διαβάστε περισσότερα

Διάλεξη 1 - Σημειώσεις 1

Διάλεξη 1 - Σημειώσεις 1 Διάλεξη 1 - Σημειώσεις 1 Σύνολα Πως διαβάζουμε κάποιους συμβολισμούς: ανήκει και η άρνηση, δηλαδή δεν ανήκει υπάρχει για κάθε : τέτοιο ώστε. Επίσης το σύμβολο έχει την ερμηνεία «τέτοιο ώστε» και ή υπονοεί

Διαβάστε περισσότερα

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας

Διαβάστε περισσότερα

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i. Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Τμήμα Εφαρμοσμένης Πληροφορικής

Τμήμα Εφαρμοσμένης Πληροφορικής Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Δυϊκή Θεωρία (1) Θεώρημα : Το δυϊκό πρόβλημα του γραμμικού προβλήματος 0 0 1 1 2 2 0 0 T

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή

Διαβάστε περισσότερα

π B = B και άρα η π είναι ανοικτή απεικόνιση.

π B = B και άρα η π είναι ανοικτή απεικόνιση. 3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι

Διαβάστε περισσότερα

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ. Άλγεβρα Α ΕΠΑΛ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.2ο: Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 2.2 Διάταξη Πραγματικών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,

Διαβάστε περισσότερα