HMY 795: Αναγνώριση Προτύπων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HMY 795: Αναγνώριση Προτύπων"

Transcript

1 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 20 Kernel methods Support vector machines

2 Εκπαίδευση νευρωνικών δικτύων backpropagation:. Υπολογισμός μεταβλητών δικτύου «τρέχον» w () () (2) (2) aj = wji xi ak = wkj zj i j z = h( a ) y = g( a ) j j k k 2. Υπολογισμός μερικών παραγώγων δάδ διάδοση σφαλμάτων προς τα πίσω (2) En En ak = (2) (2) (2) wkj ak wkj En Ορισμός: δ = = y t (2) ak E En = δ (2) kz j w kj k k k

3 2. Πρώτο στρώμα E a a w a w w () () n En j j = = δ () () () j = δ () jxi ji j ji ji E a a δ j = = a a a k (2) (2) n k k (2) () δk () k j k j z = δ '( ) k En = h'( a ) () w ji (2) () ak j k = h ( a ) () () j δkw kj zj aj k δ w x j k kj i k a = w x a = w z () () (2) (2) j ji i k kj j i j z = h( a ) y = g( a ) j j k k 3. Ενημέρωση (single sample/ batch) w( k+ ) = w( k) n( k) J( w) Jacobian μέτρο της «ευαισθησίας» του δικτύου ως οντότητα: J ki y y a y () = = = wji = x a x a () k k j k () () i j j i j j y a y = '( ) (2) () k l () (2) k wji = w (2) () ji h aj wlj (2) j l al aj j l al yk = δ '( σ a (2) kl l ) a l

4 Hessian H ij 2 E = w w ji lk : ακριβής ή προσεγγιστικός υπολογισμός Κανονικοποίηση: Αν το αρχικό δίκτυο εκπαιδευτεί με τότε αν χρησιμοποιήσουμε δεδομένα εκπαίδευσης μετ/σμένα γραμμικά ( x = ax, y = cy ) θα πρέπει να κανονικοποιήσουμε σύμφωνα με την: i i i i λ a λ λ /2 /2 2 c 2 Πρακτικά ζητήματα: Τερματισμός εκπαίδευσης Training/Validation/Testing Επιλογή συναρτήσεων ενεργοποίησης Κανονικοποίηση δεδομένων εκπαίδευσης Αρχικοποίηση βαρών Σταθερές μάθησης Αριθμός στρωμάτων λ

5 Αμεταβλητότητα Δημιουργία τεχνητών δεδομένων εκπαίδευσης Προεπεξεργασία Επιλογή κατάλληλης δομής ΝΝ

6 Bayesian neural networks Μέχρι στιγμής χρησιμοποιήσαμε μέγιστη πιθανοφάνεια για την εκπαίδευση ενός δικτύου Κανονικοποίηση: ισοδύναμη με εκτίμηση MAP Μπορούμε να χρησιμοποιήσουμε και την Μπεϋζιανή θεώρηση Στην περίπτωση της γραμμικής παλινδρόμησης με Γκαουσιανό θόρυβο πήραμε αναλυτικά αποτελέσματα για τις εκ των υστέρων κατανομές των συντελεστών w και την προγνωστική κατανομή ή( (predictive distribution) Εδώ δεν μπορεί να γίνει το ίδιο: προσεγγίσεις (variational inference/laplace approximation) Στην περίπτωση συνεχούς μεταβλητής στόχου t η πιθανοφάνεια είναι: Κανονική εκ των προτέρων κατανομή για τα βάρη: Πιθανοφάνεια για Ν ανεξάρτητες παρατηρήσεις D={t,t 2,,t N }:

7 Εκ των υστέρων κατανομή: Bayesian neural networks Η κατανομή αυτή, λόγω της μη γραμμικής εξάρτησης του y(x,w) ως προς w δεν είναι κανονική ως προς w Ένας τρόπος (Laplace approximation) είναι να προσεγγίσουμε αυτή την κατανομή με κανονική, γύρω από το μέγιστο της εκ των υστέρων κατανομής (δηλ. της εκτίμησης MAP). Αυτό γίνεται ελαχιστοποιώντας την: Ισοδυναμία με κανονικοποίηση οι μερικές παράγωγοι υπολογίζονται με backpropagation. Η κανονική προσέγγιση της posterior δίνεται τότε από (Laplace approximation): όπου Η: Hessian Μπορούμε προσεγγιστικά να πάρουμε αποτελέσματα επίσης για την προγνωστική κατανομή και τις υπερπαραμέτρους α,β (generalized likelihood Bishop 5.7.)

8 Bayesian neural networks Για δίκτυο ταξινόμησης σε 2 κλάσεις με σιγμοειδή συνάρτηση ενεργοποίησης εξόδου η πιθανοφάνεια είναι: Και πάλι θεωρούμε κανονική εκ των προτέρων κατανομή για τα βάρη με ακρίβεια α. Όπως και στην περίπτωση συνεχούς t υπολογίζουμε το w MAP ελαχιστοποιώντας (backpropagation) την: Κατόπιν, υπολογίζουμε την Hessian και η εκ των υστέρων κατανομή παίρνει και πάλι τη μορφή Το α μπορεί να υπολογιστεί μεγιστοποιώντας την περιθωριακή πιθανοφάνεια

9 Μέθοδοι πυρήνων (kernel methods) Οι συναρτήσεις πυρήνα (kernel functions) είναι απεικονίσεις των διανυσμάτων εισόδου x στο σύνολο R που έχουν συγκεκριμένη μορφή και ιδιότητες και γενικεύουν σε μεγάλο βαθμό τις εφαρμογές των αλγορίθμων ταξινόμησης Σύμφωνα με τη μέθοδο μετασχηματίζουμε κατάλληλα τα διανύσματα εισόδου ώστε να επιτύχουμε πιο εύκολη/γενικεύσιμη λύση του προβλήματος ταξινόμησης Για να γίνει αυτό, πηγαίνουμε αρχικά από τον χώρο εισόδου (input space) σε έναν μετασχηματισμένο χώρο χαρακτηριστικών (feature space) με πιθανόν υψηλότερη διάσταση με τη (μη γραμμική) απεικόνιση φ(x) Η συνάρτηση πυρήνα ορίζεται τότε ως: k ( xx, ') = ϕ T ( x ) ϕ ( x ') = ϕ ( x ), ϕ ( x ') είναι με άλλα λόγια ένα εσωτερικό γινόμενο (dot/inner product) μεταξύ των διανυσμάτων φ(x) και φ(x ) στον χώρο χαρακτηριστικών Η πιο απλή συνάρτηση πυρήνα προκύπτει για τη μοναδιαία απεικόνιση φ(x)=x: T k ( xx, ') = xx' είναι δηλ το εσωτερικό γινόμενο μεταξύ των 2 διανυσμάτων Οι συναρτήσεις ρή πυρήνα μπορούν να ερμηνευθούν ως ένα μέτρο της ομοιότητας (similarity) μεταξύ δύο διανυσμάτων στο χώρο εισόδου και ήδη χρησιμοποιήσαμε κάποιες από αυτές για τη μη παραμετρική εκτίμηση κατανομών πιθανότητας (πως?)

10 Μέθοδοι πυρήνων (kernel methods) Παράδειγμα: Έστω ο αρχικός χώρος είναι δισδιάστατος (x,x 2 ) και η απεικόνιση: 2 2 ϕ ( x) = ( x, 2 xx 2, x) T η οποία μας πηγαίνει σε τρεις διαστάσεις. Τότε: T k( xx, ') = ϕ ( x) ϕ( x') () Τ = ( x, 2 x x, x )( x, 2 x x, x ) = 2 2 '2 ' ' ' = = 2 '2 ' ' 2 '2 ( xx, xx2xx2, x2x2 ) T 2 = ( xx') Τι κερδίζουμε πηγαίνοντας σε χώρο υψηλότερης διάστασης? Η κεντρική ιδέα είναι ότι, πηγαίνοντας ενδιάμεσα σε χώρο υψηλότερης διάστασης, τα δεδομένα μας γίνονται περισσότερο «διαχωρίσιμα» Αν επιπλέον επιλέξουμε κατάλληλα τη συνάρτηση πυρήνα, ώστε να αντιστοιχεί στη μορφή (), δεν είναι ανάγκη να υπολογίσουμε αναλυτικά αυτή την απεικόνιση σε υψηλότερες διαστάσεις, αλλά μόνο το εσωτερικό γινόμενο ()!

11 Μέθοδοι πυρήνων (kernel methods) Μπορούμε να πάμε από το χώρο εισόδου (input space) στο χώρο χαρακτηριστικών (feature space) πιθανόν υψηλότερης διάστασης όπου όμως το πρόβλημα είναι γραμμικά διαχωρίσιμο, άρα μπορούμε να βρούμε απλούστερα σύνορα αποφάσεων (υπερεπίπεδα)

12 Μέθοδοι πυρήνων (kernel methods) Πως μπορούμε να χρησιμοποιήσουμε τις συναρτήσεις πυρήνα σε αλγορίθμους ταξινόμησης? Kernel trick: Αν ο αλγόριθμος ταξινόμησης εκφράζεται σε σχέση με το εσωτερικό γινόμενο x T x μπορούμε να το αντικαταστήσουμε με οποιαδήποτε συνάρτηση πυρήνα k(x,x ) Θα δούμε πως αυτό εφαρμόζεται στις διανυσματικές μηχανές υποστήριξης

13 Μέθοδοι πυρήνων (kernel methods) Για να είναι μια συνάρτηση k(x,x ) έγκυρη συνάρτηση πυρήνα θα πρέπει να είναι συμμετρική και ο πίνακας Κ={k(x n,x m )} να είναι θετικά ημιορισμένος (positive semidefinite). Πως μπορούμε να κατασκευάσουμε συναρτήσεις πυρήνα? Ένας τρόπος είναι να ξεκινήσουμε από κάποια (κάποιες) απλούστερη συνάρτηση k (k 2 ) και να χρησιμοποιήσουμε κάποια/κάποιες από τις παρακάτω ιδιότητες:

14 Μέθοδοι πυρήνων (kernel methods) Κάποιες συναρτήσεις πυρήνα που χρησιμοποιούνται συχνά είναι: M T T M Πολυωνυμικές k ( xx, ') = ( xx' ) = xx ' M Ανομοιογενείς πολυωνυμικές (, ') T k xx = ( xx' + c ) 2 Γκαουσιανές / radial basis function kernels k ( xx, ') = exp( x x' 2) Υπερβολική εφαπτομένη: σημείωση η συνάρτηση αυτή δεν είναι θετικά ορισμένη αλλά έχει δώσει καλά αποτελέσματα στην πράξη T k( xx, ') = tanh ( axx' + b) Για να υπολογίσουμε το μετασχηματισμό δεν είναι απαραίτητη η γνώση του φ(x), παρά μόνο η γνώση της συνάρτησης πυρήνα Η συνάρτηση πυρήνα με άλλα λόγια υπολογίζει το εσωτερικό γινόμενο στο χώρο των χαρακτηριστικών φ(x) απευθείας, χωρίς γνώση ή/και υπολογισμό της απεικόνισης φ

15 Διανυσματικές μηχανές υποστήριξης (Support vector machines) Είδαμε ότι όταν ψάχνουμε για μια γραμμική διαχωριστική συνάρτηση για ένα πρόβλημα 2 κλάσεων, η επιλογή της διαχωριστικής επιφάνειας δεν είναι μοναδική Κλάση Κλάση 2

16 Support vector machines Τ Ποια είναι η καλύτερη επιλογή? Αν y( x) = w x+ b μπορούμε να υπολογίσουμε το w με κάποιον απλό αλγόριθμο (πχ perceptron) αλλά η τελική λύση εξαρτάται από την αρχικοποίηση των w,b καθώς και από τη σειρά με την οποία παρουσιάζουμε τα (λάθος ταξινομημένα) σημεία σε κάθε βήμα Κλάση η Κλάση 2

17 Support vector machines Όλα τα εικονιζόμενα σύνορα ταξινομούν σωστά τα δείγματα αλλά πως μπορούμε να διαλέξουμε ένα συστηματικά? Κλάση Κλάση 2

18 Support vector machines Ορίζουμε το περιθώριο (margin) του ταξινομητή ως το εύρος της απόστασης του συνόρου απόφασης από τα κοντινότερα σημεία Κλάση Κλάση 2

19 Support vector machines Διαισθητικά, ο ταξινομητής με το μέγιστο περιθώριο είναι αυτός που ψάχνουμε και είναι η απλούστερη μορφή διανυσματικής μηχανής υποστήριξης (support vector machine Vapnik 979) Support vectors (Διανύσματα μ υποστήριξης): Τα διανύσματα που βρίσκονται πάνω στο σύνορο όπως θα δούμε μόνο αυτά καθορίζουν τον ταξινομητή! Κλάση Κλάση 2 Support Vectors

20 Support vector machines Πως μπορούμε να υπολογίσουμε τα w,b? Υπενθύμιση: Η απόσταση ενός οποιουδήποτε σημείου από το σύνορο απόφασης είναι y( x) Τ r = y ( x ) = w x+ + b w όπου y(x)>0 για την κλάση, y(x)<0 για την κλ. 2 Κλάση Κωδικοποιούμε τη μεταβλητή στόχου t n ως Κλάση 2 {+, } οπότε για όλα τα σημεία εκπαίδευσης ισχύει ty n ( xn) > 0 x Η απόσταση του x n από το σύνορο είναι επομένως: r Τ ty n ( xn ) tn ( w xn + b ) = w w Η λύση που ψάχνουμε είναι αυτή που μεγιστο ποιεί την απόσταση του κοντινότερου σημείου από το επίπεδο, με άλλα λόγια: Τ arg max w, b min n( tn( wxn + b) ) w

21 Support vector machines Σημείωση: Αν μετασχηματίσουμε w κw, b κb τότε η απόσταση δεν αλλάζει. Άρα μπορούμε να διαλέξουμε τα w, b ώστε η απόσταση του κοντινότερου σημείου να είναι ίση με δηλαδή: Τ tn( wxn + b) = canonical representation of the decision hyperplane Ισοδύναμα, η απόσταση του σημείου αυτού Κλάση από το επίπεδο απόφασης είναι w Κλάση 2 Άρα για όλα τα άλλα σημεία θα ισχύει: Τ tn( wxn + b) n=, 2,..., N () x Active constraints: Σημεία για τα οποία ισχύει r ηισότητα ισότητα, inactive: όλα τα υπόλοιπα Θα έχουμε τουλάχιστον έναν ενεργό περιορισμό εξ ορισμού Το πρόβλημα βελτιστοποίησης που έχουμε να λύσουμε επομένως είναι η μεγιστοποίηση του 2 w ή ισοδύναμα η ελαχιστοποίηση του w υπό τους περιορισμούς ρ ανισοτήτων ()(Ν τον αριθμό)

22 Support vector machines Ξαναγράφοντας το πρόβλημα, πρέπει να βρούμε τα w,b ώστε: 2 arg min w w 2 Quadratic programming problem subject to t ( wx Τ + b) n=, 2,..., N n n Θέλουμε να ελαχιστοποιήσουμε μια τετραγωνική συνάρτηση υπό ένα σύνολο γραμμικών ανισοτήτων Lagrange multipliers a n 0 (περιορισμός λόγω ανισοτήτων). Lagrangian: N 2 T L ( w, b, a ) = w a t Τ n( n( w x n + b ) ), a= ( a, a 2,...,, a N) 2 n= Ελαχιστοποίηση ως προς w,b και μεγιστοποίηση ως προς a Θα πρέπει: L( w, b, a) w = 0 w = n= (2) N L( w, b, a ) = 0 0= (3) at n n N b n= at n n x n

23 arg min w 2 w 2 Support vector machines Τ subject to tn( wxn + b) n=, 2,..., N Τα προβλήματα βελτιστοποίησης υπό περιορισμούς αυτής της μορφής ικανοποιούν τις συνθήκες Kanush Kuhn Tucker, σύμφωνα με τις οποίες: N L ( w, b, a ) L ( w, b, a ) = 0 w = a t x, = 0 0= w b tn( wx Τ n + b) 0 n=, 2,..., N a 0 n n Τ ( wx ) a t ( + b) =0 n n n n N a t n n n n n n= n= Τι σημαίνουν οι συνθήκες αυτές για το πρόβλημά μας?

24 Support vector machines. Το διάνυσμα w είναι γραμμικός συνδυασμός των σημείων εκπαίδευσης 2. Τα σημεία x i για τα οποία a i >0 λέγονται διανύσματα υποστήριξης (support vectors) και είναι αυτά που βρίσκονται πάνω στο περιθώριο, δηλ. ισχύει: Τ tn( wxn + b) = 3. Επομένως το διάνυσμα w καθορίζεται μόνο από αυτά τα σημεία! Για τα υπόλοιπα Τ οι περιορισμοί tn( wxn + b) > ισχύουν και a i =0. Αυτό γιατί μόνο οι μη μηδενικοί πολλαπλασιαστές λ Lagrange αντιστοιχούν σε περιορισμούς που ικανοποιούν την ισότητα λόγω της συνθήκης: ( wx Τ ) a t ( + b) =0,n =, 2,..., N n n n Αντικαθιστώντας τις συνθήκες (2), (3) στην αρχική μορφή της Lagrangian παίρνουμε τη δυαδική αναπαράσταση (dual representation) του προβλήματος, στην οποία μεγιστοποιούμε την: N N N T L ( a) = an anamtntmxmxn n= 2 n= m= ως προς a υπό τους περιορισμούς: ρ a 0 n N n= at n n = 0

25 L ( a) = a a a t t N N N T n n m n mxmxn n= 2 n= m= Support vector machines a n N n= 0 at n n T Σημ: Η έκφραση xmxn είναι ένα εσωτερικό γινόμενο (dot product) μεταξύ των δύο διανυσμάτων και μπορεί να συμβολιστεί xm, xn Προς το παρόν εμφανίζονται εσωτερικά γινόμενα μόνο μεταξύ των σημείων εκπαίδευσης. Μπορούμε όμως να κάνουμε την προσέγγιση πολύ πιο ευέλικτη χρησιμοποιώντας κάποια από τις συναρτήσεις πυρήνα (kernel functions) που είδαμε ώστε να μπορούμε να αναπαραστήσουμε πολύ γενικότερες υπερεπιφάνειες αποφάσεων Με βάση το kernel trick μπορούμε να αντικαταστήσουμε το εσωτερικό γινόμενο x mt x n με οποιαδήποτε συνάρτηση πυρήνα k(x mt x n ), οπότε καταλήγουμε στο εξής πρόβλημα βελτιστοποίησης a N N N n 0 L ( a ) = an anamtntmk( n, m) n= 2 x x N n= m= at = 0 n= Σημείωση: Στην ουσία θα καταλήγαμε στο ίδιο πρόβλημα αν χρησιμοποιούσαμε εξαρχής: y( x) = w Τ ϕ( x) + b άρα k( xx, ') = ϕ T ( x) ϕ( x') = ϕ( x), ϕ( x') αλλά δεν χρειάζεται να υπολογίσουμε το φ! = 0 n n

26 Support vector machines Μπορούμε να πάμε από το χώρο εισόδου (input space) στο χώρο χαρακτηριστικών (feature space) πιθανόν υψηλότερης διάστασης όπου όμως το πρόβλημα είναι γραμμικά διαχωρίσιμο, άρα μπορούμε να βρούμε απλούστερα σύνορα αποφάσεων (υπερεπίπεδα) ί δ

27 Support vector machines Η συνάρτηση πυρήνα μπορεί να είναι μια από αυτές που είδαμε στα προηγούμενα, δηλ: M T Πολυωνυμικός πυρήνας k ( xx, ') = ( xx' ) 2 Γκαουσιανός /radial basis k ( xx, ') = exp( x x' 2) Tanh k( xx, ') = tanh( axx T ' + b) Για την ταξινόμηση ενός νέου σημείου x αρκεί να υπολογίσουμε το πρόσημο της y(x), η οποία γράφεται ως: N y( x) = a t k( x, x ) + b n= n n n όπου φυσικά μόνο τα διανύσματα υποστήριξης παίζουν ρόλο! Μεγάλο πλεονέκτημα της μεθόδου: όταν τελειώσει η εκπαίδευση μπορούμε να κρατήσουμε μόνο αυτά τα σημεία! Πως βρίσκουμε τις τιμές των a i? Αριθμητικές μέθοδοι τετραγωνικού προγραμματισμού (quadratic programming) Γενικά αρκετά περίπλοκη βελτιστοποίηση βασίζεται σε gradient ascent και οι περισσότερες ρ ςμέθοδοι σπάνε το πρόβλημα σε μικρότερα ρ προβλήματα (π.χ. χ Platt sequential minimal optimization στη συνάρτηση της HW4)

28 Support vector machines Αφού υπολογιστούν οι τιμές των και συνακόλουθα το w, η τιμή του κατωφλίου μπορεί να υπολογιστεί από οποιαδήποτε εκ των: Τ t n( w ϕ( xn) + b) = tn amtmk( xn, xm ) + b = m S που ισχύει για τα διανύσματα υποστήριξης. Συνήθως για πιο αξιόπιστα αποτελέσματα, παίρνουμε το μέσο όρο ως προς όλα τα διανύσματα υποστήριξης πολλαπλασιάζοντας λ την παραπάνω με t n και αθροίζοντας. Τελικά: b= tn amtmk( n, m) N S n x x S m S

29 Support vector machines Γενικά η μέθοδος SVM έχει αποδειχθεί ιδιαίτερα επιτυχημένη και έχει δώσει πολύ καλά αποτελέσματα σε διάφορα προβλήματα ταξινόμησης (paper στην ιστοσελίδα)

30 Support vector machines Στα προηγούμενα υποθέσαμε ότι τα δεδομένα μας είναι γραμμικά διαχωρίσιμα. Τι συμβαίνει αν δεν είναι? Μπορούμε να επιτρέψουμε κάποια σημεία εκπαίδευσης να είναι στο λάθος ημιεπίπεδο με ποινή η οποία αυξάνεται με την απόσταση από το σύνορο. Εισάγουμε τις μεταβλητές ξ n 0 (n=,2,,n) όπου (Cortes & Vapnik 995): 0 αν το σημείο n είναι σωστά ταξινομημένο ξ n = tn y( xn) ειδάλλως Για σημεία πάνω στο σύνορο ξ n = (y(x n )=0) Για λάθος ταξινομημένα σημεία ξ n > Σημεία με 0 ξ n < βρίσκονται εντός του περιθωρίου αλλά στη σωστή πλευρά Οι περιορισμοί του προβλήματος αλλάζουν σε Τ tn( wxn + b) ξn n=, 2,..., N soft margin constraints ήισοδύναμα Τ ( wx + b) ξ t = n n n Τ ( wx + b) + ξ t = n n n

31 Support vector machines Tο πρόβλημα ελαχιστοποίησης γίνεται σε αυτή την περίπτωση: N 2 C ξn + w n= 2 Lagrangian Lagrange multipliers: a n και μ n ( 0) N N N 2 L( w, b, a) = w + C ξn an( tny( xn) + ξn) μnξn 2 όπου y( xn) = w Τ ϕ( xn) + b KKT conditions n= n= n=

32 Έχουμε: Support vector machines Αντικαθιστώντας παίρνουμε όπως και πριν τη δυαδική δ Lagrangian: N N N L ( a ) = an anamtntmk(, ) 2 x x n m n= n= m= H έκφραση είναι ακριβώς η ίδια με πριν αλλά έχουμε διαφορετικούς περιορισμούς. Επειδή a n,μ n 0 πρέπει επιπλέον a n C. Πρέπει επομένως να ελαχιστοποιήσουμε την παραπάνω με τους περιορισμούς: Και πάλι πρόβλημα τετραγωνικού προγραμματισμού.

33 Σύμφωνα με τις συνθήκες: Support vector machines Κάποια σημεία ικανοποιούν a n =0. Τα υπόλοιπα σημεία είναι τα διανύσματα υποστήριξης, τα οποία πρέπει να ικανοποιούν a n >0 και tn( wx Τ n + b) = ξn Αν γι αυτά τα σημεία a n <C τότε πρέπει μ n >0 άρα πρέπει και ξ n =0, με άλλα λόγια τα σημεία αυτά βρίσκονται πάνω στο περιθώριο Αν a n =C τα σημεία βρίσκονται εντός του περιθωρίου Αν ξ n είναι σωστά ταξινομημένα Αν ξ n > είναι λάθος ταξινομημένα

34 Support vector machines Οι τιμές των a n υπολογίζονται όπως και πριν με μεθόδους τετραγωνικού προγραμματισμού. Η τιμή του b μπορεί να προσδιοριστεί από οποιαδήποτε εκ των: tn am tm k ( xn, xm) + b = m S για τα διανύσματα υποστήριξης για τα οποία 0< a n <C. Επίσης μπορούμε να πάρουμε το μέσο όρο, οπότε: b= tn amtmk( n, m) N Μ n Μ x x m S όπου Μ το σύνολο αυτών των σημείων.

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9-20 Kerel methods Kerel methods Support vector machies Συναρτήσεις σφάλματος Συνεχής έξοδος/έξοδοι Μοναδιαία συνάρτηση ενεργοποίησης στην έξοδο g(.) Πιθανοφάνεια

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 17-18

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 17-18 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 17-18 Νευρωνικά Δίκτυα(Neural Networks) - συνέχεια Minimum squared-error procedure for classification 1 ( T T wls = X X) X b= Xb Xw= b Logistic sigmoidal function

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9-10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Επαγωγικές Μηχανές Διανυσμάτων Στήριξης

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος

Διαβάστε περισσότερα

Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά. Νικόλαος Α. Τρογκάνης Διπλωματική Εργασία

Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά. Νικόλαος Α. Τρογκάνης Διπλωματική Εργασία Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά Νικόλαος Α. Τρογκάνης Διπλωματική Εργασία Αντικείμενο Μελέτη και ανάπτυξη μεθόδων από τον χώρο της μηχανικής μάθησης για

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ . ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα ΚΕΦΑΛΑΙΟ 4 Ακέραια Πολύεδρα 1 Ορισμός 4.1 (Convex Hull) Έστω ένα σύνολο S C R n. Ένα σημείο x του R n είναι κυρτός συνδυασμός (convex combination) σημείων του S, αν υπάρχει ένα πεπερασμένο σύνολο σημείων

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Αναγνώριση Προσώπου Με Χρήση Πυρήνων. Παπαχαρίση Μαρίας

Αναγνώριση Προσώπου Με Χρήση Πυρήνων. Παπαχαρίση Μαρίας Αριστοτέλειο Πανεπστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Αναγνώριση Προσώπου Με Χρήση Πυρήνων Μεταπτυχιακή Διπλωματική εργασία της Παπαχαρίση Μαρίας επιβλέπων Καθηγητής Ι. Πήτας

Διαβάστε περισσότερα

Γραµµικοί Ταξινοµητές

Γραµµικοί Ταξινοµητές ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα

Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Διπλωματική Εργασία. Φασματική και Χωρική Ταξινόμηση Υπερφασματικών Απεικονίσεων με Χρήση Τεχνικών Μηχανικής Εκμάθησης

Διπλωματική Εργασία. Φασματική και Χωρική Ταξινόμηση Υπερφασματικών Απεικονίσεων με Χρήση Τεχνικών Μηχανικής Εκμάθησης Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Διπλωματική Εργασία Φασματική και Χωρική Ταξινόμηση Υπερφασματικών Απεικονίσεων με Χρήση Τεχνικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και υλοποίηση εφαρμογής.

Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και υλοποίηση εφαρμογής. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2

Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2 Υπολογιστική Νοημοσύνη Μάθημα 12: Παραδείγματα Ασκήσεων 2 Δίκτυα Πολλών Επιπέδων Με μη γραμμικούς νευρώνες Έστω ένα πρόβλημα κατηγοριοποίησης, με δύο βαθμούς ελευθερίας (x, y) και δύο κατηγορίες (A, B).

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των

Διαβάστε περισσότερα

ΥΛΟΠΟΙΗΣΗ ΜΕΘΟΔΟΥ ΑΝΑΚΤΗΣΗΣ ΕΙΚΟΝΩΝ ΜΕ ΒΑΣΗ ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ

ΥΛΟΠΟΙΗΣΗ ΜΕΘΟΔΟΥ ΑΝΑΚΤΗΣΗΣ ΕΙΚΟΝΩΝ ΜΕ ΒΑΣΗ ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Ι Δ Ρ Υ Μ Α Σ Ε Ρ Ρ Ω Ν Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ω Ν Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ & Ε Π Ι Κ Ο Ι Ν Ω Ν Ι Ω Ν ΥΛΟΠΟΙΗΣΗ ΜΕΘΟΔΟΥ ΑΝΑΚΤΗΣΗΣ

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0 Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } st. : g ( x,...,

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 ) Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Εξαγωγή ζευγών ερώτησης απάντησης από forum και αυτόματη απάντηση νέων ερωτήσεων

Εξαγωγή ζευγών ερώτησης απάντησης από forum και αυτόματη απάντηση νέων ερωτήσεων ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Εξαγωγή ζευγών ερώτησης απάντησης από forum και αυτόματη απάντηση νέων ερωτήσεων

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή Κεφάλαιο : Θεωρία Απόφασης του Bayes. Εισαγωγή Η θεωρία απόφασης του Bayes αποτελεί μια από τις σημαντικότερες στατιστικές προσεγγίσεις για το πρόβλημα της ταξινόμησης προτύπων. Βασίζεται στη σύγκριση

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

2. Ορίζουσες-ιδιότητες -ανάπτυγμα ορίζουσας. Σε κάθε τετραγωνικό πίνακα ν-τάξης Α, αντιστοιχεί ένας πραγματικός αριθμός,

2. Ορίζουσες-ιδιότητες -ανάπτυγμα ορίζουσας. Σε κάθε τετραγωνικό πίνακα ν-τάξης Α, αντιστοιχεί ένας πραγματικός αριθμός, . Ορίζουσες-ιδιότητες -ανάπτυγμα ορίζουσας Σε κάθε τετραγωνικό πίνακα ν-τάξης Α, αντιστοιχεί ένας πραγματικός αριθμός, που λέγεται Ορίζουσα (Determinant) του Α, και παριστάνεται με τα σύμβολα: D(A), ή

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ. Ανάπτυξη Προσθετικών Μηχανών Διανυσμάτων Υποστήριξης: Μεθοδολογία και εφαρμογή στη πρόβλεψη ενδονοσοκομειακού θανάτου

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ. Ανάπτυξη Προσθετικών Μηχανών Διανυσμάτων Υποστήριξης: Μεθοδολογία και εφαρμογή στη πρόβλεψη ενδονοσοκομειακού θανάτου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Ανάπτυξη Προσθετικών Μηχανών Διανυσμάτων Υποστήριξης: Μεθοδολογία και εφαρμογή στη πρόβλεψη ενδονοσοκομειακού θανάτου Διατριβή που υπεβλήθη για τη μερική ικανοποίηση των απαιτήσεων για

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά Δυναμική Μηχανών I 2 1 Επανάληψη: Μαθηματικά 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Συμβολισμοί Μεταβλητών

Διαβάστε περισσότερα

Ανάκτηση δεδομένων που λείπουν σχετικών με τις συνθήκες άνεσης ενός κτηρίου και πρόβλεψη της παρουσίας ενοίκων σε αυτό.

Ανάκτηση δεδομένων που λείπουν σχετικών με τις συνθήκες άνεσης ενός κτηρίου και πρόβλεψη της παρουσίας ενοίκων σε αυτό. ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ανάκτηση δεδομένων που λείπουν σχετικών με τις συνθήκες άνεσης ενός κτηρίου και πρόβλεψη της παρουσίας ενοίκων σε αυτό. Διπλωματική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας

Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το R την f ( ) = Q + S Q = Q = S = με ταυτόχρονη ικανοποίηση της g( ) = c b

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

Kernel Methods and their Application for Image Understanding

Kernel Methods and their Application for Image Understanding Vol 1 No SIG 12(CVIM 1) Jan 1960 Kernel Methods and their Application for Image Understanding Kenji Nishida and Takio Kurita Support vector machine (SVM) has been extended to build up nonlinear classifier

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα