Λύσεις 2ης Ομάδας Ασκήσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύσεις 2ης Ομάδας Ασκήσεων"

Transcript

1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. (Μπάλες Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ (αʹ Έστω A το ενδεχόμενο να επιλέξουμε τουλάχιστον μια άσπρη μπάλα. Θα υπολογίσουμε την πιθανότητα του ενδεχόμενου ( A να μην επιλεγεί καμία άσπρη μπάλα. Έχουμε συνολικά 6 μπάλες, άρα υπάρχουν συνολικά 6 ( τρόποι για να επιλέξουμε μπάλες, και μόνο 5 από αυτούς δεν περιλαμβάνουν καμία άσπρη. Άρα, ( 5 ( 5 P (A ( 6, και P (A ( (βʹ Έστω B το ενδεχόμενο να μην επιλέξουμε καμία κόκκινη μπάλα. Ζητείται ο υπολογισμός του P (A B, για το οποίο έχουμε: P (A B P (A B P (A B P (B ( ( / ( 6 / ( 6.8. Η δεύτερη ισότητα προέκυψε με συλλογισμό παρόμοιο με αυτόν του πρώτου μέρους. (γʹ Παρομοίως, έχουμε P (B A αλλά από τον κανόνα συνολικής πιθανότητας ξέρουμε πως, οπότε, P (B A P (B P (A B P (A P (A B, P (A P (A B + P (A B P (B, P (B P (BA P (A (( ( ( / 6 ( ( 5 / 6 ( ( 6 ( ( (Τρεις περιπτώσεις Έστω AA, AM, MM τα ενδεχόμενα ο φίλος μας να έχει επιλέξει το αντίστοιχο χαρτί. (αʹ Ορίζουμε το ενδεχόμενο AM ο φίλος μας να επιλέξει το χαρτί AM και να μας δείξει την πρώτη πλευρά του, που υποθέτουμε πως είναι αυτή που αναγράφεται πρώτη στο όνομα του χαρτιού AM, δηλαδή η άσπρη. Ομοίως ορίζουμε τα ενδεχόμενα AM, AA, AA, MM, MM. Καθένα από αυτά τα ενδεχόμενα έχει πιθανότητα /6. Μας έχει δοθεί ότι έχει συμβεί το E AA AA AM, και ζητείται η P (AM E. Έχουμε: P (AM E P (AM E P (E P (AM P (AA AA AM /6 /6 + /6 + /6. (βʹ Σε αυτή την περίπτωση, ξέρουμε πως έχει συμβεί το ενδεχόμενο E AM AA. Άρα, P (AM E P (AM E P (E P (AM P (A AA. (γʹ Σε αυτή την περίπτωση, ξέρουμε πως έχει συμβεί το ενδεχόμενο E AA. Άρα, P (AM E P (AM E P (E P ( P (AA.

2 . (Ερωτικές Εξομολογήσεις Έστω A το ενδεχόμενο ο Ρωμαίος να τα καταφέρει σε οποιαδήποτε από τις προσπάθειές του. Έστω F το ενδεχόμενο να τα καταφέρει στην πρώτη προσπάθεια, S το ενδεχόμενο να τα καταφέρει στη δεύτερη προσπάθεια, και T να τα καταφέρει στην τρίτη προσπάθεια. Έχουμε: P (A P (F + P (F S + P (F S T P (F + P (F P (S F + P (F P (S F P (T S F (Έλληνες, Γάλλοι, Βρετανοί Έστω τα ενδεχόμενα K ο πολίτης να είναι καπνιστής, E να είναι Έλληνας, B να είναι Βρετανός, και F να είναι Γάλλος. Τα δεδομένα του προβλήματος είναι: P (K E., P (K B., P (K F., P (E., P (F.5, P (B P (E P (F.. Έχουμε: P (K P (K EP (E + P (K BP (B + P (K F P (F 9, P (E K P (K EP (E.. 8 P (K.9 9. Η P (K προέκυψε με χρήση του κανόνα της συνολικής πιθανότητας, ενώ η P (E K με διπλή χρήση του ορισμού της δεσμευμένης πιθανότητας. 5. (Συρτάρι Ορίζουμε τα ενδεχόμενα A ο κλέφτης να ανοίξει το συρτάρι A, B ο κλέφτης να ανοίξει το συρτάρι B, και GG ο κλέφτης να πάρει δύο χρυσά κέρματα. Υποθέτουμε πως P (A P (B /, και επιπλέον παρατηρούμε πως: ( P (GG A ( 6 ( 5, P (GG B. (αʹ Με χρήση του κανόνα της συνολικής πιθανότητας, P (GG P (GG AP (A + P (GG BP (B (βʹ Με διπλή χρήση του ορισμού της δεσμευμένης πιθανότητας, έχουμε: P (A GG P (A GG P (GG P (GG AP (A P (GG Όπως αναμενόταν, η δεσμευμένη πιθανότητα είναι μεγαλύτερη του /. ( (Ρωμαίος Έστω M, K, και T τα ενδεχόμενα ο Ρωμαίος να επιλέξει την Ιουλιέτα Μ., την Ιουλιέτα Κ., και την Ιουλιέτα Τ, αντίστοιχα. Έστω, επίσης, X το ενδεχόμενο ο Ρωμαίος να φάει χυλόπιτα. Έχουμε: P (M P (K P (T, P (X M.95, P (X M.5, P (X T., επομένως, παρατηρώντας ότι τα ενδεχόμενα M, K και T είναι διαμέριση του Ω και, χρησιμοποιώντας τον κανόνα του Bayes: P (T X P (X T P (T P (X MP (M + P (X KP (K + P (X T P (T

3 7. (Εξέταση Έστω A, B, C, τα ενδεχόμενα ο ασθενής να έχει τις ασθένειες A, B, και C αντιστοίχως. Είναι δοσμένο ότι P (A P (B P (C. Παρατηρήστε ότι τα A, B, C είναι διαμέριση του Ω. Έστω επίσης K το ενδεχόμενο να προκύψει θετικό αποτέλεσμα στην εξέταση. Έχουμε, με εφαρμογή του κανόνα του Bayes: P (A K P (B K P (K AP (A P (K AP (A + P (K BP (B + P (K CP (C , P (K BP (B P (K AP (A + P (K BP (B + P (K CP (C , P (C K P (A K P (B K (Ανεξάρτητα ενδεχόμενα Καταρχάς παρατηρούμε πως: A {,, }, B {, }, A {}, B {, }, A B {,,, } Ω, A B {}. (αʹ Αφού τα στοιχειώδη ενδεχόμενα είναι ισοπίθανα, έχουμε: P (A P ({,, } /, P (B P ({, } /, P (A B P (Ω. (βʹ Τα ενδεχόμενα A, B δεν είναι ανεξάρτητα, διότι (γʹ Τα ενδεχόμενα A, A δεν είναι ανεξάρτητα, διότι P (A B P ({} / /8 P (AP (B. (Μπορείτε να γενικεύσετε αυτό το αποτέλεσμα; (δʹ Ομοίως, βρίσκουμε ότι τα B, B δεν είναι ανεξάρτητα. (εʹ Τα A, A B είναι ανεξάρτητα αφού A B Ω και (Μπορείτε να γενικεύσετε και αυτό το αποτέλεσμα; (ϛʹ Τα A, A B δεν είναι ανεξάρτητα αφού P (A A P ( 6 P (AP (A. P (A Ω P (A P (AP (Ω. P (A ( B P (A B 6 P (AP (A B. 9. (Μη δίκαια κέρματα Έστω K, K, K, και K τα ενδεχόμενα να χρησιμοποιήσουμε το πρώτο, δεύτερο, τρίτο, ή τέταρτο κέρμα αντίστοιχα. Εξ υποθέσεως P (K P (K P (K P (K. Έστω ΓΓ το ενδεχόμενο να φέρουμε δύο φορές γράμματα. Χρησιμοποιούμε τον κανόνα του Bayes: P (K ΓΓ P (ΓΓ K P (K P (ΓΓ K P (K + P (ΓΓ K P (K + P (ΓΓ K P (K + P (ΓΓ K P (K P (ΓΓ K P (ΓΓ K + P (ΓΓ K + P (ΓΓ K + P (ΓΓ K Στην τρίτη ισότητα κάναμε την υπόθεση ότι, δεδομένης της επιλογής του κέρματος, οι ρίψεις είναι ανεξάρτητες. Παρομοίως έχουμε ότι η πιθανότητα P (K ΓΓ είναι ίση με την P (K ΓΓ.7, άρα η πιθανότητα να έχουμε επιλέξει ένα από τα δίκαια κέρματα είναι.7.7.

4 . (Τεστ εγκυμοσύνης (αʹ Έστω τα ενδεχόμενα: E«Υπάρχει εγκυμοσύνη» και Θ«Το τεστ είναι θετικό». Από τα δεδομένα του προβλήματος έχουμε P (E., P (Θ E. και P (Θ E.. Άρα επίσης έχουμε P (E.88 και P (Θ E.97. Από τον κανόνα του Bayes και τα πιο πάνω δεδομένα: P (E Θ P (Θ EP (E P (Θ EP (E + P (Θ E P (E %. (βʹ Έστω τώρα Θ, Θ τα ενδεχόμενα να βγει το αποτέλεσμα θετικό στην πρώτη ή στην δεύτερη εξέταση, αντίστοιχα. Από τον κανόνα του Bayes και την υπόθεση της ανεξαρτησίας, έχουμε:. (Άθροισμα ζαριών P (E Θ Θ P (Θ Θ EP (E P (Θ Θ EP (E + P (Θ Θ E P (E 97% % % 97% % % + % 99% 88% 8.6%. (αʹ Ω {(i, j : i, j 6}, δηλαδή όλα τα δυνατά αποτελέσματα των δύο ζαριών. Επίσης, P ({ω} /6 για κάθε αποτέλεσμα ω, δηλαδή όλα τα στοιχειώδη ενδεχόμενα είναι ισοπίθανα, οπότε μπορούμε να χρησιμοποιήσουμε τον κανόνα πιθανότητας #5: P (A #A (βʹ Το σύνολο τιμών της X είναι το S X {,,..., 6} και για κάθε j S X η πυκνότητα της X ισούται με: p X (j P (X j {ω : X (ω j} #Ω. {(j,, (j,,..., (j, 6} Η συνάρτηση κατανομής F X (x της X υπολογίζεται εύκολα από την πυκνότητα μέσω της σχέσης, F X (x p X (j, j 6:j x όπου στο άθροισμα περιέχονται οι όροι που αντιστοιχούν στα j {,,,, 5, 6} τα οποία είναι μικρότερα ή ίσα του x. Οπότε, τελικά, η F X (x είναι η:, x <, /6, x <, /6, x <, F X (x /6, x <, /6, x < 5, 5/6, 5 x < 6,, x 6. Παρατηρήστε ότι για την X ισχύουν ακριβώς τα ίδια, δηλαδή S X S X, p X (j p X (j, F X (x F X (x για κάθε j S X και κάθε x R. (γʹ Το σύνολο τιμών της Z είναι S Z {,,..., 6} S X, και η πυκνότητά της είναι, για κάθε j {,,,, 5, 6}: p Z (j P (Z j P (7 X j P (X 7 j 6 p X (j. Παρατηρούμε ότι οι τυχαίες μεταβλητές Z και X έχουν την ίδια πυκνότητα, άρα από στατιστικής άποψης είναι ίδιες αφού λαμβάνουν τις ίδιες τιμές με την ίδια πιθανότητα. (δʹ Το σύνολο τιμών της Y είναι το S Y {,,..., }. Για να υπολογίσουμε την πυκνότητα της Y για κάθε y S Y, θεωρούμε πρώτα την περίπτωση y 7: p Y (y {ω : X (ω + X (ω y} {(, y, (, y,..., (y, } y 6. Για την περίπτωση y 8, μπορούμε να εφαρμόσουμε την ίδια μεθοδολογία. Εναλλακτικά, παρατηρούμε πρώτα ότι εάν ορίσουμε τις τυχαίες μεταβλητές Z 7 X, Z 7 X, τότε όπως και στο προηγούμενο ερώτημα, για i, j,,..., 6, P (Z i, Z j P (X 7 i, X 7 j 6 P (X i, X j.

5 Παρατηρούμε ότι τα αποτελέσματα των ζαριών X, X είναι στατιστικά ίδια με τα συμμετρικά τους αποτελέσματά Z, Z. Συνεπώς, P (X + X y P (Z + Z y για κάθε y,...,. Τότε όμως, p Y (y P (X + X y P (Z + Z y P ((7 X + (7 X y P (X + X y p Y ( y ( y 6 y 6, όπου χρησιμοποιήσαμε την τιμή της πυκνότητας p Y ( y παρατηρώντας ότι το y είναι πάντα είναι μικρότερο από 7 (αφού υποθέσαμε y 8. Συνεπώς η πυκνότητα της Y για κάθε τιμή y {,..., } ισούται με: p Y (y { y 6 y 6, y,,, 5, 6, 7,, y 8, 9,,,. (εʹ Εφόσον η πυκνότητα p Y (y αυξάνεται καθώς το y μεγαλώνει από το μέχρι το 7, και φθίνει καθώς το y μεγαλώνει από το 8 μέχρι το, η μεγαλύτερη τιμή της θα είναι όταν το y 7 ή 8. Αλλά αφού p Y (7 /6 > 5/6 p Y (8, συμπεραίνουμε ότι η πιο πιθανή τιμή του Y είναι το 7. (ϛʹ E(Y y y yp Y (y 6 yp Y (y + 7p Y (7 + y y8 yp Y (y 6 y y ( y y (i + i + 6 y8 i i [(i + + ( i]i i 5 i ( ii 6 i , όπου κάναμε χρήση του τύπου στην υπόδειξη. Εναλλακτικά, βέβαια, θα μπορούσαμε, μετά την πρώτη ισότητα, να αντικαταστήσουμε τις τιμές της πυκνότητας και να προσθέσουμε τους δώδεκα όρους που προκύπτουν.. (Πώληση βιβλίων Η μέση τιμή του X προκύπτει με απλή εφαρμογή του ορισμού: ( E[X] xp X (x x x + x + i i i ( Η τέταρτη ισότητα προκύπτει με εφαρμογή των τύπων της υπόδειξης. Για να υπολογίσουμε την μέση τιμή του κέρδους του βιβλιοπωλείου στην πρώτη περίπτωση, όταν δηλαδή οι επιστροφές στον προμηθευτή είναι δεκτές, παρατηρούμε ότι Y ( X X, και άρα: E[Y ] E[X] E[X] Στην δεύτερη περίπτωση, παρατηρούμε πως Y X + ( ( X X, επομένως E[Y ] E[X ] E[X] (Αριθμημένες μπάλες Συνολικά υπάρχουν ( ( δυνατές επιλογές, άρα ο χώρος πιθανότητας Ω αποτελείται από στοιχεία και τα αντίστοιχα στοιχειώδη ενδεχόμενα είναι ισοπίθανα. Για το Y, παρατηρούμε αρχικά πως η μικρότερη δυνατή τιμή του είναι και η μεγαλύτερη, και συνεπώς το Y έχει σύνολο τιμών το S Y {,, 5, 6, 7, 8, 9, }. Για κάθε y S Y, οι επιλογές που αντιστοιχούν σε Y y είναι εκείνες κατά τις οποίες επιλέγουμε την μπάλα y και δύο ακόμα από τις,,..., y. Αυτό μπορεί να γίνει με ( y τρόπους, και τελικά προκύπτει πως η πυκνότητα της Y δίνεται από την έκφραση: ( y / ( p Y (y, y,,...,. 5 i x

6 .. py (y.. pz(z y 6 8 z FY (y.5 FZ(z y 6 8 z Σχήμα : Η πυκνότητα και η συνάρτηση κατανομής των Τ.Μ. Y, Z της Άσκησης. Για την συνάρτηση κατανομής του Y έχουμε προφανώς F Y (y για y < και F Y (y για y >. Για τις τιμές y η συνάρτηση κατανομής μπορεί εύκολα να προσδιοριστεί είτε από την πυκνότητα (όπως στο πιο πάνω άθροισμα ζαριών, είτε παρατηρώντας πως: F Y (y P (Y y P (Y y ( y / (, y. Η τελευταία ισότητα προέκυψε γιατί από τους ( ( συνολικά συνδυασμούς, y μπορούν να δημιουργηθούν από τις μπάλες, ώστε η μέγιστη να είναι ίση ή μικρότερη από y. Η πυκνότητα και η συνάρτηση κατανομής της Y έχουν σχεδιαστεί στο Σχήμα. Για το Z, παρατηρούμε αρχικά πως η μικρότερη δυνατή τιμή του είναι και η μεγαλύτερη 8, και συνεπώς το Z έχει σύνολο τιμών το S Z {,,,, 5, 6, 7, 8}. Για κάθε z S Z, οι επιλογές που αντιστοιχούν σε Z z είναι εκείνες κατά τις οποίες επιλέγουμε την μπάλα z και δύο ακόμα από τις z +, z +,...,. Αυτό μπορεί να γίνει με ( z τρόπους, και συνεπώς η πυκνότητα δίνεται από την έκφραση ( z / ( p Z (z, z,,..., 8. Για την συνάρτηση κατανομής του Z έχουμε F Z (z για z < και F Z (z για z > 8. Για τις τιμές z 8 η συνάρτηση κατανομής μπορεί και πάλι εύκολα να προσδιοριστεί είτε από την πυκνότητα, είτε παρατηρώντας πως: ( z / ( F Z (z P (Z z P (Z z P (Z > z, z,,..., 8. Η τελευταία ισότητα προέκυψε γιατί από τους ( ( συνολικά συνδυασμούς, z μπορούν να δημιουργηθούν ώστε όλες οι επιλεγμένες μπάλες να είναι μεγαλύτερες της z, στο σύνολο { z +,..., }. Η πυκνότητα και η συνάρτηση κατανομής της Z έχουν σχεδιαστεί στο Σχήμα.. (Σχέση μεταξύ παραμέτρων Από τους ορισμούς εύκολα βρίσκουμε πως: σ f(, + f(, µf(, σ E( X + (E( X µe( X σ + µ µ σ + µ E(X. Η τελευταία ισότητα προκύπτει επειδή σ E(X µ. Επειδή f(, E(X, προκύπτει το ζητούμενο. 6

1η Ομάδα Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, Σ. ΤΟΥΜΠΗΣ. 1. (Ισότητα συνόλων) Να δείξετε ότι

1η Ομάδα Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, Σ. ΤΟΥΜΠΗΣ. 1. (Ισότητα συνόλων) Να δείξετε ότι ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, 5-6 Σ. ΤΟΥΜΠΗΣ η Ομάδα Ασκήσεων. Ισότητα συνόλων Να δείξετε ότι A B i A B i. Έστω C A B i και D A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,

Διαβάστε περισσότερα

Λύσεις 1ης Ομάδας Ασκήσεων

Λύσεις 1ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ. Ισότητα συνόλων Έστω C = A i= B i και D = i= A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,

Διαβάστε περισσότερα

Λύσεις 4ης Ομάδας Ασκήσεων

Λύσεις 4ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. Ζυγοβίστι Λύσεις 4ης Ομάδας Ασκήσεων Τμήμα Α Λ αʹ Το συνολικό πλήθος των τερμάτων που θα σημειωθούν είναι X + Y, και η μέση

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

X i = Y = X 1 + X X N.

X i = Y = X 1 + X X N. Κεφάλαιο 6 Διακριτές τυχαίες μεταβλητές Σε σύνθετα προβλήματα των πιθανοτήτων, όπως π.χ. σε προβλήματα ανάλυσης πολύπλοκων δικτύων ή στη στατιστική ανάλυση μεγάλων δεδομένων, η λεπτομερής, στοιχείο-προς-στοιχείο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Τμήμα Βιολογικών Εφαρμογών & Τεχνολογιών Βιοστατιστική, Κεφάλαιο 3: Πιθανότητες Λύσεις ασκήσεων 1 Στο διπλανό πίνακα αναπαράγεται ο αρχικός πίνακας, της ταξινόμησης

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του φυλλαδίου ασκήσεων επανάληψης. P (B) P (A B) = 3/4.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του φυλλαδίου ασκήσεων επανάληψης. P (B) P (A B) = 3/4. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207-8. Λύσεις του φυλλαδίου ασκήσεων επανάληψης.. Αν P (A) / και P (A B) /4, βρείτε την ελάχιστη δυνατή και την μέγιστη δυνατή τιμή της P (B). Το B καλύπτει οπωσδήποτε

Διαβάστε περισσότερα

200, δηλαδή : 1 p Y (y) = 0, αλλού

200, δηλαδή : 1 p Y (y) = 0, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 05 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 6 ιακριτές Τυχαίες Μεταβλητές Επιµέλεια : Σοφία Σαββάκη Ασκηση. Η εταιρεία

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ Πιθανότητες και Αρχές Στατιστικής (3η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 38 Περιεχόμενα

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ 3ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 3ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

36 = Pr(B) = Pr(Γ E) = Pr(Γ) Pr(E) = = Pr(B) = Pr(B Γ) Pr(B) Pr(Γ) = 1 6. Pr(A B) = Pr(A) Pr(B).

36 = Pr(B) = Pr(Γ E) = Pr(Γ) Pr(E) = = Pr(B) = Pr(B Γ) Pr(B) Pr(Γ) = 1 6. Pr(A B) = Pr(A) Pr(B). Κεφάλαιο 5 Ανεξαρτησία και δεσμευμένη πιθανότητα Ας πούμε πως ένας μετεωρολόγος μάς πληροφορεί ότι, με βάση τα ιστορικά στατιστικά στοιχεία του καιρού στην Αθήνα, βρέχει μία στις 9 μέρες. Αν για κάποιο

Διαβάστε περισσότερα

B A B A A 1 A 2 A N = A i, i=1. i=1

B A B A A 1 A 2 A N = A i, i=1. i=1 Κεφάλαιο 2 Χώρος πιθανότητας και ενδεχόμενα 2.1 Προκαταρκτικά Εστω ότι κάποιος μας προτείνει να του δώσουμε δυόμισι ευρώ για να παίξουμε το εξής παιχνίδι: Θα στρίβουμε ένα νόμισμα μέχρι την πρώτη φορά

Διαβάστε περισσότερα

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά

Διαβάστε περισσότερα

#(A B) = (#A)(#B). = 2 6 = 1/3,

#(A B) = (#A)(#B). = 2 6 = 1/3, Κεφάλαιο 4 Πιθανότητες και συνδυαστική Οπως είδαμε σε κάποια παραδείγματα των προηγουμένων κεφαλαίων, συχνά συναντάμε καταστάσεις όπου όλες οι δυνατές εκφάνσεις ενός τυχαίου πειράματος έχουν την ίδια πιθανότητα.

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207-8 Λύσεις του τέταρτου φυλλαδίου ασκήσεων 2 2 = 8 Ίδια Ρίχνουμε ένα νόμισμα τρεις φορές και θεωρούμε το ενδεχόμενο να προκύψουν και οι δυο όψεις του νομίσματος καθώς

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή: Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-18 Λύσεις του πέμπτου φυλλαδίου ασκήσεων 1 Σε ένα πρόβλημα πολλαπλής επιλογής προτείνονται n απαντήσεις από τις οποίες μόνο μία είναι σωστή Αν η σωστή απάντηση κερδίζει

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του όγδοου φυλλαδίου ασκήσεων.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του όγδοου φυλλαδίου ασκήσεων. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-. Λύσεις του όγδοου φυλλαδίου ασκήσεων. 1. Έστω F X, F Y οι συναρτήσεις κατανομής των τ.μ. X, Y και F X,Y η από κοινού συνάρτηση κατανομής τους. Αποδείξτε ότι (i)

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ TOMEAΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΙΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 26 Σεπτεμβρίου 2014 Ομάδα Θεμάτων Α ΘΕΜΑ 1 Ρίχνουμε ένα αμερόληπτο νόμισμα (δύο δυνατά

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-27: Πιθανότητες-Χειµερινό Εξάµηνο 205- ιδάσκων : Π. Τσακαλίδης Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση. (αʹ) Σύµφωνα µε το αξίωµα της κανονικοποίησης,

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ (ΤΜΗΜΑ Μ-Ω)

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ (ΤΜΗΜΑ Μ-Ω) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!) 1. Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2016-2017 (ΤΜΗΜΑ Μ-Ω) (αʹ) Υπάρχει μια ομάδα ασκήσεων για περίπου κάθε 2 κεφάλαια

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a) Κεφάλαιο 11 Συνεχείς κατανομές και ο Ν.Μ.Α. Στο προηγούμενο κεφάλαιο ορίσαμε την έννοια της συνεχούς τυχαίας μεταβλητής, και είδαμε τις βασικές της ιδιότητες. Εδώ θα περιγράψουμε κάποιους ιδιαίτερους τύπους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 204 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /0/206 Ηµεροµηνία Παράδοσης : 20/0/206

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

x P (x) c P (x) = c P (x), x S : x c

x P (x) c P (x) = c P (x), x S : x c Κεφάλαιο 9 Ανισότητες, από κοινού κατανομή, Νόμος των Μεγάλων Αριθμών 9.1 Ανισότητες Markov και Chebychev Ξεκινάμε αυτό το κεφάλαιο με δύο σημαντικά αποτελέσματα τα οποία, πέραν της μεγάλης χρησιμότητάς

Διαβάστε περισσότερα

8 Άρα η Ϲητούµενη πιθανότητα είναι

8 Άρα η Ϲητούµενη πιθανότητα είναι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 014 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 4/10/014 Ηµεροµηνία Παράδοσης : 5/11/014

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Y = X 1 + X X N = X i. i=1

Y = X 1 + X X N = X i. i=1 Κεφάλαιο 7 Διακριτές κατανομές Στο προηγούμενο κεφάλαιο είδαμε πως η έννοια της τυχαίας μεταβλητής Τ.Μ., δηλαδή μιας τυχαίας ποσότητας X που προσδιορίζεται από το σύνολο τιμών της S και την πυκνότητά της

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

( ) ΘΕΜΑ 1 κανονική κατανομή

( ) ΘΕΜΑ 1 κανονική κατανομή ΘΕΜΑ 1 κανονική κατανομή Υποθέτουμε ότι τα εβδομαδιαία έσοδα μιας επιχείρησης ακολουθούν την κανονική κατανομή με μέση τιμή 1000 και τυπική απόκλιση 15. α. Ποια η πιθανότητα i. η επιχείρηση να έχει έσοδα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 8 Σειρά Α Θέματα ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΜΑ : Το δοχείο Δ περιέχει 6 άσπρες και 4 μαύρες μπάλες ενώ το δοχείο Δ περιέχει 5 άσπρες και μαύρες μπάλες.

Διαβάστε περισσότερα

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εισαγωγή στις Διακριτές Πιθανότητες ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage:

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ασκηση 1. (αʹ) Αν συµβολίσουµε µε Λ τη λάθος απάντηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' ) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι

Διαβάστε περισσότερα

4 4 2 = 3 2 = = 1 2

4 4 2 = 3 2 = = 1 2 Πιθανότητες και Τυχαία Σήματα Μάθημα 3 ΑΣΚΗΣΗ Εστω ότι έχουμε δύο νομίσματα. Στο νόμισμα A η πιθανότητα να έρθει κεφαλή είναι. Στο νόμισμα B 4 3 η πιθανότητα να έρθει κεφαλή είναι. Δεν είστε σίγουροι ποιο

Διαβάστε περισσότερα

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. Άσκηση 1 Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. B) Αν ( ), ( ), ( ), να εκφράσετε τις πιθανότητες

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος

Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 30 Περιεχόμενα

Διαβάστε περισσότερα

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής:

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής: Άσκηση 1: Ένα κουτί περιέχει 3 άσπρες και 2 μαύρες μπάλες. Αφαιρούμε τυχαία δύο μπάλες διαδοχικά. Ποια η πιθανότητα η πρώτη μπάλα να είναι άσπρη και η δεύτερη μπάλα να είναι μαύρη; Λύση: Αρχικά ορίζουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 Διδάσκουσα: Β. Πιπερίγκου Σε μια ενδονοσοκομειακή έρευνα, καταγράφηκε ο χρόνος ύπνου, μετά τη χορήγηση ενός συγκεκριμένου αναισθητικού, σε 33 ασθενείς και πήραμε

Διαβάστε περισσότερα

x 2 + y 2 x y

x 2 + y 2 x y ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 2 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Μία κότα ϑέλει να διασχίσει το

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες -Χειµερινό Εξάµηνο 01 ιδάσκων : Π. Τσακαλίδης Λύσεις : Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 14/11/01 Ηµεροµηνία Παράδοσης : 8/11/01

Διαβάστε περισσότερα

Pr (a X b, c Y d) = c. f XY (x, y) dx dy, (15.1) Pr ((X, Y ) R) = f XY (x, y) dx dy. (15.2)

Pr (a X b, c Y d) = c. f XY (x, y) dx dy, (15.1) Pr ((X, Y ) R) = f XY (x, y) dx dy. (15.2) Κεφάλαιο 5 Συνεχής από κοινού κατανομή Στα Κεφάλαια 9 έως συναντήσαμε μια σειρά ιδιοτήτων της από κοινού κατανομής δύο ή περισσοτέρων διακριτών Τ.Μ. Εδώ θα αναπτύξουμε τις αντίστοιχες ιδιότητες για συνεχείς

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις Έννοια τυχαίας μεταβλητής Κατά τον υπολογισμό πιθανοτήτων, συχνά συμβαίνει τα ενδεχόμενα που μας ενδιαφέρουν να μετρούν

Διαβάστε περισσότερα

Άσκηση 1. (15 μονάδες) Να υπολογίσετε τα ολοκληρώματα: (ii) (i)

Άσκηση 1. (15 μονάδες) Να υπολογίσετε τα ολοκληρώματα: (ii) (i) http://larn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις 5 ης Γραπτής Εργασίας ΠΛΗ -: Άσκηση. (5 μονάδες) Να υπολογίσετε τα ολοκληρώματα: + (i) d (ii) cos( ) + + d (iii) + + d Υπόδειξη:

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 8 ΧΡΟΝΙ ΕΠΕΙΡΙ ΣΤΗΝ ΕΠΙΔΕΥΣΗ ΘΗΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΓΕΝΙΗΣ ΠΙΔΕΙΣ ΘΕΤ ΘΕ 1. ν οι συναρτήσεις f και g είναι παραγωγίσιμες στο, να αποδείξετε ότι f x g x f x g x, για κάθε x ονάδες 7. Έστω μια συνάρτηση

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) = 0, 8 και P (B) =0, 4 να αποδείξετε ότι: Απαντηση

1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) = 0, 8 και P (B) =0, 4 να αποδείξετε ότι: Απαντηση ¾½ Ø Å Ñ Ø Ò È Ø Ì Ü Ã Ø ÆºËº Å ÙÖÓ ÒÒ ¾¼ Å ÓÙ ¾¼¼ 1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) 0, 8 και P (B) 0, 4 να αποδείξετε ότι: (αʹ) 0, P (A B) 0, 4 (βʹ) Τα A και B δεν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Όνομα/Επίθετο: Ζήτημα 1ο Να γράψετε στη γλώσσα των συνόλων και λεκτικά ποιο ενδεχόμενο παριστάνει κάθε ένα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5 5ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

P( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1

P( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο ιδάσκων: Π. Τσακαλίδης 9ο Φροντιστήριο Επιµέλεια: Κωνσταντίνα Φωτιάδου Ασκηση. Η τ.µ. X ακολουθεί την κανονική κατανοµή

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Μέση τιμή, διασπορά, τυπική απόκλιση. 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i)=

Μέση τιμή, διασπορά, τυπική απόκλιση. 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i)= Μέση τιμή, διασπορά, τυπική απόκλιση Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 3x 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i)= i-2 22, xi=1,2,3,4. α) Να συμπληρωθεί ο παρακάτω πίνακας:

Διαβάστε περισσότερα

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ (ΤΜΗΜΑ Μ-Ω)

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ (ΤΜΗΜΑ Μ-Ω) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!) 1. Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2016-2017 (ΤΜΗΜΑ Μ-Ω) (αʹ) Υπάρχει μια ομάδα ασκήσεων για περίπου κάθε 2 κεφάλαια

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6) Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα