Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθµητική Ανάλυση 23 Νοεµβρίου / 43"

Transcript

1 Αριθµητική Ανάλυση 23 Νοεµβρίου 2016 Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

2 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι ιδιοτιµές λ i, i = 1(1)n και τα αντίστοιχα ιδιοδιανύσµατα x (i), i = 1(1)n του πίνακα A. Ax = λx det(a λi) = 0 Θεωρητικός προσδιορισµός των Ιδιοτιµών και Ιδιοδιανυσµάτων Επίλυση της πολυωνυµικής εξίσωσης (εύρεση ιδιοτιµών) det(a λi) = ( 1) n λ n + c 1 λ n c n 1 λ + c }{{} n = 0 (1) p(λ) Επίλυση του οµογενούς γραµµικού συστήµατος (εύρεση ιδιοδιανυσµάτων) (A λi)x = 0 (2) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

3 Μηχανή Αναζήτησης: Ιδιοτιµές και Γραφήµατα Η µηχανή αναζήτησης Google χρησιµοποιεί την ακόλουθη µέθοδο για την αναζήτηση ενός ιστοτόπου. ηµιουργεί τον πίνακα γειτνίασης Α µε στοιχεία, τα οποία είτε είναι 0 ή 1, µε a ij = 1 αν ο ιστότοπος i συνδέεται µε τον ιστότοπο j, διαφορετικά a ij = 0. Για παράδειγµα, µια εταιρεία µε επτά υπαλλήλους επιθυµεί την όσο το δυνατόν µεγαλύτερη χρήση των ιστοτόπων. Κάθε υπάλληλος έχει ένα ιστότοπο και κάποιοι υπάλληλοι έχουν συνδέσµους σε ιστοτόπους συναδέλφων τους. Ο πίνακας γειτνίασης είναι ο ακόλουθος Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y Y Y Y Y Y Y όπου µε Y k, k = 1, 2,..., 7 συµβολίζεται ο κάθε υπάλληλος. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

4 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y Y Y Y Y Y Y Παρατηρώντας τη γραµµή Y 3 διαπιστώνουµε ότι ο ιστότοπος του υπαλλήλου Y 3 συνδέεται µε τους ιστοτόπους των συναδέλφων του Y 2, Y 4 και Y 6. Για την κατάταξη των ιστοτόπων ανάλογα µε την συχνότητα αναφοράς τους απαιτείται ο υπολογισµός της µεγαλύτερης κατά µέτρο ιδιοτιµής και του αντίστοιχου ιδιοδιανύσµατος. Για τον ανωτέρω πίνακα το ιδιοδιάνυσµα αυτό είναι το z = [0.4261, , , , , , ] T. Αν η k ιοστή συνιστώσα είναι η µεγαλύτερη, τότε ο k ιοστός ιστότοπος ϑεωρείται και ο πλέον σηµαντικός, δηλαδή έχει τον υψηλότερο ϐαθµό. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

5 Οι υπόλοιποι ιστότοποι κατατάσσονται ανάλογα µε το µέγεθος της αντίστοιχης συνιστώσας του ιδιοδιανύσµατος. Για το ανωτέρω ιδιοδιάνυσµα έχουµε max z i = , συνεπώς ο υπάλληλος Y 2 έχει ιστότοπο µε το 1 i 7 µεγαλύτερο ϐαθµό, ακολουθεί ο ιστότοπος του Y 5 και µετά αυτός του Y 1. Παρατηρήστε ότι αν και ο ιστότοπος του Y 1 έχει τις περισσότερες αναφορές από τον ιστότοπο του Y 2 ή του Y 5 εν τούτοις ϑεωρείται µικρότερου ϐαθµού. Η µέθοδος της κατάταξης ενός ιστότοπου ϐασίζεται στο ϐαθµό του ιστότοπου, ο οποίος είναι υψηλότερος όσο υπάρχουν ιστότοποι µε µεγαλύτερο ϐαθµό που είναι συνδεδεµένοι µε αυτόν. Η παραδοχή που έχουµε κάνει εδώ είναι ότι το ιδιοδιάνυσµα έχει ϑετικές συνιστώσες κάτι που συµβαίνει σε µεγάλες κατηγορίες προβληµάτων. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

6 Η µέθοδος των δυνάµεων Η µέθοδος αυτή υπολογίζει τη µεγαλύτερη κατά µέτρο ιδιοτιµή ενός τετραγωνικού πίνακα A C n n και το αντίστοιχο ιδιοδιάνυσµα. Εστω ότι ο πίνακας A έχει τις λ i, i = 1, 2,..., n ιδιοτιµές και τα αντίστοιχα ιδιοδιανύσµατα είναι τα x (i), i = 1, 2,..., n. Εστω ότι ο A έχει n γραµµικά ανεξάρτητα ιδιοδιανύσµατα και συνεπώς αποτελούν µια ϐάση. Επιπλέον υποθέτουµε ότι λ 1 > λ j, j = 2, 3,..., n. (3) Αν y (0) 0 ένα διάνυσµα του C n, τότε επειδή τα ιδιοδιανύσµατα του A αποτελούν µία ϐάση, το y (0) µπορεί να γραφεί ως εξής y (0) = n α i x (i) (4) i=1 όπου α i είναι ϐαθµωτά µεγέθη και όχι όλα µηδέν. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

7 ...Η µέθοδος των δυνάµεων... Στη συνέχεια ϑεωρούµε την ακολουθία των διανυσµάτων που ορίζονται από το επαναληπτικό σχήµα y (m+1) = Ay (m), m = 0, 1, 2,... (5) όπου το y (0) είναι ένα αυθαίρετο διάνυσµα. Από την (5) για m = 0 έχουµε y (1) = Ay (0) = A για m = 1 έχουµε n α i x (i) = i=1 y (2) = Ay (1) = n α i Ax (i) = i=1 n α i λ 2 i x (i). i=1 n α i λ i x (i) i=1 Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

8 ...Η µέθοδος των δυνάµεων... Γενικά y (m) = η οποία γράφεται n α i λ m i x (i), (6) i=1 y (m) = λ m 1 [ α 1 x (1) + n i=2 ( ) m ] λ i α i x (i) λ 1 = λ m 1 [α 1 x (1) + ε (m) ], (7) όπου ε (m) = n i=2 ( ) m λi α i x (i). λ 1 Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

9 Προσδιορισµός της ιδιοτιµής λ 1 Επειδή όµως λ i /λ 1 < 1, υποθέτοντας ϐέβαια ότι α 1 0. Αν όπου m ϑέσουµε m 1 στην (8) έχουµε i = 2, 3,..., n, από την (7) προκύπτει ότι lim m y(m) = lim m λm 1 α 1 x (1) (8) lim m y(m 1) = lim m λm 1 1 α 1 x (1). (9) ιαιρώντας τις αντίστοιχες συνιστώσες των y (m) και y (m 1) λαµβάνουµε από τις (8) και (9) ότι y (m) j lim m y (m 1) j = λ 1 j = 1, 2,..., n. (10) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

10 Προσδιορισµός του ιδιοδιανύσµατος x (1) Εχοντας υπολογίσει την λ 1 από την (8) προκύπτει ότι y (m) lim m λ m 1 = α 1 x (1), (11) δηλαδή το ιδιοδιάνυσµα που αντιστοιχεί στην λ 1 τη µεγαλύτερη κατά µέτρο ιδιοτιµή. Με άλλα λόγια δηµιουργούµε την ακολουθία των διανυσµάτων y (0), y (1),..., y (m) µέχρις ότου οι λόγοι των αντίστοιχων συνιστωσών δύο διαδοχικών διανυσµάτων τείνουν προς την ίδια σταθερή τιµή, η οποία είναι µία προσέγγιση της ιδιοτιµής λ 1 (ϐλ.(10)). Το διάνυσµα y (m) είναι µία µη κανονικοποιηµένη προσέγγιση του αντίστοιχου ιδιοδιανύσµατος. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

11 Η ταχύτητα σύγκλισης της µεθόδου των δυνάµεων Εξαρτάται από τις σταθερές α i και τους λόγους λ 2 /λ 1, λ 3 /λ 1,..., λ n /λ 1 (ϐλ.(7) ). Ετσι όσο µικρότεροι είναι αυτοί οι λόγοι τόσο ταχύτερη είναι η σύγκλιση της µεθόδου. Ιδιαίτερα αν λ 2 / λ 1 είναι κοντά στη µονάδα, τότε η σύγκλιση της µεθόδου είναι πιθανό να είναι πάρα πολύ αργή. Θεωρητικά, αν τύχει και η εκλογή του y (0) είναι τέτοια ώστε α 1 = 0 και λ 2 > λ j, j 3, τότε η µέθοδος ϑα συγκλίνει στην λ 2 και σε ένα πολλαπλάσιο του x (2). Στην πράξη όµως δεν έχουµε δυσκολίες αν α 1 = 0, γιατί τα σφάλµατα στρογγύλευσης δηµιουργούν µία µικρή ( που µε την αύξηση του αριθµού των επαναλήψεων µεγαλώνει) τιµή του α 1 αρκετά ικανοποιητική, ώστε να έχουµε σύγκλιση τελικά στην λ 1. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

12 Παρατήρηση Για λ 1 > 1 τότε από την (8) έχουµε ότι lim m y(m) j = ±, j = 1, 2,..., n, ενώ για λ 1 < 1, lim m y(m) j = 0. Ετσι εκτός αν λ 1 1 ϑα πρέπει να εκτελούµε πράξεις µε απόλυτα πάρα πολύ µεγάλους ή πάρα πολύ µικρούς αριθµούς, πράγµα που σηµαίνει αύξηση των σφαλµάτων στρογγύλευσης στους υπολογισµούς. Το πρόβληµα αυτό αποφεύγεται µε µία τροποποίηση της µεθόδου των δυνάµεων. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

13 Τροποποίηση της µεθόδου των δυνάµεων Συνίσταται από τα ακόλουθα τρία διαδοχικά ϐήµατα σε κάθε επανάληψη όπου ουσιαστικά κανονικοποιείται το y (m) = max j z (m) = 1 y (m) j m y (m) j m y (m) j y (m) = y (m), y (m+1) = Az (m), m = 0, 1, 2,... (12) Εργαζόµενοι µε ανάλογο τρόπο όπως και στην προηγούµενη παράγραφο, η αντίστοιχη έκφραση της y (m) ϑα δίνεται από τη σχέση [ y (m) 1 = y (0) j 0 y (1) j 1... y (m 1) j m 1 λ m 1 α 1 x (1) + n i=2 ( ) ] m λi α i x (i). (13) λ 1 Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

14 ...Τροποποίηση της µεθόδου των δυνάµεων Επίσης έχουµε ότι z (m 1) = 1 y (m 1) y (m 1) = 1 y (m 1) j m 1 [ j m 1 y (0) j 0 y (1) j y (m 2) j m 2 λ m 1 1 ( α 1 x (1) + n i=2 ( ) )] m 1 λi α i x (i). (14) λ 1 Από τις (13) και (14) έχουµε αλλά z (m 1) j m 1 γράφεται lim m y (m) j m 1 z (m 1) j m 1 = λ 1 = 1 (το z (m 1) είναι κανονικοποιηµένο) και η ανωτέρω σχέση lim m y(m) j m 1 = λ 1. (15) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

15 ...Τροποποίηση της µεθόδου των δυνάµεων Η ακολουθία λοιπόν που δηµιουργείται από τις συνιστώσες j m 1 του διανύσµατος y (m) τείνει στη µεγαλύτερη κατά µέτρο ιδιοτιµή. Υπενθυµίζεται ότι η συνιστώσα j m 1 του διανύσµατος y (m) είναι εκείνη που αντιστοιχεί στην µεγαλύτερη κατά µέτρο απόλυτη τιµή συνιστώσα του προηγούµενου διανύσµατος y (m 1). Για την εύρεση του αντίστοιχου ιδιοδιανύσµατος x (1) παρατηρούµε ότι, αν ο δείκτης j m από µία ορισµένη τιµή του m και µετά παραµένει σταθερός, τότε είναι lim m z(m) = cx (1) (16) όπου c σταθερά τέτοια ώστε η µεγαλύτερη κατά µέτρο συνιστώσα του cx (1) να είναι µονάδα. Αρα η ακολουθία των διανυσµάτων z (m) συγκλίνει προς το κανονικοποιηµένο ιδιοδιάνυσµα που αντιστοιχεί στην λ 1. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

16 Ταχύτητα Σύγκλισης της τροποποιηµένης µεθόδου των δυνάµεων { } Η ταχύτητα σύγκλισης της ακολουθίας y (m) j m 1 προς την λ 1 προσδιορίζεται, όπως m=1 αναφέρθηκε, από τους λόγους λ j/λ 1 m για j = 2, 3,..., n και ιδιαίτερα από τον λόγο λ 2/λ 1 m. Με άλλα λόγια η τάξη σύγκλισης είναι O((λ 2/λ 1) m ). Εποµένως για µεγάλα m έχουµε y (m) λ 2 j m 1 λ 1 k όπου k σταθερά, πράγµα που σηµαίνει ότι ή όπου ε (m) = lim m y (m+1) j m λ 1 λ 1 y (m) j m 1 λ 1 m λ2 λ 1, < 1 ε (m+1) λ2 λ 1 ε(m), y (m), j m 1 λ 1 δηλαδή η ταχύτητα σύγκλισης είναι γραµµική. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

17 Παράδειγµα ίνεται ο πίνακας A = µε ιδιοτιµές λ 1 = 12, λ 2 = 3 και λ 3 = 3. Να εκτελεστούν τρεις επαναλήψεις της µεθόδου των δυνάµεων για τον υπολογισµό της µεγαλύτερης κατά µέτρο ιδιοτιµής και του αντιστοίχου ιδιοδιανύσµατος του πίνακα Α. Λάβετε σαν αρχικό διάνυσµα το y (0) = [1, 0, 0] T.. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

18 Λύση Για m = 0 η (12) δίνει διαδοχικά y (0) j 0 = y (0) = max{ 1, 0, 0 } = 1, άρα j 0 = 1 συνεπώς z (0) = 1 y (0) 1 y (0) = 1 [1, 0, 0]T 1 y (1) = Az (0) = [ 2, 10, 10] T. Η πρώτη προσέγγιση της µεγαλύτερης κατά µέτρο ιδιοτιµής λ είναι λ 1 = y (1) j 0 = y (1) 1 = 2. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

19 ...Λύση Για m = 1 η (12) δίνει και y (1) j 1 = y (1) = max{ 2, 10, 10 } = 10, άρα j 1 = 2 Επιπλέον z (1) = 1 y (1) 2 y (1) = [1/5, 1, 1] T. και η δεύτερη προσέγγιση της λ είναι y (2) = Az (1) = [ 27/5, 9, 9] T λ 2 = y (2) 2 = 9 Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

20 ...Λύση Για m = 2 η (12) δίνει και Οπότε y (2) j 2 = y (2) = max{ 27/5, 9, 9 } = 9, άρα j 2 = 2 z (2) = 1 y (2) 2 y (2) = [3/5, 1, 1] T. και η τρίτη προσέγγιση της λ είναι Το αντίστοιχο ιδιοδιάνυσµα είναι το y (3) = Az (2) = [ 31/5, 13, 13] T z (3) = 1 λ 3 = y (3) 2 = 13. y (3) 2 y (3) = [31/65, 1, 1] T. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

21 Ο αλγόριθµος της µεθόδου των δυνάµεων Σαν αρχικό διάνυσµα y (0) λαµβάνουµε συνήθως το y (0) = [1, 1,..., 1] T. 1 ιάβασε τη διάσταση n του πίνακα A, τα στοιχεία a ij, 1 i, j n, το αρχικό διάνυσµα y i, 1 i n, την ανεκτικότητα ε και το µέγιστο αριθµό επαναλήψεων M. 2 Να τεθεί m = 0 λ 0 = 0 3 Να ϐρεθεί ένας ακέραιος p τέτοιος ώστε 4 Για i = 1, 2,..., n να υπολογιστεί y p = max y i 1 i n z i = 1 y p y i Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

22 ...Ο αλγόριθµος της µεθόδου των δυνάµεων 5 Οσο ισχύει m M να εκτελούνται τα ϐήµατα Για i = 1, 2,..., n να τεθεί 5.2 Να τεθεί y i = n a ij z j j=1 λ 1 = y p 5.3 Αν y p = 0 τότε τύπωσε Ο A έχει ιδιοτιµή 0, επίλεξε νέο αρχικό διάνυσµα και άρχισε πάλι τη διαδικασία. Τέλος. 5.4 Να ϐρεθεί ένας ακέραιος p τέτοιος ώστε 5.5 Για i = 1, 2,..., n να υπολογισθεί y p = max y i 1 i n z i = 1 y p y i Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

23 ...Ο αλγόριθµος της µεθόδου των δυνάµεων 5.6 Αν τότε τύπωσε (λ 1, z). Τέλος. 5.7 Να τεθεί λ 0 λ 1 < ε m = m + 1 λ 0 = λ 1 6 Τύπωσε Οχι σύγκλιση µετά από M επαναλήψεις. Τέλος. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

24 Υπολογισµός της µικρότερης κατά µέτρο ιδιοτιµής Αν λ n < λ n 1 λ 1 τότε ο υπολογισµός της µικρότερης κατά µέτρο ιδιοτιµής λ n γίνεται ως εξής : Επειδή Ax = λx και A 1 x = 1 λ x και 1 λ n > 1 λ i εφαρµόζεται η µέθοδος των δυνάµεων y (m+1) = A 1 y (m), m = 0, 1, 2, ή Ay (m+1) = y (m), m = 0, 1, 2, δηλ. η επίλυση των γραµµικών συστηµάτων Ay (1) = y (0), Ay (2) = y (1), Ay (3) = y (2), Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

25 Τεχνικές επιτάχυνσης της µεθόδου των δυνάµεων Επιτάχυνση της σύγκλισης - Η µέθοδος του Aitken Αν η σύγκλιση µιας επαναληπτικής µεθόδου είναι γραµµική, τότε µπορεί να επιταχυνθεί µε τη χρήση της µεθόδου του Aitken, η οποία έχει τον ακόλουθο τύπο x n = x n ( x n) 2 2 x n (17) όπου είναι ο τελεστής των προς τα εµπρός διαφορών και ορίζεται σαν x n = x n+1 x n µε 2 x n = x n+1 x n = x n+2 2x n+1 + x n. Εποµένως είναι δυνατόν να τροποποιηθεί ο αλγόριθµος της µεθόδου των δυνάµεων έτσι ώστε να παράγεται η ακολουθία λ 1 = λ 1 ( λ 1) 2 2 λ 1. (18) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

26 Η µέθοδος των πηλίκων του Rayleigh Αν ο πίνακας A είναι πραγµατικός και συµµετρικός, τότε είναι δυνατόν να επιταχυνθεί η σύγκλιση προς τη µεγαλύτερη κατά απόλυτη τιµή ιδιοτιµή µε τη χρήση της µεθόδου των πηλίκων του Rayleigh. Ορισµός. Για κάθε διάνυσµα x 0 η ποσότης (x, Ax) (x, x) καλείται πηλίκο του Rayleigh που αντιστοιχεί στο x. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

27 Ενα ϐασικό αποτέλεσµα που δείχνει τη σπουδαιότητα των πηλίκων του Rayleigh είναι το ακόλουθο Θεώρηµα Αν ο A R n n είναι συµµετρικός και x 0 είναι ένα αυθαίρετο διάνυσµα, τότε και (x, Ax) λ 1 = max x 0 (x, x) = (x(1), Ax (1) ) (x (1), x (1) ) (x, Ax) λ n = min x 0 (x, x) = (x(n), Ax (n) ) (x (n), x (n) ) (19) όπου λ 1, λ n είναι η µεγαλύτερη και η µικρότερη ιδιοτιµή, αντίστοιχα και x (1), x (n) ιδιοδιανύσµατα του A που αντιστοιχούν στις λ 1 και λ n. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

28 Παρατηρούµε ότι ο υπολογισµός της λ 1 είναι ένα πρόβληµα ϐελτιστοποίησης. Το ενδιαφέρον µας είναι η χρήση των πηλίκων του Rayleigh για την επιτάχυνση της σύγκλισης της µεθόδου των δυνάµεων. Εστω το ϐασικό επαναληπτικό σχήµα της µεθόδου των δυνάµεων τότε χρησιµοποιώντας την (6), προκύπτει y (m+1) = Ay (m) (y (m), y (m+1) ) = (y (m), Ay (m) ) = n i=1 α 2 i λ 2m+1 i (20) καθόσον τα ιδιοδιανύσµατα του Α είναι ορθογώνια, αφού ο A είναι συµµετρικός, δηλαδή Επίσης (x (i), x (j) ) = δ ij = { 1, αν i = j 0, αν i j (y (m), y (m) ) = n i=1 α 2 i λ 2m i. (21) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

29 Από τις (20) και (21) έχουµε (y (m), Ay (m) ) (y (m), y (m) ) = λ1 + O((λi/λ1)2m ) (22) η οποία συγκρινόµενη µε την (7) δείχνει ότι το πηλίκο του Rayleigh που αντιστοιχεί στο y (m) γενικά ϑα συγκλίνει ταχύτερα (O(λ i/λ 1) 2m ) από τη µέθοδο των δυνάµεων (O(λ i/λ 1) m ). Για την κανονικοποίηση του ιδιοδιανύσµατος χρησιµοποιείται η ευκλείδεια norm, έτσι z (m) = Επίσης, στην τροποποιηµένη µέθοδο των δυνάµεων έχουµε 1 y (m) y (m) 1 = 2 (y (m), y (m) ) 1/2 y(m). (23) y (m+1) = Az (m) (24) οπότε το πρώτο µέλος της (22), λόγω των (23) και (24), γράφεται διαδοχικά ( ) (y (m), Ay (m) ) y (m) = (y (m), y (m) ) (y (m), y (m) ), Ay (m) 1/2 (y (m), y (m) ) 1/2 = (z (m), Az (m) ) = (z (m), y (m+1) ). (25) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

30 Λόγω των (22) και (25) έχουµε τελικά ότι lim m (z(m), y (m+1) ) = λ 1. (26) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

31 Παράδειγµα ίνεται ο πίνακας A = µε ιδιοτιµές λ 1 = 4, λ 2 = 3, λ 3 = 1. Να εκτελεστούν δύο επαναλήψεις της µεθόδου των πηλίκων Rayleigh για τον υπολογισµό της µεγαλύτερης κατά µέτρο ιδιοτιµής του πίνακα Α. Λάβετε ως αρχικό διάνυσµα το [1, 1, 1] T. Λύση 1η επανάληψη y (0) = [1, 1, 1] T και έστω λ 0 = 0. Λόγω της (23) έχουµε y (0) 2 = (y (0), y (0) ) = = 3 και z (0) = [ 1 y (0) y (0) 1 = 3, 2 1 3, 1 3 ] T. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

32 Επίσης, από την (24) y (1) = Az (0) = = οπότε η (26) δίνει λ 1 = (z (0), y (1) ) = 1 3 = = Παρατηρούµε ότι λ 0 λ 1 = = Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

33 2η επανάληψη y (1) 4 2 = = 3 [ ] T [ z (1) 1 = y (1) y (1) 3 2 = 2 8 3, 0, =, 0, y (2) = Az (1) = = ] T και λ 2 = (z (1), y (2) ) = ( 2) = = 1.5. Τέλος, παρατηρούµε ότι λ 2 λ 1 = = Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

34 Ο αλγόριθµος της µεθόδου των πηλίκων του Rayleigh 1 ιάβασε την τάξη n του πίνακα A, τα στοιχεία a ij, 1 i, j n, το αρχικό διάνυσµα y i, 1 i n, την ανεκτικότητα ε και το µέγιστο αριθµό επαναλήψεων M. 2 Να τεθεί k = 0 λ 0 = 0 3 Για i = 1, 2,..., n να υπολογιστεί η ποσότης (υλοποίηση της (23)) z i = y i / y 2 4 Οσο ισχύει k M να εκτελούνται τα ϐήµατα Για i = 1, 2,..., n να υπολογισθεί (y = Az) y i = n a ij z j j=1 Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

35 ( ) 4.2 Για i = 1, 2,..., n να υπολογισθεί λ = (z, y) = (y,az) (y,y) λ = n z i y i i=1 4.3 Αν y 2 = 0 τότε τύπωσε Ο A έχει ιδιοτιµή 0, επίλεξε νέο αρχικό διάνυσµα και άρχισε πάλι τη διαδικασία. Τέλος. 4.4 Για i = 1, 2,..., n να υπολογισθεί η ποσότητα z i = y i / y Αν λ λ 0 < ε τότε τύπωσε (λ, z). Τέλος. 4.6 Να τεθεί k = k + 1 λ 0 = λ 5 Τύπωσε Οχι σύγκλιση µετά από M επαναλήψεις. Τέλος. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

36 Μετατόπιση της αρχής των αξόνων Πρόταση Οι πίνακες A και A qi έχουν τα ίδια ιδιοδιανύσµατα και αν λ i είναι ιδιοτιµή του A τότε η αντίστοιχη ιδιοτιµή του A qi είναι η λ i q. Απόδειξη Αν Ax (i) = λ i x (i) τότε (A qi)x (i) = Ax (i) qix (i) = (λ i q)x (i) Αφαιρώντας λοιπόν την ποσότητα q από τα διαγώνια στοιχεία του A έχει σαν αποτέλεσµα την αφαίρεση της q από τις ιδιοτιµές. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

37 ...Μετατόπιση της αρχής των αξόνων Υποθέτουµε ότι ο A R n,n έχει n γραµµικά ανεξάρτητα ιδιοδιανύσµατα και όλες οι ιδιοτιµές του είναι πραγµατικές και ικανοποιούν τη σχέση λ 1 > λ 2 λ 3... λ n 1 λ n (27) Αν αφαιρέσουµε την ποσότητα q R µε q ( λ n, λ 1 ) από τα διαγώνια στοιχεία του A, τότε ανεξάρτητα από την τιµή της q, η µεγαλύτερη κατά µέτρο ιδιοτιµή του A qi ϑα είναι πάντα η λ 1 q ή η λ n q. Ας υποθέσουµε ότι ϑέλουµε να προσδιορίσουµε την λ 1. Οι ιδιοτιµές του A qi είναι οι µ i = λ i q. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

38 Μετατόπιση της αρχής των αξόνων Ταχύτητα σύγκλισης της µεθόδου των δυνάµεων Με τη χρήση του πίνακα A qi αντί του A, εξαρτάται από την ποσότητα max i 1 λi q λ 1 q (28) Οσο µικρότερη είναι η ανωτέρω ποσότητα, τόσο ταχύτερη η σύγκλιση της µεθόδου. Αρκεί δηλαδή να εκλέξουµε το q τέτοιο ώστε να ελαχιστοποιείται η ποσότητα Αποδεικνύεταιότι η ανωτέρω ποσότητα γίνεται ελάχιστη αν max λ i q (29) i 1 q = 1/2(λ 2 + λ n). Οµοια εργαζόµενοι ϐρίσκουµε ότι η µέγιστη ταχύτητα σύγκλισης στην λ n q επιταχύνεται αν επιλέξουµε q = 1/2(λ 1 + λ n 1) Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

39 Παρατήρηση Με τη µέθοδο αυτή µπορούµε να υπολογίσουµε τόσο την λ 1 όσο και την λ n, ωστόσο όµως χρειαζόµαστε κάποιες εκτιµήσεις των ιδιοτιµών λ 2 και λ n (ή των λ 1 και λ n 1 ) πράγµα που απαιτεί επιπλέον υπολογισµούς στην πράξη και είναι ένα µειονέκτηµα αυτής της µεθόδου. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

40 Η αντίστροφη µέθοδος των δυνάµεων Εχει το πλεονέκτηµα να υπολογίζει µια οποιαδήποτε ιδιοτιµή και το αντίστοιχο ιδιοδιάνυσµα και να έχει γρήγορη ταχύτητα σύγκλισης. Λήµµα Οι πίνακες A και A 1 έχουν τα ίδια ιδιοδιανύσµατα και αν λ i είναι µια ιδιοτιµή του A τότε η αντίστοιχη ιδιοτιµή του A 1 είναι η 1/λ i. Απόδειξη Αν Ax (i) = λ i x (i) τότε πολ/ζοντας από αριστερά µε A 1 έχουµε 1 λ i x (i) = A 1 x (i). Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

41 Η αντίστροφη µέθοδος των δυνάµεων Ας υποθέσουµε ότι ο A R nn, έχει n γραµµικά ανεξάρτητα ιδιοδιανύσµατα και όλες οι ιδιοτιµές του είναι πραγµατικές. Επίσης αν γνωρίζουµε κάποια ποσότητα q R η οποία ϐρίσκεται πλησιέστερα στην απλή ιδιοτιµή λ k του A από οποιαδήποτε άλλη ιδιοτιµή του, τότε ϑα ισχύει λ k q < λ i q, i = 1(1)n, i k (30) ηλαδή η ιδιοτιµή λ k q είναι η µικρότερη κατά απόλυτο τιµή ιδιοτιµή του πίνακα A qi. Συνεπώς, αν αντί του A χρησιµοποιήσουµε τον πίνακα (A qi) 1 στο ϐασικό επαναληπτικό σχήµα 1 της µεθόδου των δυνάµεων, τότε είναι δυνατόν να υπολογισθεί η ποσότητα και από λ k q αυτήν η λ k. Ο επαναληπτικός τύπος της αντίστροφης µεθόδου των δυνάµεων Πράγµατι, αν εφαρµοστεί η ε.µ. (A qi)y (m+1) = y (m), m = 0, 1, 2,... (31) όπου y (0) 0 αυθαίρετο διάνυσµα είναι δυνατόν να υπολογισθεί η απόλυτα µεγαλύτερη ιδιοτιµή του (A qi) 1 δηλαδή η 1/(λ k q) και το αντίστοιχο ιδιοδιάνυσµα. Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

42 Ταχύτητα σύγκλισης Εξαρτάται από την ποσότητα αφού max i k λ k q λ i q (32) y (m) = (A qi) 1 y (m 1) = (A qi) m y (0) = α 1 (λ 1 q) m x(1) + = α 2 (λ 2 q) m x(2) α n (λ n q) m x(n) [ ( ) 1 λk m q α (λ k q) m 1 x (1) α k x (k) λ 1 q ( ) ] λk m q α n x (n) λ n q Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

43 Παρατηρήσεις Η επιλογή της q καθορίζει και την ταχύτητα σύγκλισης της µεθόδου. Οσο πλησιέστερα η q είναι στην ιδιοτιµή λ k τόσο ταχύτερη ϑα είναι και η σύγκλιση της µεθόδου. Επειδή η q µπορεί να εκλεγεί αυθαίρετα, µπορούµε να ϐρούµε µια προσέγγιση σε οποιαδήποτε ιδιοτιµή του A. Ο προσδιορισµός των y (m) γίνεται από την επίλυση των συστηµάτων (A qi)y (m) = y (m 1), m = 1, 2,... (33) Στην πράξη τα διανύσµατα κανονικοποιούνται, µε άλλα λόγια, εφαρµόζεται η παραλλαγή της µεθόδου των δυνάµεων. Τα γραµµικά συστήµατα που προκύπτουν έχουν τον ίδιο πίνακα και διαφορετικά δεύτερα µέλη. Χρήση µιας άµεσης µεθόδου για την επίλυση τους. Σχηµατισµός της LU διάσπασης του A qi µόνο µία ϕορά. Αν λοιπόν χρησιµοποιήσουµε κανονικοποιηµένα διανύσµατα και την LU µέθοδο τότε το ϐασικό επαναληπτικό σχήµα ϑα είναι το παρακάτω: Lz = z (m) Uy (m+1) = z (34) όπου LU = A qi Αριθµητική Ανάλυση 23 Νοεµβρίου / 43

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Μαθηµατικές Μέθοδοι Βελτιστοποίησης Πϱοβληµάτων Μεγάλης Κλίµακας

Μαθηµατικές Μέθοδοι Βελτιστοποίησης Πϱοβληµάτων Μεγάλης Κλίµακας Πανεπιστήµιο Πατρών Σχολή Θετικών Επιστηµών Τµήµα Μαθηµατικών Μαθηµατικές Μέθοδοι Βελτιστοποίησης Πϱοβληµάτων Μεγάλης Κλίµακας ιδακτορική ιατριβή Μαριάννα Σ. Αποστολοπούλου Μάρτιος, 2011 c 2011 Μαριάννα

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

10 ιαγωνιοποίηση Σελίδα 1 από 62. Κεφάλαιο 10 1 ιαγωνιοποίηση

10 ιαγωνιοποίηση Σελίδα 1 από 62. Κεφάλαιο 10 1 ιαγωνιοποίηση ιαγωνιοποίηση Σελίδα από 6 Κεφάλαιο ιαγωνιοποίηση Κεφάλαιο... ιαγωνιοποίηση.... ιαγωνιοποίηση.... Εφαρµογές της διαγωνιοποίησης πινάκων....4.. υνάµεις πινάκων...4.. Εξισώσεις διαφορών...5.. ιαφορικές εξισώσεις......4

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

Είναι επίσης βολικό σε κάποιες περιπτώσεις να θεωρήσουµε το σύνολο διανυσµάτων x(n), που περιέχουν τις τιµές x(n), x(n-1),,x(n-n+1) ενός σήµατος

Είναι επίσης βολικό σε κάποιες περιπτώσεις να θεωρήσουµε το σύνολο διανυσµάτων x(n), που περιέχουν τις τιµές x(n), x(n-1),,x(n-n+1) ενός σήµατος Ανασκόπηση Γραµµική Άλγεβρα Σε πολλά µαθηµατικά προβλήµατα που θα συναντήσουµε στην φασµατική εκτίµηση και γενικά στην εκτίµηση παραµέτρων θα είναι βολικό να χρησιµοποιούµε διανύσµατα και πίνακες για την

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Ασκήσεις Αριθµητικής Ανάλυσης και Στοιχεία Θεωρίας

Ασκήσεις Αριθµητικής Ανάλυσης και Στοιχεία Θεωρίας Ασκήσεις Αριθµητικής Ανάλυσης και Στοιχεία Θεωρίας Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανε ιστήµιο Πατρών Χρήστος Α. Αλεξό ουλος Πάτρα Ιούνιος 7 Πανεπιστήμιο Πατρών -- 6//9 Το παρόν φυλλάδιο περιλαµβάνει

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου Παράρτηµα Β Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου 1. Πρόγραµµα υπολογισµού υδροστατικών δυνάµεων Για τον υπολογισµό των κοµβικών δυνάµεων που οφείλονται στις υδροστατικές

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές

Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές Κεφάλαιο 4 Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 4 Εισαγωγή πρότυπες εξισώσεις Οι πλέον συνηθισµένες ελλειπτικές εξισώσεις µε πλήθος εφαρµογών σε πολλά επιστηµονικά και τεχνολογικά

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Θεσσαλονίκη 2012 2 Περιεχόµενα 1 υναµικός

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Το ανοιχτό µοντέλο Leontief Μιχάλης Τζούµας Σχολικός Σύµβουλος κλάδου ΠΕ03 Ν. Αιτ/νίας mtzoumas@sch.gr

Το ανοιχτό µοντέλο Leontief Μιχάλης Τζούµας Σχολικός Σύµβουλος κλάδου ΠΕ03 Ν. Αιτ/νίας mtzoumas@sch.gr Το ανοιχτό µοντέλο Leontef Μιχάλης Τζούµας Σχολικός Σύµβουλος κλάδου ΠΕ0 Ν. Αιτ/νίας mtzoumas@sch.gr ΠΕΡΙΛΗΨΗ Ο Wassly Leontef, ο οποίος τιµήθηκε µε το βραβείο Νόµπελ Οικονοµίας το 97, εισηγήθηκε το µοντέλο

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο Κίνηση σε µία διάσταση Copyright 9 Pearson Education, Inc. Περιεχόµενα Κεφαλαίου Συστήµατα Αναφοράς και µετατόπιση Μέση Ταχύτητα Στιγµιαία Ταχύτητα Επιτάχυνση Κίνηση µε σταθερή επιτάχυνση Προβλήµατα

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

= x. = x1. math60.nb

= x. = x1. math60.nb MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

5. Γεννήτριες Τυχαίων Αριθµών.

5. Γεννήτριες Τυχαίων Αριθµών. 5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο Κεφάλαιο 3 ιανύσµατα στον -διάστατο και στον 3-διάστατο χώρο 3.1 Εισαγωγή στα ιανύσµατα (Γεωµετρική) Πολλές ϕυσικές ποσότητες, όπως το εµβαδόν, το µήκος, η µάζα και η ϑερµοκρασία, περιγράφονται πλήρως

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_ΜλΘΤ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Μαΐου 01 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση;

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Ξεκινώντας θα ήθελα να θυµίσω κάποια στοιχεία που σχετίζονται µε τον ορισµό της συχνότητας σε ένα περιοδικό φαινόµενο, άρα και στην ΑΑΤ.

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. http://www.perifysikhs.com

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. http://www.perifysikhs.com Επαλληλία Αρµονικών Κυµάτων - εκέµβρης 2014 Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://www.perifysikhs.com 1. Θέµα Α - Ερωτήσεις πολλαπλής επιλογής 1.1. ύο σύγχρονες κυµατικές πηγές Α και

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός Πανεπιστήμιο Αιγαίου URL: http://www.aegean.gr Γραμμικός Προγραμματισμός Ευστράτιος Ιωαννίδης Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών 832 Καρλόβασι Σάμος Copyright Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα