ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες"

Transcript

1 ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες * θεώρημα Solem-Noether * θεώρημα του διπλού κεντροποιητή Αμέσως μετά θα εφαρμόσουμε τα αποτελέσματα αυτά για να πάρουμε άλλα δύο φημισμένα θεωρήματα: την ταξινόμηση των πραγματικών αλγεβρών διαίρεσης που έχουν πεπερασμένη διάσταση (Frobeus), και το γεγονός ότι κάθε πεπερασμένος δακτύλιος διαίρεσης είναι μεταθετικός (Wedderbur) 6 Θεώρημα των Solem-Noether Έστω ένα σώμα και μια -άλγεβρα Το κέντρο της είναι C( ) { x rx xr r } Είναι μια μεταθετική υποάλγεβρα της που περιέχει το Η άλγεβρα λέγεται κεντρική αν C( ) δηλαδή αν το κέντρο είναι το μικρότερο δυνατό Υπενθυμίζουμε ότι μια άλγεβρα λέγεται απλή αν δεν έχει γνήσια μη τετριμμένα αμφίπλευρα ιδεώδη Παραδείγματα Η ( ) M είναι κεντρική -άλγεβρα αφού το κέντρο της είναι C M ( ) ai a Η M ( ) είναι απλή H -άλγεβρα M ( ) M ( ) δεν είναι κεντρική, αφού το κέντρο της είναι ( ai, bi) a, b ( ai, ai) a Η άλγεβρα των quateros (Παράδειγμα 5) είναι κεντρική απλή -άλγεβρα 3 Η ως -άλγεβρα είναι απλή αλλά όχι κεντρική ενώ ως -άλγεβρα είναι απλή και κεντρική 4 Η πολυωνυμική άλγεβρα [ x ] δεν είναι ούτε κεντρική ούτε απλή Έστω μια -άλγεβρα Υπενθυμίζουμε ότι μια υποάλγεβρα A του είναι ένας υποδακτύλιος του (και άρα περιέχει το σύμφωνα με τις παραδοχές μας) που είναι και -υπόχωρος του Επίσης, ένας ομομορφισμός -αλγεβρών είναι ομομορφισμός δακτυλίων που είναι και ομομορφισμός -διανυσματικών χώρων Ένας ομομορφισμός -αλγεβρών που είναι - και επί θα λέγεται -αυτομορφισμός της ή απλά αυτομορφισμός της, αν είναι σαφές πιο θεωρούμε 6 Θεώρημα (Solem-Noether) Έστω μια κεντρική απλή -άλγεβρα πεπερασμένης διάστασης και Α απλή υποάλγεβρα της Αν f : A είναι ομομορφισμός -αλγεβρών, τότε υπάρχει αντιστρέψιμο c με την ιδιότητα f ( a) cac για κάθε a A () 6 Πόρισμα Κάθε αυτομορφισμός μιας κεντρικής απλής άλγεβρας πεπερασμένης διάστασης είναι της μορφής () μορφής Ο ομομορφισμός στην () δύναται να οριστεί σε όλο το (με τον ίδιο τύπο) Ένας αυτομορφισμός της a cac,, λέγεται εσωτερικός αυτομορφισμός Το θεώρημα των Solem Noether λέει ότι κάθε ομομορφισμός f : A είναι ο περιορισμός κάποιου εσωτερικού αυτομορφισμού της Παρατηρήσεις Η υπόθεση στο πόρισμα ότι η άλγεβρα είναι κεντρική είναι απαραίτητη Για παράδειγμα ο αυτομορφισμός, z z (συζυγής του z) της -άλγεβρας δεν είναι της μορφής () O αυτομορφισμός, ( a, b) ( b, a), δεν είναι εσωτερικός

2 5 3 To πόρισμα μας πληροφορεί ότι η ομάδα των αυτομορφισμών της -άλγεβρας M ( ) είναι ισόμορφη με τη ( ) / GL N, όπου N ai M ( ), 0 a a (άσκηση) Στην απόδειξη του Θεωρήματος 6 υπεισέρχεται με ουσιαστικό τρόπο η έννοια του τανυστικού γινομένου Υπενθυμίζουμε ότι αν Α, Β είναι -άλγεβρες, ο διανυσματικός χώρος A B καθίσταται - άλγεβρα αν θέσουμε ( a b)( a b) aa bb Το ταυτοτικό στοιχείο του A B είναι το Στα παρακάτω θα γράφουμε A B στη θέση του A B A B 63 Λήμμα Έστω δακτύλιος και πρότυπα M και F όπου το F είναι ελεύθερο με βάση Χ Τότε κάθε u M F γράφεται κατά μοναδικό τρόπο ως όπου m όροι 0 x ) M M και τα x, u m x X είναι ανά δύο διάφορα(σημ Στη μοναδικότητα δεν λαμβάνονται υπόψη μηδενικοί Απόδειξη: To ότι το u έχει μία έκφραση της ζητούμενης μορφής προκύπτει άμεσα από το γεγονός ότι το Χ παράγει το F ως -πρότυπο και ότι το τανυστικό γινόμενο M F είναι πάνω από το Για τη μοναδικότητα, αν x X γράφουμε x και M x M Τότε υπάρχει ισομορφισμός αβελιανών ομάδων x x x xx xx xx : M F M x M F M M M, όπου οι δύο τελευταίοι ισομορφισμοί είναι από την παράγραφο 5 Ισχύει ( m y) ( m), m M, y X,, όπου : M M είναι η εμφύτευση στην y y xx y y x xx συντεταγμένη Από τον ορισμό του ευθέως αθροίσματος κάθε στοιχείο του μορφή xx x ( m ) x ( m ) ( ) ( ) m x m x m x, x M γράφεται μοναδικά στη όπου τα x είναι ανά δύο διάφορα στοιχεία του Χ Η μοναδικότητα προκύπτει από το γεγονός ότι ο είναι μονομορφισμός Το παρακάτω αποτέλεσμα θα χρησιμοποιηθεί πολλές φορές 64 Θεώρημα Έστω Α, Β απλές -άλγεβρες Αν η Α είναι κεντρική τότε η A B είναι απλή -άλγεβρα Απόδειξη: Έστω I 0 αμφίπλευρο ιδεώδες του A B Θα δείξουμε ότι I A B Ισχυρισμός v I {0} της μορφής v b, b B A Έστω προς στιγμή ότι ισχύει ο ισχυρισμός Το BbB { bbb bbb B 0, b, b B} είναι μη μηδενικό αμφίπλευρο ιδεώδες του Β Άρα B BbB Έχουμε B BbB ( B)( b)( B) ( B) v( B), και συνεπώς A B I Επίσης A A A A A A A

3 και συνεπώς A B I A B ( A )( B) ( A ) I I, B A B 5 Απόδειξη του Ισχυρισμού Έστω Υ μια βάση του Β Έστω u I, u 0, () u a y όπου a A {0}, y Y και τα y είναι ανά δύο διάφορα Επιλέγουμε μια έκφραση () με ελάχιστο (καθώς το u 0 διατρέχει το Ι) Λόγω της υπόθεσης της απλότητας έχουμε Aa A A Άρα για κάποια r, s A Θέτουμε Εκτελώντας πράξεις έχουμε A r as, v ( r B ) u( s B ) I, v ( r )( a y )( s ), r a s B B y r a s y r a s y () A y r a s y Έστω a η ποσότητα στην τελευταία παρένθεση Για να δείξουμε τον ισχυρισμό αρκεί να δείξουμε ότι a γιατί τότε θα έχουμε από την () οπότε θέτουμε b y a y Επειδή η Α είναι κεντρική, αρκεί να δείξουμε ότι: Ισχυρισμός a C( A) Απόδειξη: Έστω a A Θέτουμε Αντικαθιστώντας το ν από τη () παίρνουμε v y a y A A y A a y A y a y, (3) w ( a ) v v( a ) I B w a y a a y a y aa y ( a a aa) y B

4 53 Από το ελάχιστο στον ορισμό του ν παίρνουμε w 0 Από το Λήμμα 63 έπεται ότι a a a a 0, δηλαδή a C( A) 65 Σημείωση Αποδεικνύεται ότι αν στις υποθέσεις του θεωρήματος 64 προσθέσουμε την υπόθεση ότι η B είναι απλή, τότε το συμπέρασμα είναι ότι η A B είναι απλή και κεντρική Αυτό δεν θα χρησιμοποιηθεί στις σημειώσεις αυτές Στην απόδειξη του θεωρήματoς των Solem-Noether θα χρησιμοιποιήσουμε τo εξής πόρισμα του θεωρήματος Wedderbur-Art 66 Λήμμα Έστω Α απλή -άλγεβρα πεπερασμένης διάστασης Αν Μ και Ν είναι Α-πρότυπα με dm M dm N, τότε M N ως Α-πρότυπα Απόδειξη: Η Α είναι του Art, αφού dm A Είναι και απλή Από το θεώρημα Wedderbur-Art ( 33), το Α έχει μοναδικό απλό πρότυπο (με προσέγγιση ισομορφισμού εννοείται), έστω L Έχουμε m M L και N L, (που είναι ισομορφισμοί Α-προτύπων) Από τη σχέση dm M dm N παίρνουμε m (αφού dm L, γιατί το L είναι πηλίκο του Α) Άρα M N ως Α-πρότυπα Απόδειξη του θεωρήματος Solem-Noether op Έστω E A Η E είναι πεπερασμένης διάστασης -άλγεβρα και, σύμφωνα με το Θεώρημα 64, απλή Συνεπώς κάθε δύο E -πρότυπα με ίσες πεπερασμένες διαστάσεις ως -διανυσματικοί χώροι είναι ισόμορφα (Λήμμα 66) Καθιστούμε την αβελιανή ομάδα ένα E -πρότυπο με δύο διαφορετικούς τρόπους: (*) ( r a) x rxa, (**) ( r a) x rxf ( a), όπου r, a A, x Συνεπώς υπάρχει ισομορφισμός αβελιανών ομάδων ( r a) h( x) h(( r a) x), δηλαδή για κάθε r, x, a A Για a x παίρνουμε h έτσι ώστε rh( x) a h( rxf ( a)) (3) rh() h( r) για κάθε r Από αυτό έπεται ότι το c h() είναι αντιστρέψιμο Πράγματι, επειδή η απεικόνιση h είναι επί, υπάρχει y με yc Παρατηρούμε ότι η σχέση cy ισοδυναμεί με τη h( cy) h(), δηλαδή με τη cyc c που προφανώς αληθεύει Από την (3) έχουμε h() a h( f ( a)) f ( a) h() και επομένως f ( a) cac για κάθε a 6 Θεώρημα Διπλού Κεντροποιητή Έστω μια -άλγεβρα και S ένα υποσύνολο του Ο κεντροποιητής του S στο είναι η υποάλγεβρα C ( ) ( ) { S C S r rs sr για κάθε s S} Ισχύει S C( C( S)) Το επόμενο θεώρημα περιγράφει μια κατάσταση όπου ισχύει ισότητα

5 54 6 Θεώρημα (Διπλού κεντροποιητή) Έστω κεντρική απλή -άλγεβρα πεπερασμένης διάστασης και S απλή υποάλγεβρα Τότε ) C( S ) είναι απλή -άλγεβρα, ) dm (dm S)(dm C( S)), ) C( C( S)) S Απόδειξη: Δίνουμε πρώτα ένα χαρακτηρισμό του C( S ) Η είναι απλή -άλγεβρα του Art Συνεπώς (θεώρημα Wedderbur-Art και Σημείωση 33) -πρότυπο, -άλγεβρα διαίρεσης Το V γίνεται S πρότυπο με δράση ( d s) v d( s( v)) Ισχυριζόμαστε ότι EdSV C( S) Πράγματι, έχουμε Ed V, όπου το V είναι πεπερασμένης διάστασης EdS ( v) { f EdV f (( d s) v) ( d s) f ( v), v V, d, s S} Αλλά για κάθε v V, d, s S, f (( d s) v) ( d s) f ( v) f ( d( s( v)) d( s( f ( v))) df ( s( v)) d( s( f ( v)) f ( s( v)) sf ( v) fs sf f C( S) Ερχόμαστε τώρα στην απόδειξη των )-) ) Επειδή η S είναι απλή και η είναι απλή και κεντρική, από το θεώρημα 64 η S είναι απλή Είναι και του Art (αφού dm και dm S καθώς dm ) Από το θεώρημα Wedderbur-Art S Ed ( V ), όπου V είναι ένα -πρότυπο, -άλγεβρα διαίρεσης Επιπλέον γνωρίζουμε ότι το V είναι το μοναδικό απλό S -πρότυπο Έτσι για κάποιο m Έχουμε V ( V ) m m C( S) EdS ( V ) EdS (( V ) ) M m( Ed S ( V )) M m( ), (4) όπου ο τελευταίος ισομορφισμός της (4) προέρχεται από την άσκηση 9 ) ) Από την (4) έχουμε και από V ( V ) m dm ( ) dm C S m (5) m dm V / dm V (6) Επειδή το V είναι ελεύθερο -πρότυπο και το είναι ελεύθερο -πρότυπο έχουμε (άσκηση) dm V dm V dm (7) Αντικαθιστώντας τις (7) και (6) στην (5) παίρνουμε C S V V dm ( ) (dm ) / (dm ) dm Ο παρονομαστής είναι dm Ed ( V ) dm S (dm )(dm S) και ο αριθμητής είναι ((dm )(dm )) V Άρα dm ( ) (dm ) dm / dm dm C S V S Ed ( V ) / dm S dm / dm S ) Έχουμε dm dm Sdm C( S) από το ) Γράφοντας την ίδια σχέση για C( S ) στη θέση του S (επιτρεπτό αφού η C( S ) είναι απλή από το )) παίρνουμε dm (dm C( S))(dm C( C( S))) Από τις δύο

6 55 σχέσεις προκύπτει dm S dm C( C( S)) Εφόσον ισχύει S C( C( S)) και οι διαστάσεις είναι πεπερασμένες, προκύπτει το ζητούμενο 63 Εφαρμογές Θα αποδείξουμε εδώ δύο φημισμένα αποτελέσματα 63 Θεώρημα (Frobeus) Κάθε πραγματική άλγεβρα διαίρεσης πεπερασμένης διάστασης είναι ισόμορφη με μία από τις,, 63 Θεώρημα (Wedderbur) Κάθε πεπερασμένος δακτύλιος διαίρεσης είναι μεταθετικός (δηλαδή σώμα) Ξεκινάμε με προκαταρκτικά που αφορούν δακτύλιους διαίρεσης 633 Λήμμα Έστω δακτύλιος διαίρεσης Τότε ) Υπάρχει μέγιστο υπόσωμα του (δηλ σώμα που δεν περιέχεται γνήσια σε υπόσωμα του ) ) Κάθε μέγιστο υπόσωμα Κ περιέχει το κέντρο C( ) ) Για κάθε μέγιστο υπόσωμα Κ ισχύει C( K) Απόδειξη: ) Τυπική εφαρμογή του λήμματος του Zor ) Αν υπάρχει d C( ), d K, τότε το σύνολο K, όπου C( K ) είναι ο κεντροποιητής του Κ στο f ( d) K( d) f ( x), g( x) K[ x], g( d) 0 g( d) είναι σώμα που περιέχει γνήσια το Κ, άτοπο ) Αφού το Κ είναι μεταθετικό σύνολο, ισχύει K C( K) Αν υπάρχει d C( K), d K, τότε το σύνολο είναι σώμα που περιέχει γνήσια το Κ, άτοπο Το προηγούμενο λήμμα μαζί με το θεώρημα του διπλού κεντροποιητή δίνει αμέσως τo εξής κομψό αριθμητικό αποτέλεσμα 634 Πρόταση Έστω κεντρική -άλγεβρα διαίρεσης πεπερασμένης διάστασης και Κ μέγιστο υπόσωμα του Τότε dm (dm K) Απόδειξη του θεωρήματος 63 Έστω Κ μέγιστο υπόσωμα του Επειδή dm K dm, η επέκταση σωμάτων K / είναι αλγεβρική Άρα dm K ή η περίπτωση dm K Έχουμε K και K C( ) οπότε C( ) K Η πρόταση 634 δίνει dm (dm K), και άρα η περίπτωση dm K Άρα K Θα ταυτίζουμε τα σώματα K, Καθώς C( ), διακρίνουμε τις περιπτώσεις:

7 ( ) C( ), ( ) C( ) 56 Ας παρακολουθήσουμε το συλλογισμό στο διάγραμμα (α) C( ) K C( ) Ισχύει K C( ) και άρα (πρόταση 634) dm (dm K) C( ) (β) C( ) Θεωρούμε τον -ισομορφισμό C ( ) C( ) f : K a b a b K Από το θεώρημα Solem-Noether, υπάρχει x με την ιδιότητα Ισχυριζόμαστε ότι που σημαίνει ότι Τέλος η σχέση Αν x x( a b) x a b για κάθε a, b (9) x Πράγματι, έχουμε x C( K) Έτσι f ( x ) x δίνει 0, τότε x x x ( a b) x x( a b) x a b x K (Λήμμα 633) x y, y Θέτουμε : x / y και : Εύκολα ελέγχουμε ότι Ακόμα, η πρόταση 634 δίνει r, r x r, άτοπο λόγω της (9) Άρα,, dm (dm K) 4 x 0 Γράφουμε Εύκολα επαληθεύεται ότι τα στοιχεία,,, είναι γραμμικά ανεξάρτητα πάνω από το (άσκηση) και άρα αποτελούν βάση του ως -διανυσματικός χώρος Άρα ως -άλγεβρες (γιατί;) Αποδεικνύουμε στη συνέχεια το θεώρημα Λήμμα Έστω G πεπερασμένη ομάδα και Η γνήσια υποομάδα της G Τότε G ghg gg Απόδειξη: Έστω Χ το σύνολο των υποομάδων της G Θεωρούμε τη δράση της G το Χ που δίνεται από τη σχέση G X ( g, H ) ghg X Από γνωστό θεώρημα για δράσεις, ο πληθάριθμος της τροχιάς του H X είναι ο δείκτης [ G : G ], όπου G είναι ο σταθεροποιητής G { g G g H H} Ο ορισμός της δράσης δίνει H H H

8 GH όπου N( H ) είναι ο κανονικοποιητής της Η στη G, N( H ) 57 N( H ) { g G ghg H} Συμπέρασμα: για σταθερό Η, το πλήθος των διακεκριμένων υποομάδων της G της μορφής ghg, g G, είναι [ G : N( H )] Μετράμε τώρα τα στοιχεία του συνόλου ghg που είναι διάφορα από το μοναδιαίο στοιχείο Το πλήθος τους είναι Άρα G ghg gg gg [ G : N( H )]( H ) [ G : H ]( H ) (γιατί H N( H ) ) G [ G : H ] (θεώρημα Lagrage) G (γιατί H G ) Παρατήρηση: Κάθε d, όπου είναι δακτύλιος διαίρεσης περιέχεται σε κάποιο μέγιστο υπόσωμα f ( d) του Πράγματι το d περιέχεται στο σώμα ( d) f ( x), g( x) [ x], g( d) 0, όπου C( ) g( d) Τώρα το ζητούμενο προκύπτει από μια τυπική εφαρμογή του λήμματος του Zor Aπόδειξη του θεωρήματος 63 Έστω Κ μέγιστο υπόσωμα του Θα δείξουμε ότι K Έστω d Από την προηγούμενη παρατήρηση το d περιέχεται σε κάποιο σώμα Άρα ισχύει K, Κ μέγιστο υπόσωμα K Ισχυρισμός: Κάθε δύο μέγιστα υποσώματα του έχουν τον ίδιο πληθάριθμο Πράγματι, έστω το κέντρο του οπότε το είναι σώμα που περιέχεται στο Κ (λήμμα 633) Ως -άλγεβρα η έχει προφανώς πεπερασμένη τάξη Η πρόταση 634 δίνει dm, όπου dm K Άρα K q, όπου q και dm δεν εξαρτώνται από το Κ Τώρα από τη θεωρία Galos, υπενθυμίζουμε ότι κάθε δύο πεπερασμένα σώματα της ίδιας τάξης είναι ισόμορφα και επιπλέον αν είναι επεκτάσεις του υπάρχει ισομορφισμός που είναι ταυτοτικός στο Από το θεώρημα Solem-Noether συμπεραίνουμε ότι κάθε δύο μέγιστα υποσώματα του συνδέονται με μια σχέση της μορφής Συμπέρασμα: K xk x, x Λαμβάνοντας τις πολλαπλασιαστικές ομάδες έχουμε Από το λήμμα 635 αυτό είναι άτοπο εκτός αν xkx * x xk x * * K * x Αλλά τότε K * *

9 Ασκήσεις 58 Στα παρακάτω, είναι σώμα Επίσης (χωρίς δείκτη) = Αληθεύει ότι υπάρχει πεπερασμένη ομάδα G ώστε η άλγεβρα [G] να είναι κεντρική; Υπάρχει ισομορφισμός -αλγεβρών M ( ) 4 3 Δείξτε ότι η ομάδα των αυτομορφισμών της -άλγεβρας M ( ) είναι ισόμορφη με τη GL ( ) / N, όπου N ai M ( ), 0 a a Ποια είναι η ομάδα των -αυτομορφισμών της ; 4 Έστω Α κεντρική απλή -άλγεβρα και Β -άλγεβρα Δείξτε τα εξής a Kάθε αμφίπλευρο ιδεώδες του A B έχει τη μορφή A I, όπου το Ι είναι αμφίπλευρο ιδεώδες του Β b C( A B) C( B) A 5 Ποιο είναι το κέντρο της πραγματικής άλγεβρας M ( ); 6 Ποιο είναι το πλήθος των απεικονίσεων M ( ) M ( ) και πόσες από αυτές είναι ομομορφισμοί -αλγεβρών; 7 Έστω A μια -άλγεβρα Τότε η A είναι κεντρική -άλγεβρα αν και μόνο αν η M ( A ) είναι κεντρική -άλγεβρα για κάποιο Ακολουθούν δύο κομψές εφαρμογές του Θεωρήματος Solem-Noether 8 Έστω κεντρική -άλγεβρα διαίρεσης πεπερασμένης διάστασης και a, b Αν οι -γραμμικές απεικονίσεις :, x xa a :, x xb b έχουν το ίδιο ελάχιστο πολυώνυμο, τότε a cbc για κάποιο αντιστρέψιμο c 9 Ακολουθεί μια κομψή εφαρμογή του Θεωρήματος Solem-Noether Έστω δακτύλιος Μια προσθετική απεικόνιση d : λέγεται παραγώγιση αν 0 d( ab) ad( b) d( a) b για κάθε a, b Μια παραγώγιση d λέγεται εσωτερική αν είναι της μορφής d( x) xc cx για κάποιο c Αποδείξετε ότι κάθε -γραμμική παραγώγιση μιας πεπερασμένης διάστασης κεντρικής απλής -άλγεβρας είναι εσωτερική Υπόδειξη: Solem-Noether στην απεικόνιση f : A M ( ) όπου r 0 A r 0 r και r 0 r d( r) f : 0 r 0 r a Αληθεύει ότι το τανυστικό γινόμενο δύο -αλγεβρών διαίρεσης είναι πάντοτε -άλγεβρα διαίρεσης; b Έστω, δύο -άλγεβρες διαίρεσης πεπερασμένης διάστασης Αν η είναι κεντρική και επιπλέον μκδ (dm, dm ), τότε η είναι -άλγεβρα διαίρεσης Έστω A M ( ) Δείξτε ότι τα ακόλουθα είναι ισοδύναμα a Το χαρακτηριστικό πολυώνυμο και το ελάχιστο πολυώνυμο του A έχουν τον ίδιο βαθμό b Τα στοιχεία του M ( ) που αντιμετατίθενται με το A είναι ακριβώς τα πολυώνυμα του A Ταξινομήστε τους ημιαπλούς δακτυλίους που έχουν 06 στοιχεία op 3 Έστω απλή -άλγεβρα Δώστε στο τη δομή προτύπου έτσι ώστε C ( ) Ed ( ) 4 Έστω Είναι δυνατόν η -άλγεβρα M ( ) να περιέχει υπόσωμα Κ με K και C( K) K ; 5 Αν είναι κεντρική απλή -άλγεβρα πεπερασμένης διάστασης και S απλή κεντρική υποάλγεβρα της op

10 , τότε S C( S) 6 Έστω -αλγεβρα του Art και S πεπερασμένης διάστασης -άλγεβρα Εξετάστε ποιες από τις ακόλουθες προτάσεις αληθεύουν a S είναι δακτύλιος του Art b C( S) είναι κεντρική -άλγεβρα c Κάθε αυτομορφισμός της S είναι εσωτερικός d Κάθε αυτομορφισμός της S M ( ) είναι εσωτερικός 59

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-rt ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες θεώρημα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4) Πορίσματα της Κανονικής Μορφής Smh (συμπλήρωμα για την Ενότητα 4 Θα δείξουμε εδώ ότι από την κανονική μορφή Smh πινάκων πάνω από περιοχή κυρίων ιδεωδών R, έπονται τα εξής Το Θεώρημα Βάσεων Το Θεώρημα Ανάλυσης

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha. Αλγεβρα ΙΙ Εαρινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Ομάδες-Πηλίκο: Κρατήσαμε σταθερή μια ομάδα G με ταυτοτικό το ι και μια υποομάδα H της G. Συμβολίσαμε με G 1 το G/H (το σύνολο των αριστερών συμπλόκων

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}. Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

x y x z για κάθε x, y, . Ένας δακτύλιος R καλείται μεταθετικός αν

x y x z για κάθε x, y, . Ένας δακτύλιος R καλείται μεταθετικός αν ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύιο Θα περιοριστούμε στα πέον απαραίτητα για αυτά που ακοουθούν στα άα κεφάαια Η κατευθυντήρια

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1 Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

Το Θεώρημα CHEVALLEY-WARNING

Το Θεώρημα CHEVALLEY-WARNING Το Θεώρημα CHEVALLEY-WARNING Ανθή Ζερβού Διδάσκων: Ιωάννης Αντωνιάδης 3/02/2015 1 ΠΕΠΕΡΑΣΜΕΝΑ ΣΩΜΑΤΑ Ορισμός. Εστω Κ σώμα. Χαρακτηριστική του Κ, συμβολίζεται ch(k), είναι ο ελάχιστος φυσικός αριθμός n

Διαβάστε περισσότερα

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k = ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΚΕΦΑΛΑΙΟ 5: 5. ΟΡΙΣΜΟΙ Έστω U και V δύο διανυσματικοί χώροι. Μια συνάρτηση F : U V θα λέγεται γραμμική απεικόνιση (ή ομομορφισμός, ή απλά μορφισμός εάν ικανοποιεί τις συνθήκες (i F ( u + = u + για κάθε

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

Γραμμική Άλγεβρα II Εαρινό εξάμηνο Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2016-2017 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2016/ringtheory2016.html 15 Φεβρουαρίου 2017 2 Περιεχόµενα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Ευθέα Γινόμενα Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Ευθέα Γινόμενα Ομάδων Για την περαιτέρω ανάπτυξη τής θεωρίας θα χρειαστούμε

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα Γραμμική Άλγεβρα II Ασκήσεις με Υποδείξεις - Απαντήσεις ΜΜ Περιεχόμενα Ασκήσεις0: Όμοιοι Πίνακες Ασκήσεις: Πολυώνυμα 6 Ασκήσεις: Ιδιοτιμές και Ιδιοδιανύσματα Ασκήσεις: Διαγωνισιμότητα Ασκήσεις4: Τριγωνισιμότητα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2,

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 13 Δεκεμβρίου 2014 Περιεχόμενα 3 Μεταθέσεις και ομάδες Galois 41 3.1 Οι ρίζες

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια. Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Το Θεώρημα Jordan Hölder Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Το Θεώρημα Jordan Hölder 31 Προκαταρκτικές Έννοιες 311 Υποορθόθετες

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των,

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των, Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014 Α Δ Ι Α - Φ 11 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 24 Ιανουαρίου

Διαβάστε περισσότερα

Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F

Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F Νίκος Μαρμαρίδης 23 Ιανουαρίου 2017 Π Έστω ότι F είναι ένα σώμα, ότι F [t] είναι ο πολυωνυμικός δακτύλιος στη μεταβλητή t και ότι

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1} Αλγεβρα Ι, Χειμερινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Το [Α] συμβολίζει το φυλλάδιο ασκήσεων που θα βρείτε στην ιστοσελίδα του μαθήματος επιλέγοντας «Άλλες Ασκήσεις». 1. Πόσες

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2015-2016 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2015/ringtheory2015.html 4 εκεµβρίου 2015 2 Περιεχόµενα

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014 Α Δ Ι Α - Φ 10 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 17 Ιανουαρίου

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επεκτάσεις Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 6 Επεκτάσεις Ομάδων 6.1 Προκαταρκτικές Έννοιες Σύμφωνα με το Θεώρημα 4.2.4

Διαβάστε περισσότερα

Πρώτα και Μεγιστοτικά Ιδεώδη

Πρώτα και Μεγιστοτικά Ιδεώδη Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επιλύσιμες Ομάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Επιλύσιμες Ομάδες 41 Προκαταρκτικές Έννοιες 411 Ορισμός και Παραδείγματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Παρασκευή 6 Δεκεμβρίου 2013

Παρασκευή 6 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 6 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi20/asi20.html, https://sites.google.com/site/mathsedu/home/algdom Παρασκευή 6 Δεκεμβρίου 20

Διαβάστε περισσότερα

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 12 Ο Δ Π Μ δακτύλιο με τις πράξεις τού R και

Διαβάστε περισσότερα

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}. Γραμμική Άλγεβρα ΙΙ Διάλεξη 4 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 26/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 4 26/2/2014 1 / 12 Υποσύνολα ενός διανυσματικού χώρου. Πότε είναι ένα υποσύνολο X ενός

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες

Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες 1 Εξάρτηση του φάσματος από την άλγεβρα Έστω A άλγεβρα Banach με μονάδα 1 και B Ď A κλειστή υπάλγεβρα που περιέχει την

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

a pn 1 = 1 a pn = a a pn a = 0,

a pn 1 = 1 a pn = a a pn a = 0, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 14 Ιανουαρίου 2015 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 60

Διαβάστε περισσότερα