Ομαδικοί Μαθηματικοί Διαγωνισμοί Σωτήριος Χασάπης Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ομαδικοί Μαθηματικοί Διαγωνισμοί Σωτήριος Χασάπης Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης shasapis@sch.gr http://users.sch."

Transcript

1 Ομαδικοί Μαθηματικοί Διαγωνισμοί Σωτήριος Χασάπης Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης Περίληψη Η παρούσα εισήγηση αποτελεί ουσιαστικά μία πρόσκληση πρόταση για τη διοργάνωση ενός πανελλήνιου διαγωνισμού μαθηματικών προς τους συναδέλφους των Π.Π.Σ. και άλλων ενδιαφερόμενων σχολείων ή φορέων. Η ιδιαιτερότητα της πρότασης αφορά στην ομαδική συνεργασία που προτείνεται για αυτόν τον διαγωνισμό μεταξύ των μαθητών, καθώς επίσης και η προσθήκη δραστηριοτήτων πέραν αυτών της επίλυσης προβλημάτων ατομικά ενός κλασικού μαθηματικού διαγωνισμού. Ο συναγωνισμός που τόσο καλά αναπτύσσεται και συντείνει στην πλήρη ανέλιξη των μαθητών μας πρέπει να συνεπικουρείται και από την ανάπτυξη συνεργατικών δεσμών μεταξύ τους, ώστε να επιτευχθεί μία όσο το δυνατόν πληρέστερη εξέλιξη της προσωπικότητας γνωστικά και κοινωνικά, που θα ωθήσει στη μετεξέλιξη των μαθητών σε άρτιους επιστήμονες. Η αριστεία δεν μπορεί να βασίζεται μόνο σε γνωστικούς, καλλιτεχνικούς ή άλλους παράγοντες δεξιοτήτων χωρίς σε αυτήν να περιλαμβάνεται και ανάπτυξη της ικανότητας λειτουργίας ως μέλους μίας ομάδας προς επίτευξη ενός υψηλού στόχου. Ειδικά, όσον αφορά στην Ελληνική ιδιοσυγκρασία, όπου είναι δεδομένη η έλλειψη μίας παρόμοιας κουλτούρας συνεργασίας αποτελεί ουσιαστική ανάγκη. Λέξεις κλειδιά : Μαθηματικοί διαγωνισμοί, ομαδικοί μαθηματικοί διαγωνισμοί, αριστεία, ταλαντούχοι μαθητές, συνεργασία, έρευνα, επίλυση προβλήματος, σχολικά μαθηματικά. 1 Εισαγωγή Γενικά, σε πολλές χώρες υπάρχουν πολλών διαφορετικών ειδών μαθηματι - κοί διαγωνισμοί, όπως: ενδοσχολικοί, μεταξύ ομάδων σχολείων, περιφε - ρειακοί, εθνικοί, διεθνείς, τελευταία ομαδικοί κ.ά. Υπάρχουν έρευνες που συμπεραίνουν ότι η ανταγωνιστική προσέγγιση στη γνώση δρα θετικά και οδηγεί στην επίτευξη υψηλότερων στόχων, αλλά και άλλες οι οποίες οδη - γούν σε αντίθετα συμπεράσματα Trasher (2008)[24]. Ακόμα και ειδικοί επί του θέματος έχουν διιστάμενες απόψεις. Υπάρχει όμως ένα πλαίσιο όπου εντάσσονται μερικά κοινά χαρακτηριστικά όλων. Καταρχάς, οι δια - Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

2 γωνισμοί είναι απαραίτητοι για κάθε εκπαιδευτικό σύστημα, διότι βοηθούν τους διαγωνιζόμενους να θέτουν υψηλούς στόχους και άρα να μαθαί - νουν να κυνηγούν την πρόοδο, γεμίζουν με ουσιαστικές δραστηριότητες τους χαρισματικούς μαθητές ή τους υψηλής ικανότητας στα μαθηματικά μαθητές, οι οποίοι πλέον με τον τρόπο επιλογής με εξετάσεις εμφανίζονται σε μεγαλύτερη συχνότητα στα Π.Π.Σ. Ωθούν αρκετούς από τους καλύτερους στα μαθηματικά μαθητές στην ενασχόλησή τους με τις επιστή - μες. Η διαγωνιστική κατάσταση όμως μπορεί να οδηγήσει και σε δυσλειτουργίες, οι οποίες μπορούν να εκτείνονται από έναν απλό κορεσμό για τα μαθηματικά προβλήματα έως και περιορισμό της δημιουργικότητας των μαθητών. Από την άλλη πλευρά η επιστημονική έρευνα, σύμφωνα με επαγ - γελματίες ερευνητές, απαιτεί και άλλα χαρακτηριστικά τα οποία δεν υπεισέρχονται σε όλους τους μαθηματικούς διαγωνισμούς. Τέτοια είναι η δυ - νατότητα έκφρασης της δημιουργικότητας του ερευνητή ως μέλους μίας ομάδας, δηλαδή η συνεργασία μέσα από τους κανόνες μίας ομάδας, αλλά και η διερεύνηση και η ικανότητα δημιουργίας και μετεξέλιξης προβλημάτων. Όλα τα προηγούμενα, σύμφωνα με τη γνωστική ψυχολογία, είναι κατάλληλο να αναπτύσσονται ήδη από μικρές ηλικίες, όπως είναι οι μαθητές της δευτεροβάθμιας εκπαίδευσης με κατάλληλες κάθε φορά δραστη - ριότητες, οι οποίες να αποτελούν και παράγοντες διασκέδασης και ανα - γνώρισης της ομορφιάς στην επίλυση ενός προβλήματος μαθηματικών. Στη διεθνή πρακτική, δημιουργούνται τα τελευταία 10 χρόνια αρκετοί μαθηματικοί διαγωνισμοί που διαθέτουν αυτά τα χαρακτηριστικά, ενώ άλλοι ομαδικοί διαγωνισμοί που υπάρχουν από τη δεκαετία του 80 εντάσσουν αρκετά από αυτά. Στο παρόν αναλύονται οι ομοιότητες και διαφορές ερευνητικών και διαγωνιστικών μαθηματικών, εξετάζονται τα χαρακτηριστικά που συμπληρώνουν έναν ομαδικό μαθηματικό διαγωνισμό και προτείνονται μερικές δραστηριότητες, οι οποίες είτε υπάρχουν σε μερικούς από τους διαγωνισμούς που παρουσιάζονται συνοπτικά, είτε αποτελούν νέες συλλήψεις. Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

3 2 Μία συνολική θεώρηση των διαγωνισμών Μερικά από τα πλεονεκτήματα των μαθηματικών διαγωνισμών, όπως αυτά αναγνωρίζονται από πολλούς Siu(2013)[21], Zawaira(2007)[30], Toh(2012)[26], Bricknel(2008)[1], Kenderov(2006)[9], Trasher(2008) [24] κ.ά. εκτός από το γεγονός ότι αποτελούν μία σημαντική πρόκληση, τόσο για τους δασκάλους, όσο και για τους μαθητές, επιπλέον για τους μαθητές δημιουργούνται κίνητρα, είναι ευκαιρία για την ενεργή συμμετοχή τους, για να αναλαμβάνουν πρωτοβουλίες μόνοι τους, να καλλιερ - γήσουν την υπομονή και την επιμονή τους (ένα πρόβλημα μπορεί να χρειαστεί παραπάνω από μιάμιση ώρα για να λυθεί σε ένα διαγωνισμό), μαθαίνουν στους μαθητές να εκφράζουν τις λύσεις τους, πλήρεις ή μη, καθαρά και με λογική δομή, ωθούν στην αναζήτηση επιπλέον λύσεων ή της καλύτερης λύσης και αποτελούν μία καλή ευκαιρία για να αναγνωριστούν οι καλύτεροι λύτες προβλημάτων. Επίσης, αποτελούν αφορμή για τη μελέτη μη συνηθισμένων προβλημάτων εκτός του Αναλυτικού Προγράμματος Σπουδών και εμπλουτισμού του προγράμματος μαθηματικών για ταλαντούχους μαθητές, όπως προβλέπεται σε πολλές χώρες, οι οποίοι εξάλλου μπορεί να αποκαλυφθούν μέσα από τους ίδιους τους διαγωνισμούς. Τέλος, μπορεί να προωθούν την ομαδική δουλειά και τον ενθουσιασμό για τα μαθηματικά προβλήματα. Οι διαγωνισμοί είναι μία από τις αναγκαίες προβλέψεις που πρέπει να υπάρχει στα Π.Π.Σ. για τους μαθητές τους, αφού μεταξύ αυτών και λόγω και των εξετάσεων εισαγωγής είναι πολύ πιθανό να βρεθούν και μαθηματικά προικισμένοι μαθητές και σύμφωνα με τη Bricknel(2008) [1] μία από τις προβλέψεις που πρέπει να λαμβάνονται μεταξύ άλλων είναι και η διεξαγωγή και συμμετοχή σε διαγωνισμούς. Ο στόχος είναι διττός: αφενός να ανιχνευθούν πιθανά μαθηματικά ταλέντα, αφετέρου να ενισχυθεί και εμπλουτισθεί το πρόγραμμα σπουδών των μαθητών, κάτι που είναι αναγκαίο για αυτούς τους ταλαντούχους μαθητές Kalman(2002) [8]. 2.1 Διαγωνισμοί, επιστήμη, έρευνα Ένα από τα αναφερόμενα πλεονεκτήματα και από τις βασικές επιδιώξεις των μαθηματικών διαγωνισμών Kenderov(2006) [9] αποτελεί και η έλξη μετά την αναγνώριση μαθηματικά ταλαντούχων μαθητών για επαγγελματική σταδιοδρομία στις επιστήμες και την έρευνα. Παρότι, όπως διαφαίνεται παρακάτω, υπάρχουν διαφορετικές απόψεις ως προς τη συσχέτιση επιτυχόντων σε μαθηματικούς διαγωνισμούς και επιτυχημένων ερευνητών, δεν αμφισβητείται ότι κάποια κύρια χαρακτηρι - Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

4 στικά ορισμένων σωστά δομημένων διαγωνισμών είναι εξαιρετικά χρήσιμα και σε μία περαιτέρω πορεία στην έρευνα. Ένας από τους σημαντικότερους επιστήμονες που επηρεάστηκε και αναγνώρισε νωρίς (1929) την αξία των διαγωνισμών για την ώθηση νέων επιστημόνων, ο John von Neumann, που γεννήθηκε στην Ουγγαρία, έγραψε προς έναν καθηγητή του:...είχα την ευκαιρία αρκετές φορές να μιλήσω στον Leo Szi lard για τους μαθητικούς διαγωνισμούς της Ένωσης Μαθημα τικών και φυσικών επιστημών Eotvos, για το γεγονός ότι οι νικητές των διαγωνισμών της γίνονται, μεταξύ των μαθηματι κών και φυσικών, υψηλά αναγνωρισμένοι επιστήμονες. Λαμβάνοντας υπόψη τη γενικότερα κακή φήμη των εξετάσεων παγκοσμίως νομίζω ότι μπορεί να θεωρηθεί τεράστιο επίτευγμα ότι η επιλογή λειτουργήσει με 50% επιτυχία στη διάγνωση των μαθηματικά ταλαντούχων μαθητών... Συχνά, η μελλοντική επαγγελματική πραγματικότητα ενός νέου ανθρώπου προκαθορίζεται από την πρώτη επιτυχία. Έτσι κάποιος που έχει ενδιαφέρον για τα μαθηματικά και επιδείξει επιτυχία σε αυτά, μέσα από δουλειά και κόπο αποκτά ένα ισχυρό κίνητρο για να συνεχίσει. Οπότε οι μαθηματικοί διαγωνισμοί μπορούν να αποτελέσουν μέσο προσέλκυσης νέων ικανών «μυαλών» σε μαθηματικά και επιστήμες γενικότερα. Για παράδειγμα, η Ουγγαρία είναι μία χώρα που έχει παράξει πολλούς, αναλογικά με τον πληθυσμό της, σημαντικούς μαθηματικούς τα τελευταία 60 έτη και έχει μακρά ιστορία στους μαθηματικούς διαγωνισμούς, τόσο σε επιτυχίες, όσο και όσον αφορά την ένταξή τους στο εκπαιδευτικό της σύστημα Zawaira(2000) [30]. Ο Terence Tao [22], αναφέρει ότι διασκέδασε ιδιαίτερα με τις εμπειρίες του από τους σχολικούς μαθηματικούς διαγωνισμούς τη δεκαετία του '80 και όπως σε κάθε άλλο σχολικό αθλητικό γεγονός υπάρχει ένα υψηλό επίπεδο συγκίνησης στη συμμετοχή με άλλους μαθητές παρομοίων ενδιαφερόντων σε μία διαγωνιστική δραστηριότητα. Επιπλέον, οι μαθηματικοί διαγωνισμοί παρουσιάζουν και τα μαθηματικά που δεν είναι μόνο για βαθμούς και εξετάσεις. Εντούτοις, οι μαθηματικοί διαγωνισμοί κατά τη γνώμη του, αποτελούν πολύ διαφορετικές δραστηριότητες τόσο σε σχέση με τη μάθηση στα μαθηματικά, όσο και με τη μαθηματική έρευνα. Τελικά, κατά τον Tao, τα μαθηματικά των διαγωνισμών είναι εγγύτερα προς την έρευνα από τα σχολικά μαθηματικά. Αν μάλιστα, ταυτίζονταν λιγότερο με τη έννοια της μαθηματικής ευφυίας Lesswrong [10] - κάτι που φαίνεται να συμβαίνει τα τελευταία χρόνια στην Ελλάδα, αν κρίνουμε από την αύξηση των συμμετοχών στους διαγωνισμούς της Ε.Μ.Ε. - τότε θα ήταν και περισσότερα τα οφέλη για την επιστήμη. Κατά τον Goro Shimura, στο Lesswrong [10], πολλά από τα προβλήματα που εμφανίζονται σε διάφορες εξεταστικές διαδικασίες είναι τεχνητά και απαιτούν μερι - κά έξυπνα τεχνάσματα. Έτσι, στη διδασκαλία του απέφευγε τέτοιου είδους Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

5 προβλήματα, αφού κατά την άποψή του οι νέοι που ενδιαφέρονται σοβαρά για τα μαθηματικά δεν έχουν τίποτα να χάσουν από αυτά. Επίσης, ο Andrew Wiles ισχυρίστηκε σε διάλεξή του το 2001, στο Lesswrong[10], ότι οι μαθηματικοί διαγωνισμοί και τα προβλήματά τους στις περισσότερες περιπτώσεις δεν ανταποκρίνονται στη μαθηματική πρακτική. Μία ουσιαστική διαφορά, κατά τον Wiles, όπως έχει αναφερθεί και αλλού στο παρόν κείμενο, είναι ότι η δημιουργία νέων μαθηματικών έχει τη δυσκολία ότι δεν γνωρίζεις τι ακριβώς προσπαθείς να αποδείξεις ή ακόμα χειρότερα αν αυτό είναι αληθές, σε αντίθεση με τα προβλήματα των περισσότερων μαθηματικών διαγωνισμών, όπου είναι δεδομένη η ύπαρξη λύσης, καθώς επίσης και η ανελαστικότητα, ως προς τη μεταβολή των δεδομένων και των ζητούμενων του προβλήματος. Ο William Thurston, βραβευθής με το μετάλλιο Fields, γράφει στο Thurston(1990) [25]:...οι διαγωνισμοί είναι διασκεδαστικοί, ενδιαφέροντες και διδακτικά αποτε - λεσματικοί για τους ανθρώπους που είναι επιτυχημένοι σε αυτούς. Όμως υπάρχει και η άλλη πλευρά, όπου αναγκάζουν τους συμμετέχοντες να ενταχθούν είτε στην κατηγορία των μαθηματικά ταλαντούχων, είτε των λιγότερο ταλαντούχων. Επίσης, δίνουν έμφαση στην ταχύτητα, εις βάρος της βαθιάς σκέψης. Δίνουν έμφαση σε προβλήματα γρίφους με κάποιο κρυμμένο τέχνασμα, παρά σε πιο πραγματικά προβλήματα, στα οποία μία συστηματικότερη και επίμονη προσέγγιση είναι σημα - ντικότερη. Αυτό αποθαρρύνει πολλούς ανθρώπους, οι οποίοι δεν είναι τόσο γρή - γοροι ή αρκετά προετοιμασμένοι, αλλά ενδεχομένως θα μπορούσαν να είναι εξαι - ρετικά αποτελεσματικοί αν δούλευαν σε προβλήματα χωρίς την πίεση του χρόνου. Μερικοί από τους καλύτερους των μαθηματικών διαγωνισμών γίνονται επίσης κα - λοί μαθηματικοί, αλλά υπάρχουν επίσης πολλοί καλοί μαθηματικοί, οι οποίοι δεν υπήρξαν αντίστοιχα επιτυχημένοι σε μαθηματικούς διαγωνισμούς. Η ταχύτητα είναι βοηθητική στα μαθηματικά, αλλά αποτελεί μόνο έναν από τους παράγοντες που συνεισφέρουν. Ο Timothy Gowers, επίσης βραβευθής με το μετάλλιο Fields, στο βιβλίο του Gowers(2002) [7], γράφει:...η αρνητική επίδραση που έχει η λέξη ταλαντούχος-ιδιοφυία, είναι τεράστια. Όταν γράφω ιδιοφυία εννοώ κάποιον, ο οποίος μπορεί να κάνει εύκολα, σε μικρή ηλικία, κάτι που σχεδόν κανένας άλλος δεν μπορεί να κάνει εκτός μετά από πολλά χρόνια εξάσκησης και αν μπορεί και τότε. Τα επιτεύγματα των ιδιο - φυών ανθρώπων έχουν ένα είδος μαγείας, είναι σαν ο εγκέφαλός τους να λειτουργεί αποτελεσματικότερα από τον δικό μας, αλλά με έναν εντελώς διαφορετικό τρόπο. Κάθε ένα δυο χρόνια έρχεται στο Cambridge ένας φοιτητής που μπορεί να λύσει σε λίγα λεπτά ένα πρόβλημα, το οποίο στους περισσότερους ανθρώπους συμπεριλαμβανομένων και εκείνων που πρόκειται να τον διδάξουν, απαιτεί ώρες ή περισσότερο. Όταν συναντάς ένα τέτοιο άτομο απλά κάθεσαι πίσω και το θαυ - μάζεις. Παρόλα αυτά, αυτοί οι εκπληκτικοί άνθρωποι δεν είναι πάντα οι περισ - σότερο επιτυχημένοι μαθηματικοί ερευνητές. Αν θέλεις να επιλύσεις ένα πρόβλημα, το οποίο απέτυχαν πριν από εσένα να λύσουν άλλοι επαγγελματίες μαθηματι - Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

6 κοί, η ευφυΐα, όπως τη θεώρησα παραπάνω, δεν είναι ούτε αναγκαία, αλλά περισ - σότερο ούτε και ικανή. Χαρακτηριστικό παράδειγμα αποτελεί ο Andrew Wiles και το διάσημο τελευταίο θεώρημα του Fermat που έλυσε επιτυχώς, χωρίς να ανήκει στην κατηγορία των ιδιοφυιών, όπως την όρισα προηγουμένως. Παρόμοιες εμπεριστατωμένες απόψεις μπορεί να αναζητήσει και να βρει κανείς και από άλλους διάσημους μαθηματικούς και ιδιαίτερα επιτυχη - μένους (πχ Grothendieck μετάλλιο Fields, Wiles, Hardy, κ.ά.). Τελικά, όλες οι απόψεις για τους διαγωνισμούς συγκλίνουν ή αναφέρουν τη φύση των προβλημάτων που τίθενται και τον τρόπο διεξαγωγής των διαγωνι - σμών. Τα κλειστού τύπου προβλήματα, με δεδομένη την ύπαρξη μίας απάντησης χωρίς τη δυνατότητα μεταβολής τους, ο περιορισμένος χρόνος και η αναγκαιότητα για την επιτυχία, όπου υπεισέρχονται στους διαγωνισμούς αποτελούν ισχυρά αντεπιχειρήματα για τη χρησιμότητά τους. 2.2 Προετοιμασία και μορφή των προβλημάτων Εξάλλου, αν η διδασκαλία επικεντρώνεται αποκλειστικά στην εξάσκηση δεξιοτήτων και διαδικασιών, οι μαθητές δεν αναπτύσσουν υψηλής τάξης επιδεξιότητες σκέψης (H.O.T. = Higher Order Thinking), οι οποίες είναι απαραίτητες για τη βαθύτερη κατανόηση των μαθηματικών, παρότι τέτοιου είδους δεξιότητες μπορούν εύκολα να γίνουν κτήμα των μαθητών, οι οποίοι μπορούν να τις χρησιμοποιούν Schoenfeld(1985)[19]. Χαρακτηριστικό παράδειγμα της Ελληνικής σχολικής πραγματικότητας αποτελούν οι μαθηματικές γνώσεις που αποκτούν οι μαθητές υποψήφιοι των Πανελ - λαδικών εξετάσεων. Μπορούν να χρησιμοποιούν υψηλής στάθμης θεωρήματα της μαθηματικής ανάλυσης (Rolle, Fermat, Μέσης τιμής, κ.ά.) με επιδέξιους τρόπους για να αποδείξουν μία ανισότητα ή την ύπαρξη ενός αριθμού με συγκεκριμένες ιδιότητες, αλλά δύσκολα ανταποκρίνονται σε ένα πρόβλημα που απαιτεί τη χρήση της παραγώγου ως ρυθμού μεταβο - λής ή τη γεωμετρική ερμηνεία κάποιου από τα εν λόγω θεωρήματα. Μεταξύ των φερόμενων ως μειονεκτημάτων των μαθηματικών διαγωνισμών είναι και ο τρόπος προσέγγισης της επίλυσής τους από αρκετούς διαγωνι - ζόμενους. Σύμφωνα με τον Siu (2013)[21] ακόμα και διαγωνιζόμενοι που τα καταφέρνουν καλά σε διαγωνισμούς τείνουν να αναζητούν «έξυπνες» και γρήγορες λύσεις, χωρίς όμως να αναπτύσσουν την υπομονή και το πάθος να δουλέψουν συστηματικά για την επίλυση ενός προβλήματος. Κατά συνέπεια, αναζητούν προβλήματα τα οποία θεωρούν προσιτά προς αυτούς, υπό την έννοια ότι είναι καλώς τοποθετημένα για αυτούς και αποφεύγουν να ασχοληθούν με ευρύτερες καταστάσεις που περιγράφονται σε ένα Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

7 πρόβλημα ή ένα ανοικτής μορφής πρόβλημα. Η μαθηματική έρευνα από την άλλη πλευρά δεν έχει προκαθορισμένες απαντήσεις, τις οποίες ο ερευ - νητής γνωρίζει ότι μπορεί να βρει, απαιτεί εξερεύνηση της κατάστασης, βαθύτερη κατανόησή της και συχνά η δημιουργία μίας ερώτησης ή η αλλαγή της προβληματικής κατάστασης μπορεί να είναι χρησιμότερη από την επίλυση ενός προβλήματος μαθηματικών διαγωνισμών. Σε αυτήν την περίπτωση η δημιουργικότητα είναι που διαφοροποιεί τις καταστάσεις. Εξάλλου, οι καινοτόμες δημιουργίες, στις περισσότερες περιπτώσεις επίλυσης πραγματικών προβλημάτων εμπλέκουν τη δημιουργικότητα του ερευνητή επαγγελματία Davidson (2003) [5,σελ.127]. Δοθέντος ότι, σύμφωνα με πολλούς ερευνητές Romer(1994), η μελλοντική οικονομική ανάπτυξη θα ωθηθεί από καινοτόμα προϊόντα και υπηρεσίες καθίσταται σαφές ότι η δημιουργικότητα είναι αυτή που πρέπει να αναπτύσσεται στα νεαρά άτομα μίας σύγχρονης κοινωνίας. Η δημιουργικότητα απαιτεί το συνδυασμό γνωστικών και ψυχολογικών παραγόντων, των οποίων η έκφραση επηρεάζεται και από το περιβάλλον. Έτσι, ανάμεσα σε χαρακτηριστικά όπως κάποιες πτυχές την νοημοσύνης, γνωστικά χαρακτηριστικά, προσωπικότητα ως ολότητα και κίνητρα, τα οποία ωθούν τη δημιουργικότητα για τους μελλοντικούς επιστήμονες πρέπει να αναπτυχθεί και η κοινωνικότητά τους, καθώς επίσης και η αποδοχή κανόνων ομάδας Davidson (2003)[5]. Ένα άλλο χαρακτηριστικό μειονέκτημα που παρατηρείται συχνά σε λύσεις θεμάτων σε διαγωνισμούς είναι οι ομοιόμορφες προσεγγίσεις στην επίλυση των προβλημάτων από τα ανεξάρτητα μέλη μίας ομάδας Siu(2013)[21]. Συγκεκριμένα, έχει παρατηρηθεί ότι ομάδες με υψηλό σκορ σε κάποιο πρόβλημα, παρουσιάζουν λύσεις των μελών τους εντελώς παρόμοιες σε σκέψη και δομή. Συνεπώς, τίθεται το ερώτημα μήπως η εντατική προπόνηση για διαγωνισμούς περιορίζει την ανεξαρτησία, τον αυθορμητισμό και τη φαντασία σε υψηλότερο επίπεδο από το επιθυμητό. Κάτι το οποίο εξάλλου αποτελεί γενικότερο προβληματισμό Davidson(2003)[5] όχι μόνο όσον αφορά τα μαθηματικά για τις αρνητικές επιδράσεις της γνώσης προετοιμασίας στη δημιουργική σκέψη στην επίλυση προβλημάτων. 2.3 Μαθηματικοί διαγωνισμοί και διασκέδαση Στον πρόλογο των συγγραφέων στο «Η Αλίκη στη χώρα των αριθμών» αναφέρεται ότι ο επαγγελματίας μαθηματικός είναι συγγενής με την ιδέα ότι η διασκέδαση και οι σοβαρές προθέσεις δεν είναι ασύμβατες, αλλά το ζήτημα είναι για τους συγγραφείς οι αναγνώστες τόσο να διασκεδάσουν, αλλά ταυτόχρονα να μη χάσουν το μαθηματικό νόημα. Δηλαδή, τα μαθηματικά των διαγωνισμών, ως διαφορετικής μορφής προβλήματα μπορούν να ενταχθούν με τρόπο και στη σχολική τάξη, ώστε να κερδίσουν οι μαθητές την ευκαιρία της επίλυσης ενός προβλήματος. Δηλαδή, μπορούν να ενταχθούν στο σχολικό πρόγραμμα προβλήματα που εκτός ενός διαγωνι - Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

8 στικού πλαισίου μπορούν να αναδείξουν την ομορφιά των μαθηματικών, αλλά να έχουν και ρόλο προσελκυστικό για τους μαθητές προς τους δια - γωνισμούς. Εξάλλου, έχει επισημανθεί Kenderov(2006) [9] ότι αρκετοί από τους επιτυχημένους διαγωνιζόμενους σε μαθηματικούς διαγωνισμούς που δεν ακολουθούν ερευνητική πορεία στα μαθηματικά ή έστω γενικότε - ρα στις επιστήμες σταματούν να ασχολούνται με τα μαθηματικά, πλήρως κορεσμένοι από τις συμμετοχές τους σε διαγωνισμούς. Ο Siu(2013)[21] αναφέρει ότι αν στο επίκεντρο ενός διαγωνισμού βρίσκεται η νίκη και μόνο, τότε καλλιεργείται προς τους μαθητές μία δυσαρέσκεια για ολόκλη - ρη τη δραστηριότητα. Έτσι, η πίεση για υψηλό σκορ σε προβλήματα μαθηματικών ολυμπιάδων μπορεί να έχει αρνητικά αποτελέσματα. Συνεπώς, είναι αναγκαίο να τονιστεί η διασκεδαστική πλευρά των διαγωνισμών, έστω και αν απαιτούνται σε μερικές περιπτώσεις μικρές μεταβολές των κανονισμών (πχ διαθέσιμος χρόνος ή συνεργασίες διαγωνιζομένων). Ο Terence Tao[22] αναφέρει ότι τα μαθηματικά δεν είναι μόνο για βαθμούς και εξετάσεις, αλλά έχουν και τη διασκεδαστική τους οπτική και τελικά προ - τρέπει τους μαθητές να διασκεδάσουν τα προβλήματα των διαγωνισμών, χωρίς όμως να παραμελούν τις βαρετές συνηθισμένες ασκήσεις της μα - θηματικής εκπαίδευσης. Θα μπορούσαμε να συμπληρώσουμε ότι ανάλογα και οι μαθηματικοί διαγωνισμοί δεν είναι μόνο επιτυχίες και υψηλά σκορ, αλλά και επικοινωνία, 2.4 Παραδείγματα μαθηματικών διαγωνισμών Ο διαγωνισμός MCM (Mathematical Contest in Modelling) αποτελεί ένα χαρακτηριστικό παράδειγμα ενός επιτυχημένου ομαδικού διαγωνισμού Parker(1999)[13]. Διεξάγεται από το 1985 με ομάδες τριών φοιτητών. Επικεντρώνει στις πρακτικές εφαρμογές των μαθηματικών και ζητείται από τους φοιτητές να επιλύσουν προβλήματα του πραγματικού κόσμου. Η συμμετοχή των φοιτητών στο διαγωνισμό αναπτύσσει ομαδικό πνεύμα συνεργασίας και γεννά ενθουσιασμό στους συμμετέχοντες. Σε αυτόν μπορούν να συμμετέχουν και μαθητές λυκείων. Συνήθως δίνονται δύο προβλήματα ένα διακριτού και ένα συνεχούς τύπου και οι ομάδες έχουν 89 ώρες από την Παρασκευή έως τη Δευτέρα για να εργαστούν με τα προ - βλήματα. Συγκεκριμένα, οφείλουν μέσα σε αυτό το διάστημα να επιλέξουν με ποιο από τα δύο προβλήματα θα ασχοληθούν, να ερευνήσουν το πρόβλημα, να σχεδιάσουν μία λύση, να την εφαρμόσουν, να την αναλύ - σουν και να γράψουν μία τεχνική αναφορά στην οποία να την παρουσιάζουν. Οι συμμετέχοντες μπορούν να χρησιμοποιούν πηγές βιβλιοθή - κης ή διαδικτύου, αλλά όχι συμβουλές από ειδικούς. Σε τέτοιου είδους διαγωνισμούς διακρίνονται χαρακτηριστικά που άρουν πιθανές αρνητικές προεκτάσεις των διαγωνισμών Davidson(2003)[5], Lam(2012), όπως η πίεση λόγω χρόνου, το αίσθημα αποτυχίας λόγω υπερβολικού ανταγωνισμού, ενώ ταυτόχρονα υποστηρίζεται η συνεργατική μορφή τους. Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

9 Ο διαγωνισμός W.M.T.C. (World Mathematics Team Championship [28]) δημιουργήθηκε από τους καθηγητές Zhou Guozhen (Κίνα) και Quan K. Lam από το πανεπιστήμιο της California (USA) το Στην πρώτη του διεξαγωγή συμμετείχαν 73 ομάδες από 11 χώρες σε τρία επί - πεδα: Junior, Intermediate και Advanced. Και οι δύο καθηγητές πιστεύουν ότι η ομαδική έρευνα και η επικοινωνία είναι ουσιαστικές δεξιότητες που πρέπει να αναπτυχθούν και ο διαγωνισμός αυτός είναι ένα μέσο. Οι βασικές διαφορές αυτού του διαγωνισμού εστιάζονται στα εξής χαρακτη - ριστικά: α) δίνει μεγαλύτερη σημασία στις ομάδες σε σχέση με τα άτομα. Οι μαθηματικοί διαγωνισμοί θα έπρεπε να είναι κάτι περισσότερο από τον απλό προσδιορισμό των νικητών ή της εύρεσης των ατόμων με το μεγαλύ - τερο σκορ. Αυτός ο διαγωνισμός προάγει το πνεύμα της συνεργασίας και της οργάνωσης των δεξιοτήτων των μαθητών. Οι μαθητές πρέπει να μάθουν πώς να μοιράζονται καθήκοντα αποτελεσματικά και πώς μπορούν να δράσουν με τις ιδιαιτερότητές τους (πλεονεκτήματα και αδυναμίες τους) στο πλαίσιο μίας ομάδας με συγκεκριμένους στόχους. Πρέπει να διαχειριστούν το χρόνο τους ως ομάδα, να ελέγχουν ο ένας τις απαντήσεις του άλλου στην περίπτωση εύρεσης διαφορετικών λύσεων και να συντάσσουν την καλύτερη απάντηση. Ο WTCM βραβεύει τόσο ομάδες, όσο και άτομα. β) Οι διαγωνιζόμενοι ζουν μαζί και συμμετέχουν σε δραστηριότητες αναψυχής και πολιτισμού όλοι μαζί. Οι μαθητές περνούν τέσσερις ημέρες στο Πεκίνο διαγωνιζόμενοι, συμμετέχοντας σε δραστηριότητες και βλέποντας τα αξιοθέατα της πόλης. Γνωρίζονται μεταξύ τους και αλληλεπιδρούν με τα μέλη όχι μόνο της ομάδας τους, αλλά και των υπολοί - πων ομάδων. γ) Αυτός ο διαγωνισμός καλλιεργεί το ενδιαφέρον των μαθητών για τα μαθηματικά, όταν βρίσκονται στο επίπεδο των Junior, που είναι πιο δεκτικοί στη μάθηση των μαθηματικών. Κάθε ομάδα αποτελείται από έξι μαθητές με ένα ή δύο αναπληρωματικά μέλη. Υπάρχουν τρεις γύροι στο διαγωνισμό: ο ομαδικός, η σκυταλοδρομία και ο ατομικός. Ένας επίσης διαγωνισμός ομάδων είναι και ο Purple Comet/Math Meet [15]. Έχει διαφορετικά χαρακτηριστικά από τους προηγούμενους ως προς δύο κυρίως σημεία: είναι διαδικτυακός και δεν είναι απαραίτητα συνεργατικός, λόγω της φύσης και του πλήθους των προβλημάτων. Συγκε - κριμένα, ομάδες μαθητών, με έναν επιβλέποντα, αποτελούμενες από έναν μέχρι και έξι μαθητές καλούνται να δώσουν λύσεις σε 20 προβλήματα μέσα σε μία(οι αντίστοιχοι Juniors) ή μιάμιση ώρα (οι αντίστοιχοι Seniors). Συνεπώς οι μαθητές συνεργάζονται μόνο στο ως προς το πώς θα κατανείμουν τα θέματα, ώστε να προλάβουν να τα λύσουν όλα στον δοθέντα χρόνο. Στον ίδιο χρόνο θα πρέπει να δακτυλογραφήσουν και να ανεβάσουν τις απαντήσεις τους στην ιστοσελίδα του διαγωνισμού. Κατά τα λοιπά ο διαγωνισμός είναι ετήσιος, διεθνής και ξεκίνησε το Οι ομάδες μαζί με τον επιβλέποντα μπορούν να διαγωνιστούν σε διάστημα 10 ημερών, στο οποίο ο επιβλέπων συνδέεται στη σελίδα και κατεβάζει τα προβλήματα, τα οποία μοιράζει στους μαθητές της ομάδας, που πρέπει να Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

10 τα λύσουν στον προκαθορισμένο για αυτούς χρόνο. Το 2012 συμμετείχαν 10,000 μαθητές με 2700 ομάδες από 43 χώρες. Αυτό ακριβώς είναι και το πλεονέκτημα του συγκεκριμένου διαγωνισμού ότι δίνει τη δυνατότητα συμμετοχής πολλών διαφορετικών μαθητών στο χρόνο που μπορούν. Οι ομάδες που μπορούν να συμμετέχουν είναι ομάδες με μέλη από το ίδιο σχολείο με επιβλέπων κάποιον καθηγητή τους, ομάδες με μέλη από πε - ρισσότερα του ενός σχολεία ή ακόμα και ομάδες χωρίς περιορισμούς οι οποίες όμως δε συμμετέχουν για τα βραβεία. Ιδιαίτερο ενδιαφέρον παρουσιάζει και ο Mandelbrot Team Play [32], ο οποίος είναι σχεδιασμένος για μαθητές που αρέσκονται να δουλεύουν κυρίως σε ανοικτού αποτελέσματος προβλήματα (open ended problems) και συνήθως μπορεί να αποτελεί και προετοιμασία για πιο απαιτητικούς διαγωνισμούς όπως ο A.R.M.L. ή ο U.S.A.M.O. Σε αυτόν το διαγωνισμό ομάδες τεσσάρων μαθητών εργάζονται μαζί σε μία σειρά προβλημάτων απόδειξης. Οι μαθητές γράφουν τις αιτιολογήσεις τους σε διαδοχικά μέρη, τα οποία συνενώνουν για να προκύψει μία πλήρης απόδειξη. Η ομα - δική δοκιμασία διαρκεί μία ώρα και οι απαντήσεις ταχυδρομούνται ηλεκτρονικά σε κριτές. Ακριβείς και αναλυτικές λύσεις δίνονται σε όλα τα προβλήματα από τους διοργανωτές, ώστε να χρησιμοποιηθούν ως παραδείγματα. Άλλοι μαθηματικοί διαγωνισμοί που λειτουργούν και με ομάδες μαθητών και μπορούν να αναζητηθούν και στο διαδίκτυο είναι: Suffolk Maths Team Challenge, Pummill Math Relays, UKMT Team Challenge, Stanford Math Tournament, Canadian Team Mathematics Contest, American Regions Mathematics League (ARML) και άλλοι. 3 Μία πρόταση για έναν ομαδικό διαγωνισμό μαθηματικών 3.1 Ένας διαγωνισμός με ομάδες συνεργασίας Ομαδικοί διαγωνισμοί μαθηματικών, όπως περιγράφηκε προηγουμένως, υπάρχουν και λειτουργούν καλά παγκοσμίως. Τόσο στη σύγχρονη μαθηματική έρευνα, όσο και στη διδακτική των μαθηματικών οι συνεργασίες θεωρούνται προαπαιτούμενες. Η εξειδίκευση στα διάφορα πεδία των μαθηματικών απαιτεί συχνά συνεταιρισμούς πολλών μαθηματικών για την επίτευξη ενός σημαντικού αποτελέσματος. Σύμφωνα με τον Ziegler στο Schleicher(2011)[18] οι «ερευνητικοί διαγωνισμοί 1» είναι περισσότερο συ- 1 Ο Ziegler αναφέρει δύο ερευνητικά προβλήματα μαθηματικών στο συγκεκριμένο έργο: τον υπολογισμό του π με ακρίβεια και την βέλτιστη τοποθέτηση τετραέδρων στο χώρο (tetrahedra packing problem), στα οποία ο συναγωνισμός μεταξύ ερευνητικών ομάδων μαθηματικών για Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

11 νεργατικοί από ποτέ. Ενώ και ο Kenderov(2006)[9] γνώστης των μαθηματικών διαγωνισμών παγκοσμίως - αναφέρει ως ένα από τα επόμενα βήματα που πρέπει να γίνουν στους μαθηματικούς διαγωνισμούς την ομαδι - κή εργασία. Συγκεκριμένα, γράφει: Η εργασία σε ομάδες είναι μία καλά εφαρμοσμένη τακτική στη σύγχρονη επιστή - μη. Αιώνες τώρα, η έρευνα στα μαθηματικά ήταν μία ατομική διαδικασία. Σήμε - ρα, βλέπουμε όλο και περισσότερες ομαδικές εργασίες στα μαθηματικά και ειδικά στις εφαρμογές τους. Αποκαλύπτεται λοιπόν μία ακόμα ομοιότητα των σύγχρο - νων μαθηματικών και των άλλων επιστημών, όπου η ομαδική εργασία έχει παρα - δοσιακά βαθύτερες ρίζες. Η ικανότητα να εργάζεται κανείς ως μέλος μίας ομάδας αποτελεί πολύτιμη δεξιότητα, η οποία θα μπορούσε και θα έπρεπε να καλλιεργείται από μικρή ηλικία. Από την άλλη πλευρά και οι ομάδες μπορούν να ωφεληθούν από ένα δια - γωνιστικό περιβάλλον. Σύμφωνα με το Mulvey(2010)[11] η τοποθέτηση σαφών στόχων και ο συναγωνισμός αποτελούν δύο τεχνικές κινητοποίησης που φαίνεται να έχουν παρόμοιες επιδράσεις στην απόδοση της ομάδας ως προς την επίτευξη των στόχων. Ειδικότερα, οι επιδράσεις του συναγω - νισμού μεταξύ ομάδων στην αποτελεσματικότητα μίας ομάδας ως προς την επίτευξη των στόχων της είναι ιδιαιτέρως θετικές. Δηλαδή, η συνεργα - τική μάθηση μπορεί να ενισχύεται, μέσα από ένα πλέγμα σαφών στόχων, με τον υγιή συναγωνισμό μεταξύ των ομάδων. Επίσης, οι συνεργατικές δραστηριότητες εμπλέκουν την κατασκευή νέων ιδεών και δημιουργία προβλημάτων, βασισμένων στην προσωπική, αλλά και την κοινή γνώση και εμπειρία των μελών της ομάδας. Έτσι, εφαρμόζονται μερικές από τις βασικές αρχές του εποικοδομισμού. Οι μαθητές ερευνούν σημαντικά, πραγ - ματικά (real world) προβλήματα μέσω εξερευνητικών ερωτημάτων Thirteen [23]. Οι συνεργατικές δραστηριότητες μπορούν να έχουν διαφορετι - κούς στόχους από βασικές δεξιότητες, έως και υψηλής στάθμης επιδεξιότητες σκέψης (H.O.T. = Higher Order Thinking), οπότε μπορούν να ενταχθούν στους μαθηματικούς διαγωνισμούς. Εξάλλου, η μάθηση των μαθηματικών δεν αντιμετωπίζεται πλέον αποκλειστικά ως απόκτηση της μαθηματικής γνώσης, αλλά επίσης και μέσω της συμμετοχής σε συζητήσεις της μαθηματικής κοινότητας Sfard(2000)[20]. Με την ενεργή τους συμμετοχή σε κοινωνικές δραστηριότητες οι μαθητές έχουν την ευκαιρία όχι μόνο να αναπτύξουν μαθηματικές δεξιότητες και γνώσεις, αλλά να εξηγήσουν επίσης τις σκέψεις τους, να τις επιβεβαιώσουν, να συζητήσουν τις παρατηρήσεις τους και να μάθουν να χρησιμοποιούν αποτελεσματικές μαθηματικές μεθόδους για την επίλυση διαφορετικών προβλημάτων, μέσα και από την παρατήρηση των συμμαθητών τους. Έτσι, στο πρόγραμμα των περισσότερων μαθηματικών διαγωνισμών παγκοσμίως εντάσσονται δραστηριότητες μετά τον διαγωνισμό, στις οποίες οι συναγωνιζόμενοι την εύρεση καλύτερης λύσης κάθε φορά είναι παροιμιώδης. Σε αυτό το πλαίσιο εισάγει και την έννοια ερευνητικοί διαγωνισμοί. Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

12 έχουν την ευκαιρία να γνωριστούν και να μιλήσουν για το κοινό τους εν - διαφέρον που στη συγκεκριμένη περίπτωση είναι τα όμορφα προβλήματα των μαθηματικών διαγωνισμών. 3.2 Δημιουργία προβλημάτων από τους διαγωνιζόμενους Σύμφωνα με πολλούς ερευνητές μαθηματικών, όπως για παράδειγμα οι T.- Gowers και S.Smirnov στο Schleicher(2011)[18], η δημιουργία ενός προβλήματος μπορεί να είναι σημαντικότερη από την επίλυση ενός άλλου προβλήματος. Εξάλλου, οι Lubart και Mouchiroud στο Davidson(2003) [5] αναφέρουν ότι άτομα που μπορούν να μεταβάλλουν μία αναπαράσταση και να περάσουν σε μία άλλη, χωρίς να έχουν ιδιαίτερες προτιμήσεις σε κάποιες συγκεκριμένες μορφές είναι συνήθως περισσότερο δημιουργικά από άλλους. Ακόμα στις βασικές αρχές (standards) για τη διδασκαλία των μαθηματικών του National Council of Teachers of Mathematics (N.C.T.M. 2012)[12] αναφέρεται ότι οι μαθητές λυκείου πρέπει να έχουν μία εμπειρία στην αναγνώριση και επίλυση δικών τους μαθηματικών προ - βλημάτων. Συνεπώς, προκύπτει εύλογα το ερώτημα, αν κάποια προβλήματα τόσο εντός σχολικού προγράμματος, αλλά και σε έναν διαγωνισμό θα μπορούσαν να διατυπώνονται από τους μαθητές. Αν και αυτό φαίνεται δύ - σκολο να γίνει σε πλήρη ανάπτυξη και χωρίς προηγούμενη εξάσκηση από τους μαθητές, οι Brown και Walter, στο Brown(2005)[4], θεμελιώνουν ότι οι μαθητές μπορούν να δουν ένα συγκεκριμένο πρόβλημα με οξύτερη μα - τιά, να ενθαρρυνθούν να δημιουργήσουν νέες ιδέες, να πετύχουν βαθύτερη κατανόηση του αρχικού προβλήματος και τελικά να θέσουν ένα νέο πρόβλημα, είτε εντός, είτε εκτός σχολικού προγράμματος. Η διαδικασία και οι δραστηριότητες που περιγράφουν ξεκινούν από την επίλυση ή απόδειξη ενός απλού θεωρήματος ή προβλήματος, όπως το πυθαγόρειο θεώρημα για παράδειγμα. Το πρώτο βήμα της διαδικασίας είναι η πλήρης αναγνώριση των δεδομένων και των ζητούμενων του προβλήματος. Στη συνέχεια οι μαθητές εξασκούνται στο να βρίσκουν εφαρμογές του, ώστε να έχουν μία πρώτη πηγή δημιουργίας νέων προβλημάτων, μέσω εφαρμογών ήδη γνωστών μαθηματικών προτάσεων σε πραγματικές καταστάσεις. Η δεύτερη φάση περιλαμβάνει την κατάσταση διερεύνησης άρνησης μίας δεδομένης ιδιότητας (what if not phase), κατά την οποία οι μαθητές εξασκούνται στη διερεύνηση ενός αλλαγμένου προβλήματος όπου έχει αρθεί ή μεταλλαχθεί μία δεδομένη ιδιότητα. Στο παράδειγμα του πυθαγορείου θεωρήματος θα μπορούσαν να διερωτηθούν τι θα συνέβαινε αν η αλγεβρική σχέση που το περιγράφει δεν είχε ισότητα, αλλά ανισότητα, δηλαδή, αν ήταν διατυπωμένο κάπως έτσι: α 2 + β 2 <γ 2. Ή ακόμα, αν στη γεωμετρική του θεώρηση τα τετράγωνα των πλευρών δεν ήταν τετράγωνα, αλλά ισόπλευρα τρίγωνα ή γενικότερα όμοια σχήματα; Δηλαδή, αυτή η διαδικασία μπορεί να δώσει πολλά διαφορετικά ερωτήματα και όσα από αυτά οι μαθητές μπορούν να απαντήσουν τελικά, θα μπορούσαν να αποτελούν Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

13 νέα ερωτήματα προβλήματα. Επίσης, η δημιουργία προβλημάτων βοηθά και στην ανάπτυξη της ικανότητας επίλυσης προβλημάτων. Γιατί είναι αναμενόμενο ένα αποτέλεσμα; Συνήθως αναζητείται μία απάντηση, η οποία όχι μόνο καθιστά κατανοητή τη λύση, αλλά ταυτόχρονα τη διαφω - τίζει. Δηλαδή, εξηγεί γιατί συμβαίνει, παρουσιάζει τις βαθύτερες αιτίες και συνδέσεις του αρχικού προβλήματος και της λύσης. Σε αυτό το γιατί ανα - ζητείται ουσιαστικά το γιατί και πώς προήλθε το συγκεκριμένο αποτέλεσμα και αν επιπλέον επιδέχεται γενίκευση. Εξάλλου, στην ιστορία της μαθηματικής έρευνας δεν είναι λίγες οι φορές που νέες θεωρίες έχουν προκύ - ψει από την άρνηση δεδομένων ιδιοτήτων με χαρακτηριστικό παράδειγμα την ανάπτυξη των μη Ευκλείδειων γεωμετριών κατά τον 19ο αιώνα Bonola(1955)[3]. Η συσχέτιση μεταξύ της ανάπτυξης ικανοτήτων επίλυσης και δημιουργίας προβλημάτων εμφανίζεται ισχυρή Brown(2003)[4], ενώ η δημιουργία προβλημάτων ως δραστηριότητα μπορεί να είναι αυτόνομη, αλλά ταυτόχρονα βοηθά τόσο στην ανάπτυξη ικανοτήτων επίλυσης προβλημάτων, όσο και στη βαθύτερη προσωπική τους κατανόηση. Επίσης, εφόσον η δημιουργία προβλημάτων και ερωτήσεων σε σημαντικό βαθμό μπορεί να είναι ευκολότερη από την επίλυση μπορεί να αποτελεί και ένα συστατικό αντιμετώπισης της μαθηματικοφοβίας. Ακόμα λοιπόν και αν δεν προβλέπεται γενικά στους μαθηματικούς διαγωνισμούς, αλλά ούτε είναι σαφές στα Αναλυτικά προγράμματα μαθηματικών στην Ελληνική εκπαίδευση, ένας μαθηματικός διαγωνισμός θα μπορούσε να υποστηρίξει μία από τις δοκιμασίες του διαγωνισμού μεταξύ των ομάδων να είναι και η δημιουργία προβλήματος προς επίλυση από τις υπόλοιπες ομάδες. Ένα τέτοιο πρόβλημα θα μπορεί να είναι μέσα στην ύλη των μαθηματικών της τάξης που διαγωνίζονται οι μαθητές. Ενδεικτικά ως αφόρμηση να δίνεται ένα συγκεκριμένο πρόβλημα ή θεώρημα και να ζητείται από την ομάδα των μαθητών να το τροποποιήσει κατάλληλα, ώστε να δημιουργήσει ένα νέο πρόβλημα, το οποίο θα τεθεί με τη σειρά του προς επίλυση από τις υπόλοιπες ομάδες. Μία διαδικασία που μπορεί να χρησιμοποιηθεί εσωτερικά σε μία ομάδα είναι ένας καταιγισμός ιδεών για την άρνηση κάποιας δοσμένης ιδιότητας ενός συγκεκριμένου προβλή - ματος αφόρμησης. Σε αυτό το σημείο εμπλέκεται ουσιαστικά η λειτουργία και συνεργασία της ομάδας, αφού συχνά τα άλλα μέλη μίας ομάδας μπο - ρούν να δουν αυτό που ένα άτομο «αρνείται» να αναγνωρίσει. Εργαλείο θα μπορούσε να είναι και η χρήση Η/Υ. Οι μαθητές διαγωνιζόμενοι μπορούν με τη βοήθεια λογισμικού δυναμικής γεωμετρίας για πα - ράδειγμα να αναζητήσουν μεταβολές σε ένα πρόβλημα γεωμετρίας και να οδηγηθούν στη δημιουργία ενός νέου προβλήματος. Ενώ κάποιος επόπτης υπεύθυνος καθηγητής άλλης ομάδας θα μπορούσε να εκφέρει άποψη για την ορθότητα του προβλήματος και την επιλυσιμότητά του, αν και το σωστά τοποθετημένο πρόβλημα θα δίνεται μαζί με τη λύση του στον Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

14 επόπτη και θα βαθμολογείται τόσο η δημιουργία σωστού προβλήματος όσο και η ορθή λύση του. Επίσης θα μπορούσε να ζητείται και η δημιουργία προβλήματος με συγκεκριμένα δεδομένα και κοστολόγηση των λύσεων απαντήσεων με τη χρήση όσο το δυνατόν λιγότερων από αυτά. Παραδείγματα δραστηριοτήτων παρουσιάζονται στα επόμενα. 3.3 Προτεινόμενη δομή και λειτουργία ενός ομαδικού μαθηματικού διαγωνισμού Οι δραστηριότητες που μπορούν να επιλεχθούν για έναν τέτοιο διαγωνισμό μπορούν να είναι πολλαπλές. Από την ανάλυση που προηγήθηκε είναι εμφανές ότι στα χαρακτηριστικά ενός σύγχρονου διαγωνισμού είναι αναγκαίο να συμπεριλαμβάνονται: α)ομαδικές δραστηριότητες, β) δραστηριότητες δημιουργίας προβλημάτων, γ) δραστηριότητες συζήτησης μετά το διαγωνισμό μεταξύ των διαγωνισθέντων, δ) δραστηριότητες επίλυσης προβλημάτων ατομικά. Ενισχυτικά, θα μπορούσαν να υπάρχουν και δραστηριότητες επίλυσης ανοικτών δεδομένων και ζητούμενων προβλημάτων ή ακόμα και πραγματικών προβλημάτων με ελεύθερη πρόσβαση σε βιβλιογραφία. Σε κάποιες περιπτώσεις αναφέρεται Kenderov(2006)[9] ότι είναι αναγκαίο να ενταχθούν στους μαθηματικούς διαγωνισμούς και προβλήματα προγραμματισμού ή αλγοριθμικής επίλυσης, ώστε να αποφευχθεί η διαρροή ικανών στα μαθηματικά ατόμων που αρέσκονται και στον προγραμματισμό. Επίσης, ο περιορισμός του χρόνου δεν μπορεί να είναι πάντα καθοριστικός. Δηλαδή, πρέπει να υπάρχει η δυνατότητα ανάδειξης και ατόμων που δρουν πιο αργά ατομικά στην επίλυση ενός προβλήματος, αλλά μπορεί ενδεχομένως να κάνουν βαθιές σκέψεις και να δίνουν εξαιρετικές λύσεις. Στη συνέχεια εστιάζουμε σε δραστηριότητες που δεν συναντώνται σε όλους τους μαθηματικούς διαγωνισμούς. Παραδείγματα δραστηριοτήτων Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

15 Μαθηματική Σκυτάλη: Ερωτήσεις και μικροπροβλήματα κατανέμονται ανά βαθμό δυσκολίας σε διαφορετικά δοχεία με βαθμολογία ανάλογη με το βαθμό δυσκολίας. Κάθε άτομο από μία ομάδα επιλέγει ένα πρόβλημα με το βαθμό δυσκολίας που επιθυμεί και το επιλύει. Παραδίδει τη λύση γραμμένη στον επόμενο συμπαίκτη του, ο οποίος την τοποθετεί στο κουτί απαντήσεων, επιλέγει ένα νέο πρόβλημα με τη δυσκολία που επιθυμεί και η διαδικασία συνεχίζεται μέχρι τη λήξη του χρόνου. Σε αυτήν τη δραστηριότητα όλοι οι μαθητές έχουν λόγο και συμμετοχή, αφού μπορούν να βρουν προβλήματα ανάλογα των δυνατοτήτων τους. Σε μία παραλλαγή της μαθηματικής σκυτάλης θα μπορούσε κάθε μέλος να επιλύει ένα πρόβλημα, την απάντηση του οποίου δίνει στο επόμενο μέλος της ομάδας που του είναι απαραίτητη για να επιλύσει με τη σειρά του ένα νέο πρόβλημα και ομοίως μέχρι το τελευταίο μέλος να απαντήσει. Δημιουργία προβλήματος: Στόχος είναι κάθε μία από τις ομάδες να δημιουργήσει μέσα στον προκαθορισμένο χρόνο ένα πρόβλημα μαζί με τη λύση του. Στη συνέχεια και πάλι σε προ - καθορισμένο χρόνο τα προβλήματα κληρώνονται μεταξύ των ομάδων που συμμετέχουν και επιλύονται από τις άλλες ομάδες. Αυτή η δραστηριότητα μπορεί να έχει πολλές διαφορετικές μορφές. Για παράδειγμα μπορεί να υπάρχει μία δεξαμενή φύλλων δεδομένων, από την οποία κάθε ομάδα μπορεί να επιλέγει ένα φύλλο. Σε καθένα από αυτά τα φύλλα θα υπάρχουν κάποια δεδομένα που μπορούν να χρησιμοποιηθούν για τη δημιουργία ενός προβλήματος. Καθένα από τα δεδομένα θα έχει κάποιο «κόστος χρήσης», δηλαδή η ομάδα θα χρεώνεται περισσότερες μονάδες ανάλογα με τα δεδομένα που χρησιμοποιεί. Πιο συγκεκριμένα ένα φύλλο θα μπορούσε να διαθέτει: ένα τρίγωνο, ίσες πλευρές, μία διάμεσο, έναν κύκλο, ένα ύψος, μία προέκταση ενός ευθυγράμμου τμήματος κατά ίσο μήκος με το αρχικό. Όλα αυτά «κοστολογημένα» θα μπορούσαν οι διαγωνιζόμενοι μίας ομάδας να χρησιμοποιήσουν κάποια από αυτά και να δημιουργήσουν ένα πρόβλημα προς επίλυση από τις υπόλοιπες ομάδες. Σε μία άλλη μορφής της ίδιας δραστηριότητας θα μπορούσε να δίνεται ένα πρόβλημα και να ζητείται από τους μαθητές να αλ- Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

16 λάξουν ένα από τα δεδομένα του, ώστε να δημιουργηθεί ένα νέο πρόβλημα. Κλασικό: Σε κάθε ομάδα διαγωνιζομένων δίνεται μία σειρά προβλημάτων που καλούνται να επιλύσουν σε ένα ορισμένο χρονικό διάστημα. Σε αυτήν την περίπτωση μπορεί να δράσει ο κα - θένας ατομικά και να λύσει κάποια από τα προβλήματα, πάντα όμως υπάρχει το ζήτημα του συντονισμού και της επιλογής του προβλήματος που θα λύσει ο καθένας. Παρακάτω παρατίθεται μία τέτοια σειρά προβλημάτων από τον Pummill Math Relays στο σκέλος MathMania 2011: 1. Αν διαθέτεις 46 τέταρτα και δεκάρες του δολλαρίου συνολικής αξίας 7 δολλαρίων, να βρεθεί πόσα νομίσματα κάθε τύπου διαθέτεις. 2. Από ένα σύνολο 6 γυναικών και 4 ανδρών επιλέγεται μία επιτροπή αποτελούμενη από 3 γυναίκες και 2 άνδρες. Με πόσους διαφορετικούς τρόπους μπορεί να γίνει αυτό; 3. Να βρεθεί ο επόμενος όρος της ακολουθίας: 1,1,1,4,10,25,64,163, Σε έναν αγώνα 100 μέτρων η Αλίκη κερδίζει τον Βασίλης κατά 10 μέτρα, ενώ ο Βασίλης τον Γιάννη κατά 20 μέτρα. Πόσο κερδίζει η Αλίκη τον Γιάννη; 5. Να βρεθεί ο συνολικός αριθμών ορθογωνίων που απεικονίζονται στο παρακάτω σχήμα: Σκυταλοδρομία σε ζεύγη: Ο σκοπός είναι να διεξαχθεί ένας διαγωνισμός ταχύτητας όπου οι ομάδες διαγωνίζονται σε ζευγάρια και απαντούν εναλλάξ ερωτήσεις. Κάθε ομάδα χωρίζεται σε δύο ζευγάρια που κάθονται σε δύο θρανία, κοιτώντας όλοι προς την ίδια κατεύθυνση. Ένα μέλος του ζεύγους Α για κάθε ομάδα επιλέγει την ερώτηση Α1 και την δίνει στο άλλο μέλος του ζεύγους Α για να την απαντήσουν. Μόλις είναι σίγουροι για την απάντηση την παραδίνουν. Αν είναι σωστή αυτή τότε παραλαμβάνουν την ερώτηση Β1, την οποία δίνουν στο ζεύγος Β της ομάδας τους, ενώ αν η απάντηση στην Α1 ήταν λανθασμένη Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

17 έχουν άλλη μία προσπάθεια απάντησης. Ομοίως συνεχίζει το ζεύγος Β, μέχρι να εξαντληθεί ο χρόνος ή οι ερωτήσεις. Αριθμόλεξο: Κάθε ομάδα χωρίζεται σε δύο ζεύγη καθένα από τα οποία αναλαμβάνει να συμπληρώσει τους αριθμούς με βάση τις οριζόντιες ή τις κάθετες ερωτήσεις. Δείτε ένα παράδειγμα από τον UKMT Team Challenge εδώ: Regional %20Final/Cross%20Number%20Regional%20Final% doc Πραγματικό πρόβλημα: Ζητείται από κάθε ομάδα να επιλύσει ένα πραγματικό πρόβλημα. Σε αυτήν τη δραστηριότητα οι μαθητές μπορούν να επιλέξουν πόσο ειδικές παραδοχές θα κάνουν και άρα πόσο η μοντελοποίησή τους ταιριάζει καλύτερα στο πραγματικό πρόβλημα. Οι κριτές βαθμολογούν την όσο το δυ - νατόν πλησιέστερη προς το πραγματικό πρόβλημα μοντελοποίηση και λύση. Διερευνητικό πρόβλημα(open ended): Δίνεται σε κάθε ομάδα ένα πρόβλημα χωρίς καθόλου ζητούμενα και τους ζητείται να δώσουν όσες περισσότερες εκδοχές απαντήσεων μπορούν σε ένα επαρκές χρονικό διάστημα. Αποτελεί άλλη μία δραστηριότητα, στην οποία προωθείται η αυτενέργεια των μαθητών και εξωθείται η φαντασία τους Becker(1997). Επίσης, αποτελεί μία δραστηριότητα στην οποία δεν υπάρχουν μαθητές, οι οποίοι να μην μπορούν να δώσουν κάποιες απαντήσεις. Παράδειγμα δραστηριότητας: Δίνεται ένα φύλλο χαρτί Α4 και το διπλώνετε ξανά και ξανά και ξανά και... Καταγράψτε τα συμπεράσματά σας. Πολλές από τις προηγούμενες δραστηριότητες μπορούν να ενταχθούν στο πλαίσιο οποιουδήποτε ομίλου μαθηματικών ή ακόμα και εντός του σχολικού προγράμματος κατάλληλα προσαρμοσμένα. Έτσι, οι μαθητές θα μπορούν να εξασκούνται σε αυτές καθόλη τη χρονιά και να τις εντάσσουν ως μέρος επίτευξης ενός υψηλού στόχου που μπορεί να είναι και η επιτυχία σε έναν τέτοιου είδους διαγωνισμό. 4 Συμπεράσματα Προεκτάσεις Η δομή και λειτουργία των Π.Π.Σ., όπως αυτή διαμορφώθηκε μέσω του ν.3966, ενσωματώνει δραστηριότητες και Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

18 ανθρώπους(μαθητές και εκπαιδευτικούς) με κύριο στόχο τη συγκρότηση άριστων προσωπικοτήτων, εφήβων, οι οποίοι ως ενήλικες θα αποτελέσουν τον πυρήνα μίας σύγχρονης, λειτουργικής και ραγδαία αναπτυσσόμενης Ελληνικής κοινωνίας. Ένα περιβάλλον ευγενούς άμιλλας, όπως αυτό διαμορφώνεται σήμερα στα Π.Π.Σ., αποτελεί σημαντικό προωθητικό παράγοντα για την επίτευξη τόσο υψηλών στόχων. Πέρα από τις πολλαπλές διαστάσεις των δυνατοτήτων ενός εφήβου που πρέπει να αναπτυχθούν, ο πυρήνας μίας επιτυχημένης κοινωνίας βρίσκεται στη συνεργασία. Ο συνδυασμός ενός διαγωνισμού μαθηματικών, μέσω συνεργασιών των μαθητών και δραστηριοτήτων που προάγουν την αγάπη για την επιστήμη και την έρευνα μπορούν να ανοίξουν τους ορίζοντές τους και να τους καταστήσουν τους μελλοντικούς καινοτόμους δημιουργούς. Μία συνεργασία των εκπαιδευτικών των Π.Π.Σ., καταρχήν των μαθηματικών, μπορεί να δημιουργήσει μία τέτοια ομάδα δραστηριοτήτων, η οποία φυσικά στο μέλλον μπορεί να εξελιχθεί και να εντάξει τόσο τις φυσικές επιστήμες, όσο και την πληροφορική. Το μόνο που υπολείπεται είναι να κάνουμε την αρχή. Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

19 5 Βιβλιογραφία [1] Bicknell, B., Gifted students and the role of mathematics competitions. Australian Primary Mathematics Classroom, 13(4), 16 20, [2] Becker, J. & Shimada, L., The open-ended approach. Reston (VA): NCTM, [3] Bonola R., Non Euclidean Geometry, Dover, [4] Brown S.I., Walter M.I., The Art of Problem Posing, Lawrence Erlbaum Associates, Publishers, London, [5] Davidson J., Sternberg R., The psychology of problem solving, Cambridge, [6] Hurme, T., & Jarvela, S., Students Activity in Com-puter-Supported Collaborative Problem Solving in Mathematics, International Journal of Computers for Math-ematical Learning, 10(1), [7] Gowers T., Mathematics: a very short introduction, Oxford University press, [8] Kalman, R., Challenging gifted students: The math Olympiads. Understanding Our Gifted, 14(4), 13 14, [9] Kenderov Petar S., Competitions and mathematics education, Proceedings of the International Congress of Mathematicians, Madrid, Spain, European Mathematical Society, [10] Lesswrong.com, great_mathematicians_on_math_competitions_and/ [11] Mulvey P. and Ribbens B., The Effects of Intergroup Competition and Assigned Group Goals on Group Efficacy and Group Effectiveness, ACAD MANAGE J October 1, 2010 vol. 53 no [12] NCTM NCATE Standards in secondary education, National Council of Teachers of Mathematics, [13] Parker Μ., Zullo Η., Preyer Ν., The mathematical contest in modeling (M.C.M): success at a small regional university, primus: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 9:4, , [14]Polya, G. (1945; 2nd edition, 1957). How to solve it. Princeton, NJ: Princeton University Press. [15]Purple Comet! Math Meet!, Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

20 [16]Selden, J., & Selden, A., Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29(2), (1995) [17]Schaaf W., Recreational Mathematics. A guide to the literature, NCTM, [18] Schleicher D., Lackmann M. (editors), An Invitation to Mathematics From Competitions to Research, Springer, [19] Schoenfeld A., Mathematical Problem Solving, Academic Press Inc., [20] Sfard, A. (2000). On reform movement and the limits of mathematical discourse. Mathematical Thinking and Learning 2(3), [21] Siu Man Keung, The good, the bad and the pleasure (not pressure!) of mathematics competitions, Mathematics Competitions, 2013 Vol 26 No 1. [22] Tao Terence, [23] Thirteen.org, Workshop on cooperative and collaborative learning, / concept2class/ coopcollab/ index_sub5.html. [24] Thrasher T.N., The Benefits of Mathematics Competitions, Alabama Journal of Mathematics, Spring [25] Thurston W., Mathematical Education, Notices of the AMS 37, [26] Toh Tin Lam, The roles of mathematics competition in singapore mathematics education, International Congress on Mathematical Education Seoul, Korea, [27]Tripathi P.N., Problem solving in mathematics and cognitive development, State University of New York. [28]wmtc-math.net, World Mathematics Teams Championship, [29] World Federation of National Mathematics Competitions, [30]Zawaira A. and Hitchcock G., A Primer for Mathematics Competitions, Oxford Mathematic, [31] Θωμαΐδης Ι., Πούλος Α., Διδακτική της Ευκλείδειας Γεωμετρίας, Ζήτη, [32] Mandelbrot Team Play, forms/admin_mtp.pdf Συνέδριο για τα Μαθηματικά στα Π.Π.Σ

Ομαδικοί Μαθηματικοί Διαγωνισμοί. Σωτήρης Χασάπης Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης

Ομαδικοί Μαθηματικοί Διαγωνισμοί. Σωτήρης Χασάπης Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης Ομαδικοί Μαθηματικοί Διαγωνισμοί Σωτήρης Χασάπης Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης Διαγωνισμοί Μαθηματικών Ατομικές δραστηριότητες επίλυσης προβλημάτων Προβλήματα που εκτείνονται και

Διαβάστε περισσότερα

Ομαδικοί Μαθηματικοί Διαγωνισμοί

Ομαδικοί Μαθηματικοί Διαγωνισμοί Σωτήρης Δ. Χασάπης Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης shasapis@sch.gr http://users.sch.gr/shasapis Περίληψη Η παρούσα εισήγηση αποτελεί ουσιαστικά μία πρόσκληση πρόταση για τη διοργάνωση

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών.

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Α. Πέρδος 1, I. Σαράφης, Χ. Τίκβα 3 1 Ελληνογαλλική Σχολή Καλαμαρί perdos@kalamari.gr

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Μάθηση και γνώση: μια συνεχής και καθοριστική αλληλοεπίδραση Αντώνης Λιοναράκης Στην παρουσίαση που θα ακολουθήσει θα μιλήσουμε

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Ερευνητική Εργασία (Project)

Ερευνητική Εργασία (Project) Ερευνητική Εργασία (Project) Ερευνητικές Εργασίες (Project) Τι είναι ερευνητική εργασία Σκοπός της ερευνητικής εργασίας Εκπαιδευτική Αξία Προϋποθέσεις επιτυχίας του project Ρόλος του μαθητή Ρόλος του Εκπαιδευτικού

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΙΣΜΟΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΤΡΟΠΟΠΟΙΗΣΗ ΤΩΝ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΩΝ Π.Π.Σ.

ΠΡΟΒΛΗΜΑΤΙΣΜΟΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΤΡΟΠΟΠΟΙΗΣΗ ΤΩΝ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΩΝ Π.Π.Σ. ΠΡΟΒΛΗΜΑΤΙΣΜΟΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΤΡΟΠΟΠΟΙΗΣΗ ΤΩΝ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΩΝ Π.Π.Σ. Ανδρέας Πούλος Σχολικός Σύμβουλος Ανατολικής Θεσσαλονίκης, μέλος του ΕΠΕΣ του Π.Π.Σ.Π.Θ. 1. Η διατύπωση του εκπαιδευτικού

Διαβάστε περισσότερα

ΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών

ΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών ΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών 15 Μαΐου 2012 Τι είναι Εμπέδωση; ΠΡΙΝ Εξατομίκευση Θεραπευτική

Διαβάστε περισσότερα

Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση

Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση Πρόγραμμα Eξ Aποστάσεως Eκπαίδευσης (E learning) Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση Οδηγός Σπουδών Το πρόγραμμα εξ αποστάσεως εκπαίδευσης ( e-learning ) του Πανεπιστημίου Πειραιά του Τμήματος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

ΤΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ ΜΠΟΡΟΥΝ ΝΑ ΒΟΗΘΗΣΟΥΝ ΤΟΥΣ ΧΑΡΙΣΜΑΤΙΚΟΥΣ ΜΑΘΗΤΕΣ; ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΤΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ ΜΠΟΡΟΥΝ ΝΑ ΒΟΗΘΗΣΟΥΝ ΤΟΥΣ ΧΑΡΙΣΜΑΤΙΚΟΥΣ ΜΑΘΗΤΕΣ; ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑ ΠΕΙΡΑΜΑΤΙΚΑ ΣΧΟΛΕΙΑ ΜΠΟΡΟΥΝ ΝΑ ΒΟΗΘΗΣΟΥΝ ΤΟΥΣ ΧΑΡΙΣΜΑΤΙΚΟΥΣ ΜΑΘΗΤΕΣ; ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασίλης Καρκάνης 2 ο Πρότυπο Πειραματικό Λύκειο Αθήνας vkarkan@yahoo.gr Γιάννης Τυρλής 2 ο Πρότυπο

Διαβάστε περισσότερα

2o Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας

2o Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας o Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας «Ψηφιακή Τάξη Χημείας στη Β Λυκείου. Ονοματολογία οργανικής Χημείας. Από τη θεωρία στο εργαστήριο φυσικών επιστημών και από εκεί στην αίθουσα υπολογιστών» Αθανάσιος

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Φύλο και διδασκαλία των Φυσικών Επιστημών

Φύλο και διδασκαλία των Φυσικών Επιστημών Πηγή: Δημάκη, Α. Χαϊτοπούλου, Ι. Παπαπάνου, Ι. Ραβάνης, Κ. Φύλο και διδασκαλία των Φυσικών Επιστημών: μια ποιοτική προσέγγιση αντιλήψεων μελλοντικών νηπιαγωγών. Στο Π. Κουμαράς & Φ. Σέρογλου (επιμ.). (2008).

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

Μάθημα: Διδακτική της Πληροφορικής. Περιγραφή μαθήματος. Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Παρασκευή 17:00-20:00

Μάθημα: Διδακτική της Πληροφορικής. Περιγραφή μαθήματος. Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Παρασκευή 17:00-20:00 Μάθημα: Διδακτική της Πληροφορικής Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Παρασκευή 17:00-20:00 email: gpalegeo@gmail.com Περιγραφή μαθήματος Με τον όρο "Διδακτική της Πληροφορικής" εννοούμε τη μελέτη,

Διαβάστε περισσότερα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Η εισήγηση Η τεχνική του καταιγισμού ιδεών (Brainstorming). Η μελέτη περίπτωσης. Παίξιμο ρόλων-τα παιχνίδια προσομοίωσης, ρόλων,

Η εισήγηση Η τεχνική του καταιγισμού ιδεών (Brainstorming). Η μελέτη περίπτωσης. Παίξιμο ρόλων-τα παιχνίδια προσομοίωσης, ρόλων, Η εισήγηση Η τεχνική του καταιγισμού ιδεών (Brainstorming). Η μελέτη περίπτωσης. Παίξιμο ρόλων-τα παιχνίδια προσομοίωσης, ρόλων, αντιπαράθεσης απόψεων. Εννοιολογική χαρτογράφηση -Ο χάρτης εννοιών (concept

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων]

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων] Αξιολόγηση του Εκπαιδευτικού Προγράμματος Εκπαίδευση μέσα από την Τέχνη [Αξιολόγηση των 5 πιλοτικών τμημάτων] 1. Είστε ικανοποιημένος/η από το Πρόγραμμα; Μ. Ο. απαντήσεων: 4,7 Ικανοποιήθηκαν σε απόλυτο

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ

ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Κιουτσιούκη Δήμητρα, 485 Τελική δραστηριότητα Φάση 1 :Ατομική μελέτη 1. Πώς θα περιγράφατε το ρόλο της τεχνολογίας στην εκπαιδευτική καινοτομία; Οι Web

Διαβάστε περισσότερα

Ρετσινάς Σωτήριος ΠΕ 1703 Ηλεκτρολόγων ΑΣΕΤΕΜ

Ρετσινάς Σωτήριος ΠΕ 1703 Ηλεκτρολόγων ΑΣΕΤΕΜ Ρετσινάς Σωτήριος ΠΕ 1703 Ηλεκτρολόγων ΑΣΕΤΕΜ Τι είναι η ερευνητική εργασία Η ερευνητική εργασία στο σχολείο είναι μια δυναμική διαδικασία, ανοιχτή στην αναζήτηση για την κατανόηση του πραγματικού κόσμου.

Διαβάστε περισσότερα

Ελένη Σίππη Χαραλάμπους ΕΔΕ Παναγιώτης Κύρου ΕΔΕ

Ελένη Σίππη Χαραλάμπους ΕΔΕ Παναγιώτης Κύρου ΕΔΕ Ελένη Σίππη Χαραλάμπους ΕΔΕ Παναγιώτης Κύρου ΕΔΕ Δομή παρουσίασης Εισαγωγή Έννοια της διαφοροποιημένης διδασκαλίας Γιατί διαφοροποίηση διδασκαλίας; Θετικά αποτελέσματα από την εφαρμογή της διαφοροποιημένης

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Πανεπιστήμιο Θεσσαλίας ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Σκοπός του Μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Ερευνητικό ερώτημα: Η εξέλιξη της τεχνολογίας της φωτογραφίας μέσω διαδοχικών απεικονίσεων της Ακρόπολης.

Ερευνητικό ερώτημα: Η εξέλιξη της τεχνολογίας της φωτογραφίας μέσω διαδοχικών απεικονίσεων της Ακρόπολης. Περιγραφή της ερευνητικής εργασίας Βασικοί σκοποί της έρευνας: Η οικοδόμηση γνώσεων όσον αφορά στη λειτουργία των φωτογραφικών τεχνικών (αναλογικών ψηφιακών) διερευνώντας το θέμα κάτω από το πρίσμα των

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗΣ ΦΙΛΟΛΟΓΙΚΩΝ ΜΑΘΗΜΑΤΩΝ. ΜΟΙΡΑΖΟΜΑΣΤΕ ΙΔΕΕΣ ΚΑΙ ΠΡΟΤΑΣΕΙΣ ΣΤΟ ΞΕΚΙΝΗΜΑ ΤΗΣ ΝΕΑΣ ΧΡΟΝΙΑΣ

ΔΙΔΑΚΤΙΚΗΣ ΦΙΛΟΛΟΓΙΚΩΝ ΜΑΘΗΜΑΤΩΝ. ΜΟΙΡΑΖΟΜΑΣΤΕ ΙΔΕΕΣ ΚΑΙ ΠΡΟΤΑΣΕΙΣ ΣΤΟ ΞΕΚΙΝΗΜΑ ΤΗΣ ΝΕΑΣ ΧΡΟΝΙΑΣ 1 η ΔΙΗΜΕΡΙΔΑ (ΑΛΛΗΛΟ-)ΔΙΔΑΚΤΙΚΗΣ ΦΙΛΟΛΟΓΙΚΩΝ ΜΑΘΗΜΑΤΩΝ. ΜΟΙΡΑΖΟΜΑΣΤΕ ΙΔΕΕΣ ΚΑΙ ΠΡΟΤΑΣΕΙΣ ΣΤΟ ΞΕΚΙΝΗΜΑ ΤΗΣ ΝΕΑΣ ΧΡΟΝΙΑΣ 2012-2013. Διοργάνωση: Σχολική Σύμβουλος Φιλολόγων Β. Καλοκύρη Παρασκευή 14 - Σάββατο

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Γενικοί Δείκτες για την Αξιολόγηση στη Συνεκπαίδευση

Γενικοί Δείκτες για την Αξιολόγηση στη Συνεκπαίδευση Η ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ EL Γενικοί Δείκτες για την Αξιολόγηση στη Συνεκπαίδευση Εισαγωγή Η αξιολόγηση στη συνεκπαίδευση αποτελεί μια προσέγγιση της αξιολόγησης στο πλαίσιο της γενικής

Διαβάστε περισσότερα

Οι γνώμες είναι πολλές

Οι γνώμες είναι πολλές Η Ψυχολογία στη Φυσική Αγωγή στο πλαίσιο του σχολικού περιβάλλοντος ΚασταμονίτηςΚωνσταντίνος Ψυχολόγος Οι γνώμες είναι πολλές Πολλές είναι οι γνώμες στο τι προσφέρει τελικά ο αθλητισμός στην παιδική ηλικία

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής Διδακτική της Πληροφορικής ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ Ανδρέας Σ. Ανδρέου (Αναπλ. Καθηγητής ΤΕΠΑΚ - Συντονιστής) Μάριος Μιλτιάδου, Μιχάλης Τορτούρης (ΕΜΕ Πληροφορικής) Νίκος Ζάγκουλος, Σωκράτης Μυλωνάς (Σύμβουλοι Πληροφορικής)

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ 1 ΕΡΓΑΣΙΑ ΣΕ ΜΙΑ ΑΠΟ ΤΙΣ 12 ΑΡΧΕΣ ΤΗΣ ΜΑΘΗΣΗΣ ΑΡΧΗ ΤΗΣ ΜΑΘΗΣΗΣ: Ενεργός συμμετοχή (βιωματική μάθηση) ΘΕΜΑ: Παράδοση στο μάθημα των «ΛΕΙΤΟΥΡΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ», για τον τρόπο διαχείρισης των σκληρών δίσκων.

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Πιλοτική Εφαρμογή της Πολιτικής για Επαγγελματική Ανάπτυξη και Μάθηση

Πιλοτική Εφαρμογή της Πολιτικής για Επαγγελματική Ανάπτυξη και Μάθηση Υπουργείο Παιδείας και Πολιτισμού Παιδαγωγικό Ινστιτούτο Κύπρου Πιλοτική Εφαρμογή της Πολιτικής για Επαγγελματική Ανάπτυξη και Μάθηση 390 παιδιά Το πλαίσιο εφαρμογής 18 τμήματα Μονάδα Ειδικής Εκπαίδευσης

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ Is είναι βιώσιμη η επιχείρηση

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ Is είναι βιώσιμη η επιχείρηση ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ Is είναι βιώσιμη η επιχείρηση Ent-teach κεφαλαιο 3 - Ανάλυση Αγοράς Περιγραφή της εκπαιδευτικής δραστηριότητας Αυτή η εκπαιδευτική δραστηριότητα απευθύνεται σε μαθητές από όλους

Διαβάστε περισσότερα

Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία

Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία Συμμετοχή στο Πρόγραμμα του Παιδαγωγικού Ινστιτούτου ΥΠΟΣΤΗΡΙΞΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΜΑΘΗΣΗΣ ΜΕΣΩ ΕΡΕΥΝΑΣ-ΔΡΑΣΗΣ Σχολική χρονιά: 2015-2016 ΤΟ ΠΡΟΦΙΛ ΤΗΣ

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

Η λογική και η διδακτική προσέγγιση του βιβλίου

Η λογική και η διδακτική προσέγγιση του βιβλίου Το νέο σχολικό βιβλίο «Μαθηματικά Στ` ημοτικού» Η λογική και η διδακτική προσέγγιση του βιβλίου Πέτρος Κλιάπης Το παραδοσιακό μαθησιακό περιβάλλον των Μαθηματικών «Ισχυρή αντίληψη» για τα μαθηματικά: μια

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΔΙΔΑΣΚΑΛΙΑΣ: ΠΕΡΙΓΡΑΦΗ ΔΙΔΑΣΚΑΛΙΑΣ:

ΠΛΑΙΣΙΟ ΔΙΔΑΣΚΑΛΙΑΣ: ΠΕΡΙΓΡΑΦΗ ΔΙΔΑΣΚΑΛΙΑΣ: Α) Διάταξη χώρου (γενικά): Β) Διάταξη χώρου (ως προς τις ΦΕ): Γ) Δυναμικό τάξης (αριθμός μαθητών, φύλο μαθητών, προνήπια-νήπια, κλπ): Δ) Διάρκεια διδασκαλίας: Ε) Ήταν προϊδεασμένοι οι μαθητές για το αντικείμενο

Διαβάστε περισσότερα

Συνεργατική Μάθηση στο Περιβάλλον του Edmodo

Συνεργατική Μάθηση στο Περιβάλλον του Edmodo Συνεργατική Μάθηση στο Περιβάλλον του Edmodo Citation (ΑΡΑ format): Μουζάκης, Χ. (2017, 2 Μαρτίου). Συνεργατική Μάθηση στο Περιβάλλον του Edmodo [Webinar], Στο: Webinars ΠΕ19-20 Ιστο-διαλέξεις για καθηγητές

Διαβάστε περισσότερα

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Τι δυσκολίες αντιμετώπισαν οι μαθητές στη διερευνητική διαδικασία;

Τι δυσκολίες αντιμετώπισαν οι μαθητές στη διερευνητική διαδικασία; Αναστοχασμός Αναφορά (report) υλοποίησης 1 ης δραστηριότητας: ΑΝΑΔΑΣΜΟΣ Συγγραφέας: Λύρη Αναστασία Μαθηματικός, ΠΕ03 Πως δούλεψαν οι μαθητές (ομαδικά/ατομικά); Οι μαθητές δούλεψαν σε ομάδες των 4 ατόμων.

Διαβάστε περισσότερα

Η ΠΛΗΡΟΦΟΡΙΚΗ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η ΠΛΗΡΟΦΟΡΙΚΗ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η ΠΛΗΡΟΦΟΡΙΚΗ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η θέση της Πανελλήνιας Ένωσης Καθηγητών Πληροφορικής Επιμέλεια κειμένου: Δ.Σ. ΠΕΚαΠ κατόπιν δημόσιας διαβούλευσης των μελών της Ένωσης από 20/07/2010. Τελική έκδοση κειμένου:

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία Διδακτικές προσεγγίσεις στην Πληροφορική Η εποικοδομιστική προσέγγιση για τη γνώση ως ενεργητική και όχι παθητική διαδικασία ως κατασκευή και όχι ως μετάδοση ως αποτέλεσμα εμπειρίας και όχι ως μεταφορά

Διαβάστε περισσότερα

Γουλή Ευαγγελία. 1. Εισαγωγή. 2. Παρουσίαση και Σχολιασµός των Εργασιών της Συνεδρίας

Γουλή Ευαγγελία. 1. Εισαγωγή. 2. Παρουσίαση και Σχολιασµός των Εργασιών της Συνεδρίας 1. Εισαγωγή Σχολιασµός των εργασιών της 16 ης παράλληλης συνεδρίας µε θέµα «Σχεδίαση Περιβαλλόντων για ιδασκαλία Προγραµµατισµού» που πραγµατοποιήθηκε στο πλαίσιο του 4 ου Πανελλήνιου Συνεδρίου «ιδακτική

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Κέντρο Ξένων Γλωσσών

Κέντρο Ξένων Γλωσσών Κέντρο Ξένων Γλωσσών Αυτή η περίοδος για τους κηδεμόνες των μαθητών/τριών είναι περίοδος σχολαστικής αναζήτησης και έρευνας. Είναι περίοδος άγχους ποιο Κέντρο Ξένων Γλωσσών θα διαλέξουν προκειμένου τα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝ/ΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ. Μεταπτυχιακό Πρόγραμμα Σπουδών: Συστήματα Επικοινωνιών και Δίκτυα

ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝ/ΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ. Μεταπτυχιακό Πρόγραμμα Σπουδών: Συστήματα Επικοινωνιών και Δίκτυα ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝ/ΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μεταπτυχιακό Πρόγραμμα Σπουδών: Συστήματα Επικοινωνιών και Δίκτυα ΑΚ. ΕΤΟΣ: -3 Αξιολόγηση της εργασίας MyProject Όνομα Χαρακλιά

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να γίνει

Διαβάστε περισσότερα

Το ανοργάνωτο Parking

Το ανοργάνωτο Parking Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Ειδική Αγωγή και Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Ειδική Αγωγή και Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Αξιολόγηση του Εκπαιδευτικού Έργου στην Ειδική Αγωγή και Εκπαίδευση Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα Σχέδια

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Εφαρμογές Εκπαιδευτικού Λογισμικού για τη Δευτεροβάθμια Εκπαίδευση

Εφαρμογές Εκπαιδευτικού Λογισμικού για τη Δευτεροβάθμια Εκπαίδευση Εφαρμογές Εκπαιδευτικού Λογισμικού για τη Δευτεροβάθμια Εκπαίδευση Μαρία Καραβελάκη-Καπλάνη, M.Sc. INTE*LEARN Αγν.Στρατιώτη 46 176 73 Καλλιθέα τηλ. 95 91 853, fax. 95 72 098 E-mail: intelrn@prometheus.hol.gr

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ι «Η Θεωρητική έννοια της Μεθόδου Project» Αγγελική ρίβα ΠΕ 06

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ι «Η Θεωρητική έννοια της Μεθόδου Project» Αγγελική ρίβα ΠΕ 06 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ι «Η Θεωρητική έννοια της Μεθόδου Project» Αγγελική ρίβα ΠΕ 06 1590 1765 η Μέθοδος Project σε σχολές Αρχιτεκτονικής στην Ευρώπη 1765 1880 συνήθης µέθοδος διδασκαλίας - διάδοσή της στην

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία της Ερευνητικής Εργασίας της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΘΕΜΑ: Οδηγίες για τη διδασκαλία της Ερευνητικής Εργασίας της Α τάξης Γενικού Λυκείου για το σχ. έτος ΘΕΜΑ: Οδηγίες για τη διδασκαλία της Ερευνητικής Εργασίας της Α τάξης Γενικού Λυκείου για το σχ. έτος 2011-2012 Σας αποστέλλουμε τις παρακάτω οδηγίες για τη διδασκαλία της Ερευνητικής Εργασίας της Α τάξης

Διαβάστε περισσότερα

Υ.Α Γ2/6646/ Επιµόρφωση καθηγητών στο ΣΕΠ και τη Επαγγελµατική Συµβουλευτική

Υ.Α Γ2/6646/ Επιµόρφωση καθηγητών στο ΣΕΠ και τη Επαγγελµατική Συµβουλευτική Υ.Α Γ2/6646/20-11-97 Επιµόρφωση καθηγητών στο ΣΕΠ και τη Επαγγελµατική Συµβουλευτική ΥΠΕΠΘ-Γ2/6646120.Ι 1.97 Ενηµέρωση για το πρόγραµµα επιµόρφωσης Καθηγητών στο Σχολικό Επαγγελµατικό Προσανατολισµό και

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόμενος να επιλέξει την ορθή απάντηση από περιορισμένο αριθμό προτεινόμενων απαντήσεων ή να συσχετίσει μεταξύ

Διαβάστε περισσότερα

Διαδικασία μετασχηματισμού του Προγράμματος Σπουδών σε μιντιακές δράσεις. Λοΐζος Σοφός

Διαδικασία μετασχηματισμού του Προγράμματος Σπουδών σε μιντιακές δράσεις. Λοΐζος Σοφός Διαδικασία μετασχηματισμού του Προγράμματος Σπουδών σε μιντιακές δράσεις Λοΐζος Σοφός Οι 5 φάσεις του διδακτικού μετασχηματισμού 1. Εμπειρική σύλληψη ενός σεναρίου μιντιακής δράσης και χαρτογράφηση της

Διαβάστε περισσότερα

«Βελτιώνω τη φυσική κατάσταση, προάγω και προασπίζω την υγεία μου» Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής

«Βελτιώνω τη φυσική κατάσταση, προάγω και προασπίζω την υγεία μου» Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής Ενδεικτικό σχέδιο δράσης Φυσικής Αγωγής στο Λύκειο «Βελτιώνω τη φυσική κατάσταση, προάγω και προασπίζω την υγεία μου» Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής Η βασική ιδέα της δράσης Να

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Η διερευνητική διδακτική προσέγγιση στην ανάπτυξη και την αξιολόγηση της κριτικής σκέψης των μαθητών Σταύρος Τσεχερίδης Εισαγωγή Παρά την ευρεία αποδοχή της άποψης ότι η καλλιέργεια της κριτικής σκέψης

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΣΥΝΕΧΙΖΟΜΕΝΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΠΙΜΟΡΦΩΣΗΣ

ΚΕΝΤΡΟ ΣΥΝΕΧΙΖΟΜΕΝΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΠΙΜΟΡΦΩΣΗΣ ΚΕΝΤΡΟ ΣΥΝΕΧΙΖΟΜΕΝΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΠΙΜΟΡΦΩΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ «ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΚΑΙΝΩΤΟΜΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ» (INOV) Ζ ΚΥΚΛΟΣ To Κέντρο Συνεχιζόμενης Εκπαίδευσης

Διαβάστε περισσότερα

Περιγραφή μαθήματος. Εαρινό εξάμηνο 2009-2010. Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Δευτέρα 14:00-18:00 email: gpalegeo.teaching@gmail.

Περιγραφή μαθήματος. Εαρινό εξάμηνο 2009-2010. Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Δευτέρα 14:00-18:00 email: gpalegeo.teaching@gmail. Μάθημα: Διδακτική της Πληροφορικής I Εαρινό εξάμηνο 2009-2010 Διδάσκων: Παλαιγεωργίου Γ. Διαλέξεις: Δευτέρα 14:00-18:00 email: gpalegeo.teaching@gmail.com Περιγραφή μαθήματος Με τον όρο "Διδακτική της

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Μαριάννα Τζεκάκη Παρουσίαση των άρθρων:

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου

Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου Βασίλειος Κωτούλας vaskotoulas@sch.gr h=p://dipe.kar.sch.gr/grss Αρχαιολογικό Μουσείο Καρδίτσας Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου Η Δομή της εισήγησης 1 2 3 Δυο λόγια για Στόχοι των Ερευνητική

Διαβάστε περισσότερα

ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ

ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Απάντηση ερωτήσεων σχετικά με την οργάνωση των Ερευνητικών Εργασιών στο Γενικό Λύκειο κατά το σχολικό έτος 2012-2013 ΛΑΜΙΑ: ΣΕΠΤΕΜΒΡΙΟΣ 2012 Αγαπητοί/ες

Διαβάστε περισσότερα

"Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΑΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ ΣΕ ΦΟΙΤΗΤΕΣ ΤΟΥ Π.Τ.Δ.Ε ΣΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ".

Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΑΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ ΣΕ ΦΟΙΤΗΤΕΣ ΤΟΥ Π.Τ.Δ.Ε ΣΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. "Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΑΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ ΣΕ ΦΟΙΤΗΤΕΣ ΤΟΥ Π.Τ.Δ.Ε ΣΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ". Σίμος Αναγνωστάκης, Ε.Ε.Δι.Π., sanagn@edc.uoc.gr Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστήμιο

Διαβάστε περισσότερα

Γενικός προγραμματισμός στην ολομέλεια του τμήματος (διαδικασία και τρόπος αξιολόγησης μαθητών) 2 ώρες Προγραμματισμός και προετοιμασία ερευνητικής

Γενικός προγραμματισμός στην ολομέλεια του τμήματος (διαδικασία και τρόπος αξιολόγησης μαθητών) 2 ώρες Προγραμματισμός και προετοιμασία ερευνητικής Γενικός προγραμματισμός στην ολομέλεια του τμήματος (διαδικασία και τρόπος αξιολόγησης μαθητών) 2 ώρες Προγραμματισμός και προετοιμασία ερευνητικής ομάδας 2 ώρες Υλοποίηση δράσεων από υπο-ομάδες για συλλογή

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Σχολικό Έτος: 2014-2015 Σχολική Μονάδα: ΓΕΛ ΚΡΑΝΙΔΙΟΥ Τίτλος Ερευνητικής Εργασίας: Εργαλεία Web 2.0 για την τάξη ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

Μαργαρίτα Μανσόλα Dip.Ed. M.A. Psychology of Education, CPsychol (BPS)

Μαργαρίτα Μανσόλα Dip.Ed. M.A. Psychology of Education, CPsychol (BPS) Μαργαρίτα Μανσόλα Dip.Ed. M.A. Psychology of Education, CPsychol (BPS) «Κάθε συνηθισμένο παιδί είναι ικανό για ασυνήθιστα κατορθώματα» (Τζ. Ρόουλινγκ) «Όλοι οι μαθητές πρέπει να βιώνουν μια εκπαίδευση

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ Ιστότοπος Βιβλίου http://www.iep.edu.gr/ και «Νέα Βιβλία ΙΕΠ ΓΕΛ και ΕΠΑΛ» 2 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση

Διαβάστε περισσότερα

Πρότυπα-πειραματικά σχολεία

Πρότυπα-πειραματικά σχολεία Πρότυπα-πειραματικά σχολεία 1. Τα πρότυπα-πειραματικά: ένα ιστορικό Τα πειραματικά σχολεία (στα οποία εντάχθηκαν με το Ν. 1566/85 και τα ιστορικά πρότυπα σχολεία) έχουν μακρά ιστορία στον τόπο μας. Τα

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

ΣΠΟΥΔΩΝ 2010 ΟΔΗΓΟΣ ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ

ΣΠΟΥΔΩΝ 2010 ΟΔΗΓΟΣ ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ 2010 10-2011 ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΟ ΑΝΟΙΚΤΟ ΙΔΡΥΜΑ ΕΚΠΑΙΔΕΥΣΗΣ Το Ανοικτό Ίδρυμα Εκπαίδευσης είναι ένα σύγχρονο εκπαιδευτήριο προσανατολισμένο στην

Διαβάστε περισσότερα

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr

Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Θεμελίωση μιας λύσης ενός προβλήματος από μια πολύπλευρη (multi-faceted) και διαθεματική (multi-disciplinary)

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

3o Πανελλήνιο Συνέδριο: «Ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία»

3o Πανελλήνιο Συνέδριο: «Ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία» 3o Πανελλήνιο Συνέδριο: «Ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία» Η Διδασκαλία των μηχανών αναζήτησης με τη μέθοδο της Πολυεπίπεδης Συναλλαγής Τριών Επιπέδων Λιόβας Δημήτριος Δέγγλερη Σοφία Πανεπιστήμιο

Διαβάστε περισσότερα

Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική. Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων

Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική. Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων Πληροφορική και ΤΠΕ Η Πληροφορική και οι Τεχνολογίες της

Διαβάστε περισσότερα