arxiv: v1 [hep-ph] 3 Jul 2008

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv:0807.0514v1 [hep-ph] 3 Jul 2008"

Transcript

1 Preprint typeset in JHEP style - HYPER VERSION arxiv:yymm.nnnn [hep-ph] CP-- ZU-TH / Analytic integration of real-virtual counterterms in NNLO jet cross sections I arxiv:7.v [hep-ph] Jul Ugo Aglietti Dipartimento di Fisica, Università di Roma La Sapienza, and INFN, Sezione di Roma, Italy Vittorio Del Duca INFN, Laboratori Nazionali di Frascati, Via E. Fermi, I-Frascati, Italy Claude Duhr Institut de Physique Théorique and Centre for Particle Physics and Phenomenology CP Université Catholique de Louvain Chemin du Cyclotron, B- Louvain-la-Neuve, Belgium Gábor Somogyi Institute for Theoretical Physics, University of Zürich Winterthurerstrasse, CH-7 Zürich, Switzerland Zoltán Trócsányi University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H- Debrecen P.O.Box, Hungary Abstract: We present analytic evaluations of some integrals needed to give explicitly the integrated real-virtual integrated counterterms, based on a recently proposed subtraction scheme for next-to-next-to-leading order NNLO jet cross sections. After an algebraic reduction of the integrals, integration-by-parts identities are used for the reduction to master integrals and for the computation of the master integrals themselves by means of differential equations. The results are written in terms of one- and two-dimensional harmonic polylogarithms, once an extension of the standard basis is made. We expect that the techniques described here will be useful in computing other integrals emerging in calculations in perturbative quantum field theories. Keywords: QCD, Jets. On leave of absence from INFN, Sezione di Torino.

2 Contents. Introduction. The method. Integrals needed for the integrated subtraction terms. Definition of the collinear integrals. Definition of the soft-type integrals. Iterated integrals. One-dimensional harmonic polylogarithms. Two-dimensional harmonic polylogarithms. Special values. Interchange of arguments. The soft integral J 7. The soft-collinear integral K 7. Analytic result for κ = 7. Analytic result for κ =. The collinear integrals I 7. The A-type collinear integrals for k 7. The A-type collinear integrals for k =. The B-type collinear integrals. The soft R -type J I integrals. The soft-collinear R -type K I integrals. Numerical evaluation of integrated subtraction terms. Conclusions A. Spin-averaged splitting kernels B. The J integrals C. The K integrals C. The K integral for κ = C. The K integral for κ =

3 D. The A-type collinear integrals D. The A integral for k = and arbitrary κ D. The A integral for k = and arbitrary κ D. The A integral for k = and arbitrary κ D. The A integral for k = and κ = D. The A integral for k = and κ = 7 E. The B-type collinear integrals 77 E. The B integral for k = and δ = 77 E. The B integral for k = and δ = 7 E. The B integral for k = and δ = and d = E. The B integral for k = and δ = E. The B integral for k = and δ = E. The B integral for k = and δ = E.7 The B integral for k = and δ = and d = E. The B integral for k = and δ = F. The J I-type integrals F. The J I integral for k = F. The J I integral for k = 7 F. The J I integral for k = F. The J I integral for k = G. The K I-type integrals G. The K I integral for k = G. The K I integral for k = 7 G. The K I integral for k = G. The K I integral for k =. Introduction LHC physics demands calculating physical observables beyond leading order LO accuracy, by including the virtual and real corrections that appear at higher orders. However, the evaluation of phase space integrals beyond LO is not straightforward because it involves infrared singularities that have to be consistently treated before any numerical computation may be performed. At next-to-leading order NLO, infrared divergences can be handled using a subtraction scheme exploiting the fact that the structure of the kinematical singularities of QCD matrix elements is universal and independent of the hard process. This allows us to build process-independent counterterms which regularize the one-loop or virtual corrections and real phase space integrals simultaneously [].

4 In recent years a lot of effort has been devoted to the extension of the subtraction method to the computation of the radiative corrections at the next-to-next-to-leading order NNLO [ ]. In particular, in Ref. [,], a subtraction scheme was defined for computing NNLO corrections to QCD jet cross sections to processes without coloured partons in the initial state and an arbitrary number of massless particles coloured or colourless in the final state. This scheme however is of practical utility only after the universal counterterms for the regularization of the real emissions are integrated over the phase space of the unresolved particles. The integrated counterterms can be computed once and for all and their knowledge is necessary to regularize the infrared divergences appearing in virtual corrections. That is indeed the task of this work: we analytically evaluate some of the integrals needed for giving explicitly the counterterms appearing in the scheme [,]. The method is an adaptation of a technique developed in the last two decades to compute multi-loop Feynman diagrams [ ]. To our knowledge this is the first time that these techniques are applied to integrals of the type Fz = α dxdy x k ǫ x k ǫ y k ǫ y k ǫ xyz k ǫ fx,y,z,. where fx,y,z = x n x n y n y n xyz n,. with n i being non-negative integers and < α. An alternative method for computing the ǫ-expansion of the integrals is iterated sector decomposition. This approach allows one to express the expansion coefficients of all functions we consider as finite, multidimensional integrals. Integrating these representations numerically, we obtain the expansion coefficients for any fixed value of the arguments. Every integral in this paper was computed numerically as well, with this alternative method for selected values of the parameters. We found that in all cases the analytical and numerical results agreed up to the uncertainty associated with the numerical integration. The outline of the paper is the following. In Sect. we outline the steps of our method. In Sect. we define the integrals of the subtraction terms that we will consider in the paper. Our analytic results will be presented in terms of one- and two-dimensional harmonic polylogarithms. We summarize those properties of these functions that are important for our computations in Sects. and, respectively. In Sects. and 7 we calculate analytically the integrals needed for integrating the soft-type counterterms as a series expansion in the dimensional regularization parameter ǫ. In Sect. we calculate some of the integrlas needed for integrating the collinear counterterms. In Sects. and we calculate two sets of convoluted integrated counterterms, which can be obtained from a successive integration of the results obtained in Sect.. Sect. briefly discusses the numerical calculation of the integrated subtraction terms and the merits of both the analytical and the numerical approaches. Finally in Sect. we present the conclusions of this work and we discuss possible developments concerning more complicated classes of integrals. Appendix A contains the spin-averaged splitting function at tree level and at one-loop, which are needed for the evaluation of the counterterms. There are further appendices containing the often rather lengthy expressions of the integrated counterterms.

5 . The method Our method of computing the integrals involves the following steps: Algebraic reduction of the integrand by means of partial fractioning. For each class of integrals, we perform a partial fractioning of the integrand in order to obtain a set of independent integrals. For example, for the integrand in Eq.. with n = n = n = n = n = one can perform partial fractioning with respect to the integration variable x first, so that x x xyz = x yz x y z yz xyz.. Note the appearance of the new denominator yz, not originally present in the integrand and coming from x partial fractioning. One then performs partial fractioning with respect to y, by considering the denominator xyz as a constant: that is because the latter was already involved in the x partial fractioning and, to avoid an infinite loop, it cannot be subjected to any further transformation. For example: y y yz xyz = z z z yz xyz y xyz y xyz.. After this final partial fractioning over y, the original integrand f, depending on five denominators, is transformed into a combination of terms having at most two denominators, out of which at most one depends on x. Reduction to master integrals by means of integration-by-parts identities. We then write integration-by-parts identities ibps for the chosen set of independent amplitudes. If the upper limits in the x or y integrals in Eq.. differ from one, α <, surface terms have to be taken into account. That is to be contrasted with the case of loop calculations, in which surface terms always vanish. By solving the ibps with the standard Laporta algorithm, complete reduction to master integrals is accomplished. Analytic evaluation of the Master Integrals. After having identified for each class of integrals a set of master integrals, we write the corresponding system of differential equations. The ǫ-expansion of the master integrals is obtained by solving such systems expanded in powers of ǫ. A natural basis consists of one- and two-dimensional harmonic polylogarithms [, ]; for representing some master integrals, an extension of the standard basis functions has proved to be necessary.. Integrals needed for the integrated subtraction terms The subtraction method developed in Refs. [, ] relies on the universal soft and collinear factorization properties of QCD squared matrix elements. Although the necessary factorization By increasing the number of variables, the number of additional denominators grows very fast. Performing first the partial fractioning in y and then in x results in a different basis of independent amplitudes.

6 formulae for NNLO computations have been known for almost a decade, the explicit definition of a subtraction scheme has been hampered for several reasons. Firstly, the various factorization formulae overlap in a rather complicated way beyond NLO accuracy and these overlaps have to be disentangled in order to avoid multiple subtractions. At NNLO accuracy this was first achieved in Ref. []. A general and simple solution to this problem was subsequently given in Ref. [], where a method was described to obtain pure-soft factorization at any order in perturbation theory leading to soft-singular factors without collinear singularities. Secondly, the factorization formulae are valid only in the strict soft and collinear limits and have to be extended to the whole phase space. A method that works at any order in perturbation theory requires a mapping of the original n momenta {p} n = {p,...,p n } to m momenta { p} m = { p,..., p m } m is the number of hard partons and n m is the number of unresolved ones that preserves momentum conservation. Such a mapping leads to an exact factorization of the original n-particle phase space of total momentum Q, dφ n p,...,p n ;Q = n i= d d p i π d δ p i πd δ d Q n p i,. i= in the form dφ n {p} n ;Q = dφ m { p} m ;Q [dp nm;m {p} nm ;Q].. In the context of computing QCD corrections, this sort of exact phase-space factorization was first introduced in Ref. [], where only three of the original momenta {p} that of the emitter p µ i, the spectator pµ k and the emitted particle pµ j were mapped to two momenta, pµ ij and pµ k, the rest of the phase space was left unchanged. This sort of mapping requires that both i and k be hard partons, which is always satisfied in a computation at NLO accuracy because only one parton is unresolved. However, in a computation beyond NLO the spectator momentum may also become unresolved unless this is explicitly avoided by using colour-ordered subamplitudes [7, ]. In order to take into account the colour degrees of freedom explicitly, as well as define a phase space mapping valid at any order in perturbation theory, in Ref. [], two types of democratic phase-space mappings were introduced. In this paper we are concerned with the integrals of the singly-unresolved counterterms, therefore, in the rest of the paper we deal with the case when m =. Symbolically, the mapping C {p} ir ir n { p} n = { p,..., p ir,..., p n },. used for collinear subtractions, denotes a mapping where the momenta p µ i and p µ r are replaced by a single momentum p µ ir and all other momenta are rescaled, while for soft-type subtractions, {p} n S r { p} r n = { p,..., p n }. denotes a mapping such that the momentum p µ r, that may become soft, is missing from the set, and all other momenta are rescaled and transformed by a proper Lorentz transformation. These mappings are defined such that the recoil due to the emission of the unresolved partons is taken by all hard partons. In both cases the factorized phase-space measure can be written in the form of a convolution.

7 Q n i r C ir Q ĩr n ir i r n ñ Figure : Graphical representation of the collinear momentum mapping and the implied phase space factorization.. Definition of the collinear integrals In the case of collinear mapping the factorized phase-space measure can be written as [dp ir ;n p r, p ir ;Q] = dα α nǫ s fir Q π dφ p i,p r ;p ir,. where s f ir Q = p ir Q and p µ ir = α pµ ir αqµ. The collinear momentum mapping and the implied factorization of the phase-space measure are represented graphically in Fig.. The picture on the left shows the n-particle phase space dφ n {p};q, where in the circle we have indicated the number of momenta. The picture on the right corresponds to Eq.. with m = and Eq..: the two circles represent the n -particle phase space dφ n { p} ir ;Q and the two-particle phase space dφ p i,p r ;p ir respectively, while the symbol stands for the convolution over α, as precisely defined in Eq... Writing the factorized phase space in the form of Eq.. has some advantages: It makes the symmetry property of the factorized phase space under the permutation of the factorized momenta manifest. For instance, for any function f, [dp ir ;n p r, p ir ;Q]fp i,p r = [dp ir ;n p r, p ir ;Q]fp r,p i,. which can be used to reduce the number of independent integrals. It exhibits the n-dependence of the factorized phase space explicitly. This allows for including n-dependent factors of α d nǫ Θα α with d ǫ= in the subtraction terms such that the integrated counterterms will be n-independent for details see Ref. []. Eq.. generalizes very straightforwardly for more complicated factorizations. The formula for the general case when phase-spaces of N groups of r,r,...,r N partons are factorized simultaneously can be given explicitly. To write the factorized two-particle phase-space measure we introduce the variable v, v = z r z r z r z r..7

8 In Eq..7 z r is the momentum fraction of parton r in the Altarelli Parisi splitting function that describes the f ir f i f r collinear splittings f denotes the flavour of the partons. This momentum fraction takes values between z r = α α x αx and z r = z r x = s f ir Q /Q. Using the variables s ir = p i p r, and v the two-particle phase-space measure reads where dφ p i,p r ;p ir = sǫ ir π S ǫ ds ir dv δ s ir Q α α αx. [v v] ǫ Θ vθv,. S ǫ = πǫ Γ ǫ.. The integration of the collinear subtractions over the unresolved phase space involves the integrals [] π Q κǫ S ǫ α dα α s d fir Q π dφ p i,p r ;p ir s κǫ ir P κ f i f r z i,z r ;ǫ, κ =,,. where α,] while P f i f r and P f i f r denote the average of the tree-level and one-loop splitting kernels over the spin states of the parent parton Altarelli Parisi splitting functions, respectively. These spin-averaged splitting kernels depend, in general, on z i and z r, with the constraint z i z r =,. and are listed in Appendix A. Inspecting the actual form of the Altarelli Parisi splitting functions and using the symmetry property of the factorized phase space under the interchange i r, we find that. can be expressed as a linear combination of the integrals π Q κǫ S ǫ α dα ir α ir d s fir Q π dφ p i,p r ;p ir zkδǫ r s κǫ g ± I z r,. ir for k =,,,, κ =, and the values of δ and functions g ± I as given in Table. Using Eqs..7. and z r expressed with v, z r = we can see that the integrals in Eq.. take the form Ix;ǫ,α,d ;κ,k,δ,g ± I = x α dv[v v] ǫ α αxv α αx α αxv α αx,. dαα κǫ α d [α αx] κǫ kδǫ g ± I α αxv.. α αx We compute the integrals corresponding to the first two rows of Table in Sect.. 7

9 r Q n r S r Q K Q n n ñ Figure : Graphical representation of the soft momentum mapping and the implied phase space factorization. In the case of soft mapping the factorized phase-space measure can be written as [dp r ;n p r;q] = nǫ Q dy y π dφ p r,k;q. Definition of the soft-type inte- grals δ Function g ± I z g A g ± B z ±ǫ g ± C z ±ǫ F ±ǫ, ±ǫ, ± ǫ,z ± g ± D F ±ǫ, ±ǫ, ± ǫ, z. Table : The values of δ and g ± I z r at which Eq.. needs to be evaluated. where the timelike momentum K is massive with K = yq. We show the soft momentum mapping and the implied phase space factorization in Fig.. The picture on the left shows again the n-particle phase space dφ n {p};q, while the picture on the right corresponds to Eq.. with m = and Eq..: the two circles represent the two-particle phase space dφ p r,k;q and the n -particle phase space dφ n { p} r ;Q respectively. The symbol stands for the convolution over y as defined in Eq... The soft and soft-collinear subtraction terms involve the integral of the eikonal factor and its collinear limit over the factorized phase space of Eq.. [], namely the integrals π Q κǫ S ǫ π Q κǫ S ǫ y y κǫ dy y d Q π dφ sik p r,k;q, κ =,,.7 s ir s kr dy y d Q π dφ z κǫ i p r,k;q, κ =,.. s ir z r Here again, we included harmless factors of y d nǫ Θy y with d ǫ= in the subtraction terms to make their integrals independent of n. The computation of these integrals is fairly straightforward using energy and angle variables. In order to write the factorized phase-space measure, we choose a frame in which Q µ = s,..., p µ i = Ẽi,...,, p µ k = Ẽk,...,sin χ,cos χ,.

10 and p µ r = E r,.. angles..,sin ϑ sin ϕ,sin ϑ cos ϕ,cos ϑ.. In Eq.. the dots stand for vanishing components, while the notation angles in Eq.. denotes the dependence of p r on the d angular variables that can be trivially integrated. Then in terms of the scaled energy-like variable ε r = p r Q Q and the angular variables ϑ and ϕ the two-particle phase space reads = E r s. dφ p r,k;q = Q ǫ π S Γ ǫ ǫ Γ ǫ dε r ε ǫ r δy ε r dcos ϑdcos ϕsin ϑ ǫ sin ϕ ǫ,. where y,] and the cosines of both angles run from to. To write the integrands in these variables, we observe that the precise definitions of p i and p k as given in Ref. [] imply and s ik = ε r sĩ k, s ir = sĩr, s kr = s kr,. From Eqs..,.,. and. we find s ik = ε r s ĩ k = Y ĩ k,q ε r s ir s kr sĩr s kr Q and s iq = ε r sĩq sĩr.. ε r cos ϑ cos χcos ϑ sinχsin ϑ cos ϕ,. z i = ε r sĩq sĩr = [ s ir z r sĩr s rq Q ε ] r.. ε r ε r cos ϑ Using Eqs..,. and. we see that the integral of the soft subtraction term in Eq..7 may be written as J Yĩ k,q ;ǫ,y,d ;κ = Yĩ k,q κǫ Γ ǫ πγ ǫ Ωκǫ,κǫ cos χ y where Ω i,k cos χ denotes the angular integral Ω i,k cos χ = dy y κǫ y d κǫ, dcos ϑ sin ϑ ǫ dcos ϕ sin ϕ ǫ cos ϑ i cos χcos ϑ sin χsin ϑ cos ϕ k..7. Furthermore, from Eq.. it is easy to see that cos χ = Yĩ k,q Q sĩ k sĩq s kq..

11 We compute the soft integrals J X,ǫ;y,d ;κ in Sect.. The soft-collinear subtraction term in Eq.. leads to the integral y Kǫ,y,d ;κ = dy y κǫ y d dcos ϑsin ϑ ǫ [ y y cos ϑ ] κǫ Γ ǫ πγ ǫ dcos ϕsin ϕ ǫ,. which we compute in Sect. 7.. Iterated integrals In an NNLO computation, iterations of the above integrals also appear. In this paper we compute also two of those. The first one is the integration of a soft integral with a collinear one in its argument, J IYĩ k,q ;ǫ,α,d,y,d ;k = Y Γ ǫ ĩ k,q πγ ǫ Ω, cos χ y dy y ǫ y d Iy;ǫ,α,d ;,k,,,. which we need for k =,,,. Details of the computation are given in Sect.. The second case is when the collinear integral appears in the argument of a soft-collinear one, K Iǫ,α,d,y,d ;k = Γ ǫ dcos ϑsin ϑ ǫ πγ ǫ y dcos ϕsin ϕ ǫ dy y ǫ y d y cos ϑ cos ϑ Iy;ǫ,α,d ;,k,,, needed again for k =,,,. Details of the computation are given in Sect.... One-dimensional harmonic polylogarithms As anticipated in the introduction, it is convenient to represent the integrals depending on a single variable x in terms of a general class of special functions called harmonic polylogarithms HPL s introduced in Ref. []. The HPL s of weight one, i.e. depending on one index w =,,, are defined as: H;x log x; H;x logx; H;x log x.. These functions are then just logarithms of linear functions of x. The HPL s of higher weight are defined recursively by the relation Ha, w;x x fa;x H w;x dx for a and w n,.

12 i.e. in the case in which not all the indices are zero. The left-most index takes the values a =,, and w is an ndimensional vector with components w i =,,. We call n the weight of the HPL s, so the above relation allows one to increase the weight w = n n. The basis functions fa;x are given by f;x x ; f;x x ; f;x x.. In the case in which all indices are zero, one defines instead, H n ;x n! logn x.. The HPL s introduced above fulfill many interesting relations, one of the most important ones being that of generating a shuffle algebra, H w ;xh w ;x = H w;x,. w= w w where w w denotes the merging of the two weight vectors w and w, i.e. all possible concatenations of w and w in which relative orderings of w and w are preserved. The basis of HPL s can be extended by adding some new basis functions to the set in Eq..; for our computation we have to introduce the function f;x x.. The HPL s can be evaluated numerically in a fast and accurate way; there are various packages available for this purpose [ 7].. Two-dimensional harmonic polylogarithms To represent integrals depending on two arguments, an extension of the HPL s to functions of two variables proves to be convenient []. Since a harmonic polylogarithm is basically a repeated integration on one variable, a second independent variable is introduced as a parameter entering the basis functions: fi;x fi,α;x. We may say that in addition to the discrete index i, we have now a continuous index α. In Ref. [] the following basis functions were originally introduced: fc i α;x = x c i α,. where c α = α or c α = α.. Let us remark that the above extension keeps most of the properties of the one-dimensional HPL s. In this work we have to introduce the following new basis functions, which are slightly more complicated than the ones above, fc α;x = x c α fc α;x = x c α,.

13 with c α = α α, c α = α α.. The explicit definition of the two-dimensional harmonic polylogarithms dhpl s reads: Hc i α, wα;x x fc i α;x H wα;x dx.. In general, the dhpl s have complicated analyticity properties, with imaginary parts coming from integrating over the zeroes of the basis functions. Our computation does not involve such complications because we can always assume x,α. That implies that c k α < for any k: the denominators are never singular and the dhpl s are real. The numerical evaluation of our dhpl s can be achieved by extending the algorithm described and implemented in Ref. [].. Special values For some special values of the argument, the dhpl s reduce to ordinary one-dimensional HPL s. It is easy to see that for α = and α = we have From this it follows that fc k α = ;x = f;x, lim fc k α;x =.. α H...,c i α =,... ;x = H...,,... ;x, lim H...,c iα,... ;x =. α Similarly, for x =, the dhpl s reduce to combinations of one-dimensional HPL s in α. This reduction can be performed using an extension of the algorithm presented in []. We first write the dhpl s in x = as the integral of the derivative with respect to α, H wα; = H wα = ; α dα.7 α H wα ;.. In the case where w only contains objects of the type c i, we have H wα = ;x =. Thus, H wα; = α dα α H wα ;.. The derivative is then carried out on the integral representation of H wα ;, and integrating back gives the desired reduction of H wα; to one-dimensional HPL s in α, e.g. Hc α; = H;α, Hc α; = H;α H;α ln... Interchange of arguments The basis of dhpl s introduced above selects x as the explicit integration variable and α as a parameter, but an alternative representation involving a repeated integration over α of different basis functions depending on x as an external parameter is also possible. Therefore, we have to deal with the typical problem of analytic computations: multiple representations of the same

14 function. It is well known that a complete analytic control requires the absence of hidden zeroes in the formulae. That means that one has to know all the transformation properties identities of the functions introduced in order to have a single representative out of each class of identical objects. In Ref. [] an algorithm was presented which allows one to interchange the roles of the two variables. The algorithm is basically the same as the one presented for the special values at x = : let us just replace everywhere x = by x in Eq... Then we have to introduce the following set of basis functions for the dhpl s, fd k x;α = α d k x,. where d k x = x x k.. All the properties defined at the beginning of this section can be easily extended to this new class of denominators. One finds for example: Hc α;x = H;x H;α Hd x;α, Hc α;x = H;x H;α ln Hd x;α... The soft integral J In this section we present the analytic calculation of the soft integral defined in Eq..7 for κ =, and d = D d ǫ, with D being an integer. The angular integral Ωi,k cos χ was evaluated in Ref. []. The integration over y leads to a hypergeometric function, and for the complete soft integral.7 we obtain the analytic expression J Y,ǫ;y,d ;κ = Y κǫ y κǫ Γ κǫ κ ǫ Γ κǫ F d κǫ, κǫ, κǫ,y F κǫ, κǫ, ǫ, Y,. i.e., we only need to find the ǫ-expansion of an integral of the form fx,ǫ;n,n,n,r,r,r = dt t n r ǫ t n r ǫ xt n r ǫ.. which can be obtained using the HypExp Mathematica package []. Nevertheless, we compute the expansion to show our procedure. The first hypergeometric function on the right hand side of Eq.. is of the specific form F a,b, b;x, whose expansion reduces to the expansion of the incomplete beta function B x, which is a simple case to illustrate the steps of our procedure. It involves the integrals βx,ǫ;n,n,r,r = fx,ǫ;n,,n,r,,r = dt t n r ǫ xt n r ǫ = x n r ǫ B x n r ǫ, n r ǫ..

15 The class of independent integrals can be easily obtained using partial fractioning in x. However, when writing down the integration-by-parts identities for the independent integrals, we have to take into account a surface term coming from the fact that the denominator in xt does not vanish for t =, dt t t n r ǫ xt n r ǫ = x n r ǫ.. Solving the inhomogeneous linear system we find a single master integral which fulfills the differential equation with initial condition β x,ǫ = βx,ǫ;,,r,r,. x β = r ǫ β xr ǫ,. x x β x = ;ǫ = dt t rǫ = r ǫ = r k ǫk..7 Solving this differential equation, we obtain the expansion of the incomplete beta function in terms of HPL s and thus the expansion of hypergeometric functions of the form F a,b,b;x. Turning to the general case, we note that if we want to calculate the integral. using the integration-by-parts identities, we must require r r r, because the integration-by-parts identities can exhibit poles in r i =. It is also useful to notice that not all of the integrals are independent, but only those where just one of the indices n, n, n is nonzero and where n,n. In fact, all other integrals can be reduced to one of this class using partial fractioning, e.g. fx,ǫ;,,,r,r,r = fx,ǫ;,,,r,r,r xfx,ǫ;,,,r,r,r.. If r r r, we can write immediately the integration-by-parts identities for the independent integrals for f obtained by partial fractioning, dt t t n r ǫ t n r ǫ xt n r ǫ =.. Solving the integration-by-parts identities we find that f has two master integrals, f x,ǫ = fx,ǫ;,,,r,r,r, f x,ǫ = fx,ǫ;,,,r,r,r.. k= The master integrals fulfill the following differential equations x f = ǫr x f ǫr x f, x f = f ǫr ǫr ǫr ǫr ǫr ǫr x x, f ǫr ǫ r x ǫr ǫr ǫr x.

16 O coeff. of JY, ;y,-; y = analytic A y =. analytic A J, = y = numeric N y =. numeric N O coeff. of JY, ;y,-; y = analytic A y =. analytic A J, = y = numeric N y =. numeric N J N -J A /J A - y = J N -J A /J A - y = J N -J A /J A - y = J N -J A /J A - y = log Y log Y Figure : Representative results for the J integral. The plots show the coefficient of the Oǫ term in J Y, ǫ; y, ǫ; κ for κ = left figure and κ = right figure with y =.,. with initial condition f x =,ǫ = f x =,ǫ = B r ǫ, r ǫ.. Solving this set of linear differential equations we can write down the ǫ-expansion of the hypergeometric function in terms of HPL s in x. The solution for the integral J can be easily obtained by using the expansion of the hypergeometric function we just obtained. The results for κ =, and D = can be found in Appendix B. As representative examples, in Fig. we compare the analytic and numeric results for the ǫ coefficient in the expansion of J Y,ǫ;y, ǫ;κ for κ =, and y =.,. The agreement between the two computations is seen to be excellent for the whole Y -range. We find a similar agreement for other lower-order, thus simpler expansion coefficients and/or other values of the parameters. 7. The soft-collinear integral K In this section we calculate analytically the soft-collinear integral defined in Eq.. for κ =, and d = D d ǫ, D being an integer. The ϕ integral is trivial to perform and we find Γ ǫ πγ ǫ dcos ϕsin ϕ ǫ = ǫ. 7.

17 Putting cos ϑ = ξ, we are left with the integral y Kǫ;y,d ;κ = dy 7. Analytic result for κ = dξ y κǫ y d ξ ǫ ξ κǫ yξ κǫ. 7. For κ =, the integral decouples into a product of two one-dimensional integrals and we get Kǫ;y,d ; = B y ǫ,d B ǫ, ǫ B y ǫ,d B ǫ, ǫ, 7. Using the expansion of the incomplete B-function, carried out in Sect., we can immediately write down the expansion of K for κ =. The result for D = can be found in Appendix C. 7. Analytic result for κ = The integral. for κ = reads y Kǫ;y,d ; = dy dξ y ǫ y d ξ ǫ ξ ǫ yξ ǫ. 7. The analytic solution for this integral cannot be obtained in a straightforward way, due to the presence of the factor yξ ǫ that couples the two integrals. Therefore, we rewrite the integral in the form where Kǫ;y,d ;n,n,n,n,n = dy Kǫ;y,d ; = y ǫ Kǫ;y,d ;, D,,,, 7. dξ y n ǫ y y n d ǫ ξ n ǫ ξ n ǫ y yξ n ǫ. We now calculate the integral K using the Laporta algorithm. The independent integrals can be obtained by partial fractioning in y and ξ, using the prescription that denominators depending on both integration variables are only partial fractioned in ξ, e.g. 7. ξ y yξ ξ y y y yξ, 7.7 y y yξ y y yξ. When writing down the integration-by-parts identities for the independent integrals, we have to take into account a surface term coming from the fact that the denominator in y y does not vanish in y =, dy dξ y nǫ y y n d ǫ ξ nǫ ξ nǫ y yξ n ǫ ξ dy = dξ y y n ǫ y y n d ǫ ξ n ǫ ξ n ǫ y yξ n ǫ = y n d ǫ K S ǫ;y,d ;n,n,n, 7.

18 with K S ǫ;y,d ;n,n,n = K S is just a hypergeometric function, dξ ξ n ǫ ξ n ǫ y ξ n ǫ. 7. K S ǫ;y,d ;n,n,n = B n ǫ, n ǫ F n ǫ,n ǫ, n n ǫ;y, 7. and can thus be calculated using the technique presented in Sect.. Knowing the series expansion for the surface term K S, we can solve the integration-by-parts identities for the K integrals, Eq. 7.. We find the following two master integrals, K ǫ;y,d = Kǫ;y,d ;,,,,, K ǫ;y,d = Kǫ;y,d ;,,,,, 7. fulfilling the following differential equations, K = ǫ K y dǫ f, y y y K = ǫ K y dǫ f, y y y 7. where f denotes the master integral of the hypergeometric function calculated in Sect. and where the initial conditions are given by K ǫ;y =,d = B ǫ,b ǫ, ǫ, K ǫ;y =,d = B ǫ,b ǫ, ǫ. 7. Plugging in the series expansion of f, and expanding y d ǫ into a power series in ǫ, we can solve for the K and K as a power series in ǫ whose coefficients are written in terms of HPL s in y. Knowing the series expansions of K and K, we can obtain the integral Kǫ;y,d ; for any fixed integer D. In Appendix C we give the explicit result for D =.. The collinear integrals I In this section, we calculate the collinear integrals defined in Eq.. for g I = g A and g I = g B analytically.. The A-type collinear integrals for k The collinear integral for g I = g A requires the evaluation of an integral of the form Ax,ǫ;α,d ;κ,k = x Ix,ǫ;α,d ;κ,k,,g A = α dα dv α κǫ α d [α αx] κǫ α αxv k v ǫ v ǫ, α αx. 7

19 where k =,,,, κ =, and d = D d ǫ with D an integer. For k this twodimensional integral decouples into the product of two one-dimensional integrals, out of which one is straightforward, k k Ax,ǫ;α,d ;κ,k = x j B j ǫ, ǫ. j j= α dα α kjκǫ α jd [α αx] κǫ [α αx] k. We will therefore treat separately the cases k and k <. For k the calculation of the A integrals reduces to the calculation of a one-dimensional integral of the form A x,ǫ;α,d ;κ;n,n,n,n = α dα α n κǫ α n d ǫ [α αx] n κǫ [α αx] n, n i being integers. The integration-by-parts identities, including a surface term for the independent integrals, are α dα α nκǫ α n d ǫ [α αx] nκǫ [α αx] n α = α n κǫ α n d ǫ [α α x] n κǫ [α α x] n. Using the Laporta algorithm we find three master integrals for A,.. where A x,ǫ;α,d ;κ = A x,ǫ;α,d ;κ;,,, = A x,ǫ;α,d ;κ = A x,ǫ;α,d ;κ;,,, = A x,ǫ;α,d ;κ = A x,ǫ;α,d ;κ;,,, = α α α dµ ǫ α;x, dµ ǫ α;xα, dµ ǫ α;x α αx.. dµ ǫ α,x = dα α κǫ α d ǫ α α x κǫ, = dα ǫdα d ln α κln α κlnα x αx Oǫ, = dα ǫdα κh;α κh;x d H;α κ Hd x;α Oǫ. where we used the d-representation of the two-dimensional HPL s defined in Sect., Hd x;α = ln x x α, Hd x,d x;α = ln x x α, etc...7

20 Notice that all three master integrals are finite for ǫ =. This allows us to expand the integrand into a power series in ǫ and integrate order by order in ǫ, using the defining property of the HPL s, Eq... We obtain in this way the series expansion of the master integrals as a power series in ǫ whose coefficients are written in terms of the d-representation of the two-dimensional HPL s. We can then switch back to the c-representation using the algorithm described in Sect.. Having a representation of the master integrals, we can immediately write down the solutions for Ax,ǫ;α,d ;κ,k for k and fixed D using Eq... In Appendix D we give as an example the series expansions up to order ǫ for D =.. The A-type collinear integrals for k = For k =, the integral. does not decouple, so we have to use the Laporta algorithm to calculate the full two-dimensional integral. However, for k =, we can get rid of the denominator in α αx in the integrand. So we only have to deal with an integral of the form A x,ǫ;α,d ;κ;n,n,n,n,n,n = = α dα dv α n κǫ α n d ǫ [α αx] n κǫ v n ǫ v n ǫ [α αxv] n,. n i being integers. We write down the integration-by-parts identities for A including a surface term for α, α α dα dv α nκǫ α n d ǫ [α αx] n κǫ v v nǫ v nǫ [α αxv] n =, dα dv α nκǫ α n d ǫ [α αx] n κǫ α v nǫ v nǫ [α αxv] n = α n κǫ α n d ǫ [α α x] nκǫ A,S x,ǫ;α,d ;n,n,n,. with A,S x,ǫ;α,d ;n,n,n = dv v nǫ v nǫ [α α xv] n = α n B n ǫ, n ǫ F n ǫ,n, n n ǫ; α x. α. As in the case of K we are going to evaluate this surface term using the Laporta algorithm, especially to get rid of the strange argument the hypergeometric function depends on, and to get an expression for A,S in terms of two-dimensional HPL s in α and x.

21 Evaluation of the surface term A,S. Because the v integration is over the whole range [, ], we do not have to take into account a surface term in the integration-by-parts identities for A,S, dv v n ǫ v nǫ [α α xv] n =.. v Using the Laporta algorithm we see that A,S has two master integrals, A,S x,ǫ;α,d = A,S x,ǫ;α,d ;,,, A,S x,ǫ;α,d = A,S x,ǫ;α,d ;,,.. A i,s x,ǫ;α,d, i =,, are functions of the two variables x and α defined on the square [,] [,], so in principle we should write down a set of partial differential equations for the evolution of both α and x. However, it is easy to see that in x = we have A,S x =,ǫ;α,d = B ǫ, ǫ, A,S x =,ǫ;α,d = α B ǫ, ǫ,. for arbitrary α. So we are in the special situation where we know the solutions on the line {x = } [, ], and so we only need to consider the evolution for the x variable. In other words, we consider A i,s as a function of x only, keeping α as a parameter. The differential equations for the evolution in the x variable read x A,S =, x A,S = A,S ǫ α x α ǫ A ǫ,s α ǫ, α α x x α x α x x α. and the initial condition for this system is given by Eq... As the system is already triangular, we can immdiately solve for A,S and A,S. Notice in particular that the denominator in α x xα will give rise to two-dimensional HPL s of the form Hc α ;x, etc. Evaluation of A. Having an expression for the ǫ-expansion of the surface term, we can solve the integration-by-parts identities for A, Eq... We find four master integrals, A x,ǫ;α,d ;κ = A x,ǫ;α,d ;κ;,,,,,, A x,ǫ;α,d ;κ = A x,ǫ;α,d ;κ;,,,,,, A x,ǫ;α,d ;κ = A x,ǫ;α,d ;κ;,,,,,, A x,ǫ;α,d ;κ = A x,ǫ;α,d ;κ;,,,,,.. It is easy to see that all of the master integrals are finite for ǫ =. As in the case of the surface terms, we are only interested in the x evolution, because the master integrals are known for x = for any value of α, A x =,ǫ;α,d ;κ = B α κǫ, d ǫb ǫ, ǫ, A x =,ǫ;α,d ;κ = B α κǫ, d ǫb ǫ, ǫ,.

22 and A x =,ǫ;α,d ;κ = A x =,ǫ;α,d ;κ, A x =,ǫ;α,d ;κ = A x =,ǫ;α,d ;κ..7 The master integrals A and A form a subtopology, i.e. the differential equations for these two master integrals close under themselves: x A = κǫ A x d ǫ κǫ A x x A α dǫ xα α x κǫ α κǫ x = κǫ A x d ǫ κǫ A x α dǫ xα α x κǫ α κǫ x The two equations can be triangularized by the change of variable à à = A A, The equations for the subtopology now take the triangularized form xã ǫ = x ǫ à x d x d x ǫã α d ǫ xα α x ǫ α ǫ A,S, A,S.. = A.. α x α x A,S, xã = à ǫ x d x ǫã α dǫ α ǫ xα α x ǫ a x A,S.. The initial condition for à can be obtained from Eq... For à however, Eq.. gives only trivial information. Furthermore, the solution of the differential equation has in general a pole in x =, but it is easy to convince oneself that à is finite in x =, which serves as the initial condition. We can now solve for the remaining two master integrals. The differential equations for A and A read x A x A κǫ = A x d ǫ κǫ A x α dǫ xα α x κǫ α κǫ x ǫ = ǫ x x ǫ x A d κǫ x κǫ x A A α dǫ xα α x κǫ α κǫ x A,S, A,S..

23 These equations can be brought into a triangularized form via the change of variable à à = A A, and Eq.. now reads xã ǫ = ǫ à x x d ǫ d ǫ x x α dǫ α ǫ xα α x ǫ x x ǫ x ǫ A x, xã ǫ ǫ = x à d ǫ ǫ à x x ǫ ǫ A x x The initial condition for A and A = A,. à A,S α dǫ xα α x ǫ α ǫ A,S x.. can again be obtained from Eq.. and requiring A to be finite in x =. Having the analytic expressions for the master integrals, we can now easily obtain the solutions for A for k = for a fixed value of D. The results for D = can be found in Appendix D. In Fig. we compare the analytic and numeric results for the ǫ coefficient in the expansion of Ix,ǫ;α, ǫ;,k,,g A for k =, and α =., as representative examples. The dependence on α is not visible on the plots. The agreement between the two computations is excellent for the whole x-range. We find a similar agreement for other lower-order, thus simpler expansion coefficients and/or other values of the parameters.. The B-type collinear integrals The B-type collinear integrals require the evaluation of an integral of the form Bx,ǫ;α,d ;δ,k = x Ix,ǫ;α,d ;,k,δ,g B = α dα dv α ǫ α d [α αx] ǫ [α αx] k v ǫ v ǫ [α αxv] kδǫ [α α vx] δǫ,. where k =,,,, δ = ± and d = D d ǫ as before D is an integer. Unlike the A-type integrals, the B-type integrals do not decouple for k, due to the appearance of the ǫ pieces in the exponents, so we have to consider the denominators altogether, and have to deal with an integral of the form Bx,ǫ;α,d ;δ;n,n,n,n,n,n,n 7,n = = α dα dv α n ǫ α n d [α αx] n ǫ [α αx] n v n ǫ v n ǫ [α αxv] n 7δǫ [α α vx] n δǫ..

24 O coeff. of Ix, ;,-;,-,,g A A-type, = analytic A =. analytic A =, k=- = numeric N =. numeric N O coeff. of Ix, ;,-;,,,g A A-type, =, k= = analytic A =. analytic A = numeric N =. numeric N I N -I A /I A - = I N -I A /I A - = I N -I A /I A - = I N -I A /I A - = log x log x Figure : Representative results for the A-type integrals. The plots show the coefficient of the Oǫ term in Ix, ǫ; α, ǫ;, k,, g A for k = left figure and k = right figure with α =.,. B, We use again the Laporta algorithm, and write down the integration-by-parts identities for α α dα dα dv v =, dv α α n ǫ α n d [α αx] n ǫ [α αx] n v n ǫ v n ǫ [α αxv] n 7δǫ [α α vx] n δǫ α n ǫ α n d [α αx] n ǫ [α αx] n v n ǫ v n ǫ [α αxv] n 7δǫ [α α vx] n δǫ = α n ǫ α n d [α α x] n ǫ [α α x] n where the surface term is given by B S x,ǫ;α,d ;δ,k;n,n,n 7,n, B S x,ǫ;α,d ;δ;n,n,n 7,n = = dv v n ǫ v n ǫ [α α xv] n 7δǫ [α α vx] n δǫ..

25 Evaluation of the surface term B S. The surface term B S is no longer a hypergeometric function as it was the case for the K and A-type integrals. It can nevertheless be easily calculated using the Laporta algorithm. The integration-by-parts identities for B S read dv v v n ǫ v n ǫ [α α xv] n 7δǫ [α α vx] n δǫ =. We find three master integrals for B S,.7 B S x,ǫ;α,d ;δ = B S x,ǫ;α,d ;δ;,,,, B S x,ǫ;α,d ;δ = B S x,ǫ;α,d ;δ;,,,, B S x,ǫ;α,d ;δ = B S x,ǫ;α,d ;δ;,,,,. fulfilling the differential equations x B S = ǫα α ǫ B S α α x α α ǫ ǫ α δǫ δǫ α α α x α ǫδ δǫ ǫ δǫ ǫ α xǫδ α ǫ α α x α α ǫ α α x α B α δǫ ǫ ǫ S δǫ ǫ δǫ ǫ xα α xǫδ xǫδ α δǫ ǫ δǫ ǫ, α x α ǫδ B S x B S = δǫ ǫ B S B ǫ S B α ǫδ S x x x, x B S = B S δ α ǫ ǫ α ǫ α δǫ δǫ ǫ α δ δ α α x α ǫδ δǫ ǫ δǫ ǫ δ α δǫ δǫ α ǫ ǫ α δ δ α x ǫδ α α x α ǫδ B α ǫ ǫ δδ S α α x α ǫδ α ǫ ǫ δδ α α x α ǫδ B δǫ ǫ δǫ ǫ S α δǫ ǫ δǫ ǫ x ǫδ α x α ǫδ α δǫ ǫ ǫ. xα α x ǫδ.

26 The initial conditions for the differential equations are B S x =,ǫ;α,d ;δ = B ǫ, ǫ, B S x =,ǫ;α,d ;δ = B ǫ, ǫ, B S x =,ǫ;α,d ;δ = α B ǫ, ǫ,. The system can be triangularized by the change of variable B S = B S B S, B S = B S, B S = B S,. and then solved in the usual way. Evaluation of the B integral. Solving the integration-by-parts identities for the B integrals, we find nine master integrals B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B 7 x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,, B x,ǫ;α,d ;δ = Bx,ǫ;α,d ;δ;,,,,,,,,. The master integrals B i, i,7, form a subtopology, i.e. the differential equations for these master integrals close under themselves. Furthermore the differential equations for B,B,B and B have a triangular structure in ǫ, i.e. all other master integrals are suppressed by a power

27 of ǫ. For δ =, the corresponding differential equations are given by x B = ε B S α d ε ε xα α x ε B x ε d ε ε x εε B ε d ε ε x d ε ε x εε B d ε ε x ε x ε ε B εb ε B d ε ε x x d ε ε x ε B d ε ε x εα d ε ε α x α α d ε ε x α α x εα d ε ε x x B = ǫb x x B = x B = d ǫ ǫ B x d ǫ ǫ d ǫ ǫ x x α x ǫ ǫ x x ǫ ǫ d ǫ ǫ x α α B S x B B S,, d ǫ ǫ ǫ x x B α B S α x α, B ǫ d ǫ ǫ x ǫ d ǫ ǫ x B ǫ x d ǫ ǫ d ǫ ǫ x d ǫ ǫ ǫ d ǫ ǫ x ǫ ǫ d ǫ ǫ x d ǫ ǫ d ǫ ǫ d ǫ ǫ x d ǫ ǫ B x x B ǫǫ d ǫ ǫ x ǫ x B ǫ x ǫ x d ǫ ǫ ǫ d ǫ ǫ x d ǫ ǫ ǫ B d ǫ ǫ x ǫ d ǫ ǫ x ǫ d ǫ ǫ x B

28 α ǫ α d ǫ ǫ α x α α ǫ B S α d ǫ ǫ x ǫ α α d ǫ ǫ α x α ǫα d ǫ ǫ x ǫ α α ǫα α B S α d ǫ ǫ x α α B S, x. whereas for δ =, the differential equations are ǫ B x B S = α d ǫ ǫ x α α x ǫb x ǫǫ d ǫ ǫ x ǫ B ǫǫ d ǫ ǫ x d ǫ ǫ x ǫ d ǫ ǫ x B ǫ x ǫǫ B ǫb ǫ B d ǫ ǫ x x d ǫ ǫ x ǫ B d ǫ ǫ x ǫ α d ǫ ǫ α x α ǫ α d ǫ ǫ xα α x ǫ α d ǫ ǫ x x B = ǫb x x B = x B = d ǫ ǫ B x d ǫ ǫ d ǫ ǫ x x α x B S, α α B S x B, d ǫ ǫ ǫ x x α B S α x α, ǫ ǫ B ǫ x x d ǫ ǫ x ǫ d ǫ ǫ x ǫ ǫ B d ǫ ǫ x ǫ x B d ǫ ǫ d ǫ ǫ x d ǫ ǫ ǫ d ǫ ǫ x ǫ ǫ B d ǫ ǫ x ǫ x d ǫ ǫ d ǫ ǫ ǫ ǫ B d ǫ ǫ x d ǫ ǫ x ǫ x. 7

29 d ǫ ǫ ǫ B x x d ǫ ǫ ǫ B d ǫ ǫ x ǫ d ǫ ǫ x B ǫ x d ǫ ǫ ǫ d ǫ ǫ x ǫ d ǫ ǫ x α ǫ α d ǫ ǫ α x α α ǫ B S α d ǫ ǫ x α α d ǫ ǫ α x α ǫα ǫα α ǫα α ǫ α d ǫ ǫ x B d ǫ ǫ x S α α B S. x The differential equations for B,B and B read, for δ =, ǫ x B = x ǫ B ǫ x x ǫ B x ǫ B x d ǫ ǫ B ǫb ǫ B x x x α α B S, x d ǫ x B = d ǫ B ǫ d ǫ ǫ B x x x x α α B S x α x α, ǫ x B B S = α d ǫ ǫx α α x d ǫ B x x ǫ d ǫ ǫ B α x x α x α α x α α x ǫα α ǫ α α ǫ ǫxα α x B S α α B α x α x S,.

30 and for δ = x B = d ǫ x B = x B = ǫ x B ǫ x x d ǫ ǫ B ǫ B x x ǫb d ǫ B x x α α B S x α x α, ǫ B S α d ǫ ǫx α α x x ǫ x α α x ǫ B x x α α B S x ǫ B x, ǫ d ǫ ǫ x x d ǫ x B B d ǫ ǫ B α x α x α α x α ǫxα α x B S α α B α x α x S.. Knowing the solutions for the subtopology, we can solve for the remaining two master integrals B and B 7. They fulfill the following differential equations, for δ =, d ǫ ǫ x B = d ǫ ǫ B d ǫ ǫ ǫ B x x x x x B7 = α x α α x α d ǫ d ǫ x x α x α α x α B S, B ǫ d ǫ ǫ B 7 x x B S,.7 whereas for δ = the differential equations read d ǫ ǫ x B = d ǫ ǫ x x x B7 = α x α α x α d ǫ d ǫ x x α x α α x α B S, B B d ǫ ǫ ǫ B x x ǫ d ǫ ǫ B 7 x x B S..

31 The initial conditions are the following. At x =, we have B x =,ǫ;α,d ;δ = B x =,ǫ;α,d ;δ = B α ǫ, d ǫb ǫ, ǫ.. At x =, we have B x =,ǫ;α,d ;δ = B x =,ǫ;α,d ;δ, B x =,ǫ;α,d ;δ = B x =,ǫ;α,d ;δ, B x =,ǫ;α,d ;δ = B x =,ǫ;α,d ;δ.. At x =, we have B x =,ǫ;α,d ;δ = B x =,ǫ;α,d ;δ, B 7 x =,ǫ;α,d ;δ = B x =,ǫ;α,d ;δ.. It is easy to check that B is finite at x = and x =. The integration constants of B and B can then be fixed in an implicit way by requiring the residues of the general solution for B to vanish at x = and x =. Having the analytic expression for the master integrals, we can calculate the B-type integrals for a fixed integer value of D. We give the explicit results for D = in Appendix E. In Fig. we show some representative results of comparing the analytic and numeric computations for the ǫ coefficient in the expansion of Ix,ǫ;α, ǫ;,k,,g B for k =, and α =.,. The dependence on α is not visible on the plots. The two sets of results are in excellent agreement for the whole x-range. For other lower-order, thus simpler expansion coefficients and/or other values of the parameters, we find similar agreement.. The soft R -type J I integrals In this section we calculate the integral defined in Eq... Substituting the result for the angular integral Ω,, we can rewrite Eq.. as J IY,ǫ;y,d,α,d ;k = Y Bǫ, ǫ F,, ǫ; Y y dy y ǫ y d Iy;ǫ,α,d ;,k,,g A.. The hypergeometric function can be easily evaluated using the technique described in Sect.. The evaluation of the y integral order by order in ǫ is a little bit more cumbersome because the integrand has two kinds of singularities,. The pole in y =.. The integral I is order by order logarithmically divergent for y, as can be easily seen from the ǫ-expansion given in Appendix D.

32 O coeff. of Ix, ;,-;,-,,g B B-type, =, k=-, = = analytic A =. analytic A = numeric N =. numeric N O coeff. of Ix, ;,-;,,,g B B-type, =, k=, = = analytic A =. analytic A = numeric N =. numeric N I N -I A /I A - = I N -I A /I A - = I N -I A /I A - = I N -I A /I A - = log x log x Figure : Representative results for the B-type integrals. The plots show the coefficient of the Oǫ term in Ix, ǫ; α, ǫ;, k,, g B for k = left figure and k = right figure with α =.,. The pole in y = can easily be factorized by performing the integration by parts in y. The logarithmic singularities in I however are more subtle. We have to resum all these singularities before expanding the integral. We find that we can write Iy;ǫ,α,d ;,k,,g A = y ǫ Iy;ǫ,α,d ;,k,,g A,. where I is a function that is order by order finite in y =. Eq.. can now be written as J IY,ǫ;y,d,α,d ;k = Y Bǫ, ǫ F,, ǫ; Y { ǫ yǫ y d Iy ;ǫ,α,d ;,k,,g A ǫ y dy y ǫ y [ y d Iy;ǫ,α,d ;,k,,g A ] }. As I does not have logarithmic divergences, the derivative does not produce any poles, and so the integral is uniformly convergent. We can thus just expand the integrand into a power series in ǫ and integrate order by order, using the definition of the HPL s, Eq... The result for D = D = is given in Appendix F. We checked this assumption explicitly on the ǫ-expansion of I given in Appendix D. Notice that the rational part of I gives a non-vanishing contribution to the lower integration limit that has to be subtracted..

33 J*I, k=- J*I, k= O coeff. of J*IY, ;y,-,,- ; y = = analytic A y = =. analytic A y = = numeric N y = =. numeric N O coeff. of J*IY, ;y,-,,- ; y = = analytic A y = =. analytic A y = = numeric N y = =. numeric N J*I N -J*I A /J*I A y = = J*I N -J*I A /J*I A y = = J*I N -J*I A /J*I A y = = log Y J*I N -J*I A /J*I A y = = log Y Figure : Representative results for the J I integrals. The plots show the coefficient of the Oǫ term in J IY, ǫ; y, ǫ, α, ǫ; k for k = left figure and k = right figure with y = α =.,. As representative examples, in Fig. we compare the analytic and numeric results for the ǫ coefficient in the expansion of J IY,ǫ;y,ǫ,α, ǫ;k for k =, and y = α =.,. The two computations agree very well over the whole Y -range. Other lower-order, thus simpler expansion coefficients and/or other values of the parameters show similar agreement.. The soft-collinear R -type K I integrals In this section we calculate the integral defined in Eq... The ϕ integral is given in Eq.7.. Putting cos ϑ = ξ, the integral can be rewritten as K Iǫ;y,d,α,d ;k = B ǫ, ǫ y B ǫ, ǫ dy y ǫ y d Iy;ǫ,α,d ;,k,,g A y dy y ǫ y d Iy;ǫ,α,d ;,k,,g A,. where I was defined in Eq... The first integral is exactly the same as in Sect.. The second integral is uniformly convergent, so we can just expand under the integration sign, and integrate order by order. The result for D = D = is given in Appendix G.

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Analytic integration of real-virtual counterterms in NNLO jet cross sections I

Analytic integration of real-virtual counterterms in NNLO jet cross sections I Home Search Collections Journals About Contact us My IOPscience Analytic integration of real-virtual counterterms in NNLO jet cross sections I This content has been downloaded from IOPscience. Please scroll

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Two generalisations of the binomial theorem

Two generalisations of the binomial theorem 39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου

Διαβάστε περισσότερα

Parallel transport and geodesics

Parallel transport and geodesics Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on

Διαβάστε περισσότερα

Biodiesel quality and EN 14214:2012

Biodiesel quality and EN 14214:2012 3η Ενότητα: «Αγορά Βιοκαυσίμων στην Ελλάδα: Τάσεις και Προοπτικές» Biodiesel quality and EN 14214:2012 Dr. Hendrik Stein Pilot Plant Manager, ASG Analytik Content Introduction Development of the Biodiesel

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 5: Tutorial on External Sorting Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών TUTORIAL ON EXTERNAL SORTING

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία EDQNM ΙΣΟΤΡΟΠΙΚΗΣ ΤΥΡΒΗΣ. Μιχάλης Πιερής

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία EDQNM ΙΣΟΤΡΟΠΙΚΗΣ ΤΥΡΒΗΣ. Μιχάλης Πιερής ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία EDQNM ΙΣΟΤΡΟΠΙΚΗΣ ΤΥΡΒΗΣ Μιχάλης Πιερής Λεμεσός 2016 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΜΗΜΑ

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ Δ ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ Σπουδάστρια: Διαούρτη Ειρήνη Δήμητρα Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα