Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση"

Transcript

1 Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση

2 Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος p-y 3D ανάλυση

3 οκιµαστική φόρτιση πασσάλου για το σχεδιασµό θεµελιώσεων σηµαντικών έργων Αντίστροφη Ανάλυση µε βάση τα αποτελέσµατα (µετακινήσεις, παραµορφώσεις, φορτία) της δοκιµαστικής φόρτισης Απόκριση µεµονωµένου πασσάλου Προσδιορισµός καµπύλης απόκρισης (P-y) και κατανοµής καµπυλοτήτων ή/και ροπών µε το βάθος (φ-z, M-z) Ενιαία Παρουσίαση (συνέδριο) Απόκριση οµάδας πασσάλων Προσδιορισµός καµπύλης απόκρισης οµάδας (συντελεστής µείωσης της δυσκαµψίας της οµάδας, RG) και κατανοµής του φορτίου στους χαρακτηριστικούς πασσάλους

4 οκιµαστική φόρτιση πασσάλου για το σχεδιασµό θεµελιώσεων σηµαντικών έργων Αντίστροφη Ανάλυση µε βάση τα αποτελέσµατα (µετακινήσεις, παραµορφώσεις, φορτία) της δοκιµαστικής φόρτισης Απόκριση µεµονωµένου πασσάλου Προσδιορισµός καµπύλης απόκρισης (P-y) και κατανοµής καµπυλοτήτων ή/και ροπών µε το βάθος (φ-z, M-z) Ενιαία Παρουσίαση (συνέδριο) Απόκριση οµάδας πασσάλων Προσδιορισµός καµπύλης απόκρισης οµάδας (συντελεστής µείωσης της δυσκαµψίας της οµάδας, RG) και κατανοµής του φορτίου στους χαρακτηριστικούς πασσάλους

5 ιάταξη δοκιµαστικής φόρτισης Ενοργάνωση - οπτικές ίνες - αποκλισιόµετρο - µηκυνσιόµετρα - load cell Βήµατα φόρτισης (Η1): ΜΝ (Η2): ΜΝ

6 Αποτελέσµατα δοκιµαστικής φόρτισης

7 οκιµαστική φόρτιση πασσάλου για το σχεδιασµό θεµελιώσεων σηµαντικών έργων Αντίστροφη Ανάλυση µε βάση τα αποτελέσµατα (µετακινήσεις, παραµορφώσεις, φορτία) της δοκιµαστικής φόρτισης Απόκριση µεµονωµένου πασσάλου Προσδιορισµός καµπύλης απόκρισης (P-y) και κατανοµής καµπυλοτήτων ή/και ροπών µε το βάθος (φ-z, M-z) Ενιαία Παρουσίαση (συνέδριο) Απόκριση οµάδας πασσάλων Προσδιορισµός καµπύλης απόκρισης οµάδας (συντελεστής µείωσης της δυσκαµψίας της οµάδας, RG) και κατανοµής του φορτίου στους χαρακτηριστικούς πασσάλους

8 Μέθοδος p-y οκιµαστική φόρτιση Αριθµητική ανάλυση

9 οκιµαστική φόρτιση πασσάλου για το σχεδιασµό θεµελιώσεων σηµαντικών έργων Αντίστροφη Ανάλυση µε βάση τα αποτελέσµατα (µετακινήσεις, παραµορφώσεις, φορτία) της δοκιµαστικής φόρτισης Απόκριση µεµονωµένου πασσάλου Προσδιορισµός καµπύλης απόκρισης (P-y) και κατανοµής καµπυλοτήτων ή/και ροπών µε το βάθος (φ-z, M-z) Ενιαία Παρουσίαση (συνέδριο) Απόκριση οµάδας πασσάλων Προσδιορισµός καµπύλης απόκρισης οµάδας (συντελεστής µείωσης της δυσκαµψίας της οµάδας, RG) και κατανοµής του φορτίου στους χαρακτηριστικούς πασσάλους

10 (a) Συνθήκες ελεύθερης κεφαλής (b) Συνθήκες πακτωµένης κεφαλής

11 M=E p I p φ

12 Επίδραση αξονικού φορτίου

13 οκιµαστική φόρτιση πασσάλου για το σχεδιασµό θεµελιώσεων σηµαντικών έργων Αντίστροφη Ανάλυση µε βάση τα αποτελέσµατα (µετακινήσεις, παραµορφώσεις, φορτία) της δοκιµαστικής φόρτισης Απόκριση µεµονωµένου πασσάλου Προσδιορισµός καµπύλης απόκρισης (P-y) και κατανοµής καµπυλοτήτων ή/και ροπών µε το βάθος (φ-z, M-z) Ενιαία Παρουσίαση (συνέδριο) Απόκριση οµάδας πασσάλων Προσδιορισµός καµπύλης απόκρισης οµάδας (συντελεστής µείωσης της δυσκαµψίας της οµάδας, RG) και κατανοµής του φορτίου στους χαρακτηριστικούς πασσάλους

14 Πειραµατική και αριθµητική διερεύνηση απόκρισης ρηγµατωµένης διατοµής πασσάλου από οπλισµένο σκυρόδεµα Κωµοδρόµος Α. Μ., Ρεντζεπέρης Ι.Κ., Παπαδοπούλου Μ. Κ. Τµήµα Πολιτικών Μηχανικών - Πανεπιστήµιο Θεσσαλίας 55

15 Κατά τη διερεύνηση της απόκρισης κατασκευών η ανάλυση περιορίζεται κατά κύριο λόγο στην µετελαστική συµπεριφορά της ανωδοµής (η απόκριση της θεµελίωσης θεωρείται ελαστική ή ακόµη στερεοπλαστική) Πιο αξιόπιστη προσέγγιση σύζευξη της απόκρισης ανωδοµής και θεµελίωσης Μέθοδος ανάλυσης αλληλεπίδραση εδάφους - ανωδοµής τεχνική υποσυστηµάτων (substructuring) 56

16 Μη γραµµική απόκριση πασσάλων Μη γραµµική συµπεριφορά τους εδάφους Αλληλεπίδραση πασσάλων λόγω λειτουργίας οµάδας Μετελαστική συµπεριφορά πασσάλου 57

17 Μετελαστική συµπεριφορά πασσάλου Πειραµατική διερεύνηση δοκιµαστική φόρτιση πασσάλου προσδιορισµός απόκρισης δεδοµένα για επαλήθευση προσαρµογή παραµέτρων αντοχής και παραµορφωσιµότητας Αριθµητική διερεύνηση αντίστροφη ανάλυση επαλήθευση παραµέτρων επίλυση πασσάλου σε διαφορετικές συνθήκες φόρτισης και διάταξης 58

18 οκιµαστική φόρτιση: Εδαφική τοµή γεωτεχνικά στοιχεία Θέση κατασκευής γέφυρας σύνδεσης 6 ου προβλήτα Θεσσαλονίκης και εθνικής οδού Αθήνας Θεσ/νίκης 59

19 οκιµαστική φόρτιση: Ενοργάνωση Τοποθέτηση αισθητήρων οπτικών ινών και αποκλισιοµετρικού σωλήνα 60

20 οκιµαστική φόρτιση: ιάταξη 61

21 οκιµαστική φόρτιση: Επιβολή φορτίου Κύκλος Η1: Κύκλος Η2: ΜΝ ΜΝ 62

22 οκιµαστική φόρτιση: απόκριση φορτίου µετακίνησης 1.2 Horizontal Load H (MN) Test Cycle H1 Test Cycle H2 P-y analysis Hcr Hnom Displacement y (mm) 63

23 οκιµαστική φόρτιση: καταγραφή αισθητήρων οπτικών ινών SA-2 ελκυσµός, SB-2 θλίψη υπολογισµός παραµορφώσεων, καµπυλότητας, δυσκαµψίας και ροπής M = E I φ = (Ε I + E Σηµείο εκδήλωσης ρηγµάτωσης p p φ= c ε c t + h ε c s I s ) φ 64

24 3-D Αριθµητική προσοµοίωση δοκιµαστικής φόρτισης Μη γραµµική ανάλυση (µε προσοµοίωση ρηγµάτωσης) κόµβους στοιχεία 342 στοιχεία ράβδου Στοιχεία διεπιφάνειας πασσάλους - έδαφος ράβδους χάλυβα - σκυρόδεµα 65

25 3-D Αριθµητική προσοµοίωση δοκιµαστικής φόρτισης f f ctm ct = = f ck f 2/3 ck Αντοχή σκυροδέµατος σε ελκυσµό, Ευρωκώδικας 2 Αντοχή σκυροδέµατος σε ελκυσµό, ACI ιαγράµµατα τάσεων-παραµορφώσεων σκυροδέµατος και χάλυβα σύµφωνα µε τον Ευρωκώδικα 2 66

26 3-D Αριθµητική προσοµοίωση δοκιµαστικής φόρτισης ιαδοχικές επιλύσεις µε 1 διορθώσεις των παραµέτρων µέχρι να επέλθει ικανοποιητική προσέγγιση. Οι τιµές των Οριζόντιο φορτίο N (MN) Test Cycle H1 Test Cycle H2 Pile Test Simulation παραµέτρων βέλτιστης 0.2 προσέγγισης χρησιµοποιούνται στις περαιτέρω επιλύσεις. Μετακίνηση κεφαλής y (mm) 67

27 Η επίδραση της ρηγµάτωσης στην απόκριση πασσάλου οπλισµένου σκυροδέµατος υπό οριζόντια φόρτιση Κωµοδρόµος Α. Μ., Παπαδοπούλου Μ. Κ., Ρεντζεπέρης Ι.Κ., Τµήµα Πολιτικών Μηχανικών - Πανεπιστήµιο Θεσσαλίας 68

28 Προσοµοίωση θεµελίωσης µε πασσάλους Αντικατάσταση µε οριακές συνθήκες πάκτωσης ιδιότυπη περίπτωση της τεχνικής substructuring όπου δεν ικανοποιούνται οι αρχές συµβιβαστού στο κοινό όριο ανωδοµής και θεµελίωσης Αλληλεπίδραση εδάφους ανωδοµής σύζευξη της απόκρισης ανωδοµής και θεµελίωσης Μέθοδος υποσυστηµάτων (substructuring) ξεχωριστή µη γραµµική επίλυση ανωδοµής και θεµελίωσης στο πλαίσιο εξασφάλισης συµβιβαστού παραµορφώσεων και τάσεων στο κοινό όριο 69

29 Εφαρµογή σε περίπτωση χαραδρογέφυρας πλήρης αλληλεπίδραση (υπερβολικές υπολογιστικές απαιτήσεις) τεχνική υποσυστηµάτων (επαναληπτική διαδικασία επίλυσης µε απλούστερη προσέγγιση και συγκριτικά πολύ µικρότερο υπολογιστικό κόστος) 70

30 Εφαρµογή σε περίπτωση χαραδρογέφυρας Αντικατάσταση της θεµελίωσης πασσάλων µε µητρώο δυσκαµψίας 6 x 6 το οποίο συµπεριλαµβάνει και τις επιπτώσεις λόγω λειτουργίας οµάδας Οι επιπτώσεις της ρηγµάτωσης αγνοούνται σχεδόν σε όλες τις περιπτώσεις 71

31 3-D Αριθµητική ανάλυση απόκριση οκιµαστικής φόρτισης Προσοµοίωσης.Φ. Πασσάλου ελεύθερης κεφαλής Πασσάλου πακτωµένης κεφαλής Οριζόντιο φορτίο N (MN) Test Cycle H1 Test Cycle H2 Pile Test Simulation Free-Head Single Pile Fix-Head Single Pile Μετακίνηση κεφαλής y (mm) 72

32 3-D Αριθµητική ανάλυση απόκριση 1 οκιµαστικής φόρτισης Test Cycle H1 Test Cycle H2 Pile Test Simulation Προσοµοίωσης.Φ. Πασσάλου ελεύθερης κεφαλής Πασσάλου πακτωµένης κεφαλής Οριζόντιο φορτίο H (MN) Ελεύθερης κεφαλής Πακτωµένης κεφαλής Η δοκιµαστική φόρτιση αντιστοιχεί σε συνθήκες ελεύθερης κεφαλής (ανάπτυξη µεγάλων καµπυλοτήτων στο άνω µέρος του πασσάλου ρηγµάτωση και εκδήλωση µεγαλύτερων µετακινήσεων) Μετακίνηση κεφαλής y (mm)

33 3-D Αριθµητική ανάλυση Οι οριακές συνθήκες καθιστούν τον πάσσαλο ελεύθερης κεφαλής πιο ευπαθή λόγω της διαφορετικής τοπολογίας ρηγµάτωσης. Για το ίδιο φορτίο η ρηγµατωµένη περιοχή εµφανίζει πολύ µεγαλύτερο εύρος απ ό,τι στον πάσσαλο πακτωµένης κεφαλής 74

34 Ρηγµάτωση Μεταβολή της δυσκαµψίας vs ανηγµένου εύρους ρηγµάτωσης (d cr / D) M = E p I p φ = (Ε c I c + E s I s ) φ 75

35 Ρηγµάτωση Μεταβολή της δυσκαµψίας vs ανηγµένου εύρους ρηγµάτωσης (d cr / D) υσκαµψία E I (MN.m 2 ) Ep Ip Ec Ici Es Isi Ενσωµάτωση σε κώδικα µη 200 γραµµικής µονοδιάστατης 100 ανάλυσης µε επαναληπτική διαδικασία Ανηγµένο εύρος ρηγµάτωσης d cr /D 76

36 Ευεργετική δράση θλιπτικής αξονικής δύναµης (3-D ανάλυση) Η συνύπαρξη θλιπτικής αξονικής 1.2 Free-Head Single Pile δύναµης περιορίζει τη διεύρυνση της ρηγµάτωσης µε ευεργετικά Οριζόντιο φορτίο H (MN) Pile Test Simulation, assuming pile as linear elastic Pile Test Simulation, Axial Load N= 3.0 MN αποτελέσµατα στην απόκριση και την Μετακίνηση κεφαλής y (mm) αντοχή 77

37 Ευεργετική δράση θλιπτικής αξονικής δύναµης (1-D ανάλυση) Η συνύπαρξη θλιπτικής αξονικής δύναµης περιορίζει τη διεύρυνση της ρηγµάτωσης µε ευεργετικά αποτελέσµατα στην απόκριση και την αντοχή Καµπτική Ροπή M (kn.m) D=0.80m, 16Φ18, Ν=0.0 MN 200 D=0.80m, 16Φ18, Ν=0.5 MΝ D=0.80m, 16Φ18, Ν=2.0 MΝ Καµπυλότητα φ (1/m) 78

38 Ευεργετική δράση θλιπτικής αξονικής δύναµης (1-D ανάλυση) Η συνύπαρξη θλιπτικής αξονικής δύναµης περιορίζει τη διεύρυνση της ρηγµάτωσης µε ευεργετικά αποτελέσµατα στην απόκριση και την αντοχή Καµπτική Ροπή M (kn.m) D=0.80m, 16Φ18, Ν=0.0 MN D=0.80m, 16Φ18, Ν=0.5 MΝ D=0.80m, 16Φ18, Ν=2.0 MΝ υσκαµψία πασσάλου Ep Ip (MN.m 2) 79

39 Λάθος εκτίµηση καµπτικής ροπής 80

40 Συγκεντρωτική παρουσίαση αποκρίσεων Πειραµατικά αποτελέσµατα και αριθµητικός προσδιορισµός 81

41 Πρόβλεψη απόκρισης χαρακτηριστικών πασσάλων οµάδας 82

42 Συµπεράσµατα Η ρηγµάτωση των πασσάλων οδηγεί σε σηµαντικές επιπτώσεις στην απόκριση των πασσαλοθεµελιώσεων (µικρότερη αντοχή και δυσκαµψία). Η µεταβολή αυτή επηρεάζει µε τη σειρά της την απόκριση των ανωδοµών. Για την αποτίµηση των επιπτώσεων πραγµατοποιήθηκε δοκιµαστική φόρτιση µε κατάλληλη ενοργάνωση. Τα αποτελέσµατα χρησιµοποιήθηκαν στη συνέχεια για τη διεξαγωγή 3-D µη γραµµικής ανάλυσης. Κατά τον τρόπο αυτό προσδιορίσθηκαν µε υψηλή ακρίβεια οι παράµετροι διατµητικής αντοχής και παραµορφωσιµότητας των συστατικών στοιχείων. 83

43 Συµπεράσµατα Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση ιερευνήθηκε στη συνέχεια η ευεργετική δράση θλιπτικής αξονικής δύναµης και οι επιπτώσεις των οριακών συνθηκών στην ανάπτυξη της ρηγµάτωσης Η διερεύνηση πραγµατοποιήθηκε τόσο µε σύνθετη ανάλυση (τρισδιάστατη µη γραµµική ανάλυση) όσο και µε απλούστερη προσέγγιση (µονοδιάστατη ανάλυση µε χρήση στοιχείων δοκού). Η τρισδιάστατη ανάλυση επιτρέπει την ακριβέστερη δυνατή ανάλυση µε πολύ υψηλό εντούτοις υπολογιστικό κόστος Η µονοδιάστατη ανάλυση φαίνεται ιδιαίτερα ενδιαφέρουσα δεδοµένου ότι µε µικρό υπολογιστικό κόστος δίνει ικανοποιητικά αποτελέσµατα, ενώ µπορεί εύκολα να ενταχθεί σε κώδικα πλήρους ανάλυσης 84

44 οκιµαστική φόρτιση πασσάλου για το σχεδιασµό θεµελιώσεων σηµαντικών έργων Αντίστροφη Ανάλυση µε βάση τα αποτελέσµατα (µετακινήσεις, παραµορφώσεις, φορτία) της δοκιµαστικής φόρτισης Απόκριση µεµονωµένου πασσάλου Προσδιορισµός καµπύλης απόκρισης (P-y) και κατανοµής καµπυλοτήτων ή/και ροπών µε το βάθος (φ-z, M-z) Ενιαία Παρουσίαση (συνέδριο) Απόκριση οµάδας πασσάλων Προσδιορισµός καµπύλης απόκρισης οµάδας (συντελεστής µείωσης της δυσκαµψίας της οµάδας, RG) και κατανοµής του φορτίου στους χαρακτηριστικούς πασσάλους

45 ΣΥΣΧΕΤΙΣΗ ΤΗΣ ΑΠΟΚΡΙΣΗΣ ΟΜΑΔΑΣ ΠΑΣΣΑΛΩΝ ΜΕ ΤΗΝ ΑΠΟΚΡΙΣΗ ΜΕΜΟΝΩΜΕΝΟΥ ΠΑΣΣΑΛΟΥ y ng R a = = yns y y G s y G = μετακίνηση ομάδας y s = μετακίνηση μεμονωμένου πασσάλου

46 y ng R a = = yns y y G s

47 Παραμετρική ανάλυση D = 1.0 m L/D = 25.0 Διατάξεις: 2 x 2 Αξ. αποστάσεις: 2.0 D 3 x D 4 x D 5 x D C1 C2 C3 C4 S1 S2 S3 Μέτρο του Young Ε (MPa) 400 c u 300 c u 200 c u 150 c u Αριθμητικό προσομοίωμα Συντελεστής Poisson ν Αστράγγιστη συνοχή c u (kpa) z z z z Συνάφεια εδάφους πασσάλου στη διεπιφάνεια c a (kpa) Γωνία τριβής φ ( ο ) Γωνία τριβής διεπιφάνειας φ i ( ο ) Φαινόµενο βάρος γ (kn/m 3 )

48 Επίδραση: - επιπέδου μετακίνησης -διάταξης - αξονικής απόστασης - διατμητικής αντοχής

49 Αριθμητική διερεύνηση απόκρισης ομάδας πασσάλων Κατηγορία C4

50 Αριθμητική διερεύνηση απόκρισης ομάδας πασσάλων C1, 3 x 3, 2.0D y G = 14.4 cm C1, 3 x 3, 3.0D y G = 10.3 cm C1, 3 x 3, 6.0D y G = 8.6 cm

51 Q Q G15 : Q S15 : 15%D, η L15 : n : G15 = η L15 n Q S15 οριζόντια φέρουσα ικανότητα οµάδας πασσάλων, αντιστοιχούσα σε µετακίνηση15%d, η οριζόντια φέρουσα ικανότητα µεµονωµένου πασσάλου, αντιστοιχούσα σε µετακίνηση15% ο συντελεστής απόδοσης φέρουσας ικανότητας για µετακίνηση 15%D, ο αριθµός πασσάλων της οµάδας Τύπος εδάφους s C1 C2 C3 C4 2.0D D D D D D D D D D D D D D D D η L15 1.0, για μεγάλη αξονική απόσταση

52 K G = R 1 G K y ns R G = = = Ra yng S n Μέγιστη επίπτωση της αλληλεπίδρασης σε μικρά επίπεδα μετακίνησης, σε πυκνά διατεταγμένες ομάδες, με μεγάλο αριθμό πασσάλων και μεγάλης συνεκτικότητας αργίλους. y y s G Τύπος εδάφους s C1 C2 C3 C4 R G1 R G5 R G10 R G1 R G5 R G10 R G1 R G5 R G10 R G1 R G5 R G10 2.0D D D D D D D D D D D D D D D D

53 155% 120% 65% 3 3, 3.0D 57% 5 5, 3.0D 110% 130% 79% 3 3, 9.0D 70% 5 5, 9.0D

54 65% ΚΑΤΑΝΟΜΗ ΦΟΡΤΙΟΥ ΣΤΙΣ ΣΕΙΡΕΣ H 1 η σειρά αναλαμβάνει πάντα το μεγαλύτερο φορτίο Για y<10%dη τελευταία σειράπροηγείται πάντα της προτελευταίας Για μεγάλες μετακινήσεις ακολουθούν οι επόμενες σειρές διαδοχικά (2 η, 3 η, 4 η και 5 η )

55 65% Η αύξηση της συνοχήςοδηγεί σε μεγαλύτερη διαφοροποίηση μεταξύ των πασσάλων της ομάδας H αύξηση της μετακίνησηςοδηγεί σε μικρότερη διακύμανση μεταξύ των πασσάλων της ίδιας ομάδας και σε µεγαλύτερη διαφοροποίηση µεταξύ των ίδιων πασσάλων διαφορετικής οµάδας Μεγαλύτερος αριθμός πασσάλωνοδηγεί σε μεγαλύτερο εύρος διακύμανσης

56 C1, 3 3, 3.0 D ΔM =20%M P5 ΔM =8%M P5 Σημαντικά μεγαλύτερη ροπή από τον μεμονωμένο Μεγαλύτερη διακύμανση για μικρότερα φορτία Υψηλότερο σημείο μηδενισμού ροπών για μικρότερα φορτία Μικρότερη διακύµανση σε σχέση µε τις τέµνουσες y G =1.3%D, H m = 350 kn y G = 10.3%D, H m = 1750 kn

57 C1, 3 3, 3.0 D ΔV=80%V P5 y G = 1.3%D, H m = 350 kn y G = 10.3%D, H m = 1750 kn

58 C1, 3 3, 3.0 D C3, 3 3, 3.0 D 65% Η αύξηση της διατμητικής αντοχής οδηγεί σε μικρότερες ροπές τέμνουσες, με μεγαλύτερο εύρος διακύμανσης Υψηλότερο σημείο μηδενισμού ροπών για στιφρότερες αργίλους H m = 1400 kn H m = 1300 kn

59 65% C1, 5 5, 3.0 D Για την ίδια μετακίνηση, ο μεμονωμένος πάσσαλος αναπτύσσει σημαντικά μεγαλύτερη ροπή από τους πασσάλους της ομάδας. H s = H m = 1400 kn y G = y s 10%D (H s = 2100 kn, H m = 1400 kn)

60 Η αύξηση του αριθμού των πασσάλων και η μείωση της αξονικής τους απόστασης εντείνουντην αλληλεπίδραση και οδηγούν σε μεγαλύτερες τιμές συντελεστών R a. Μικρότερες τιμές R a σε σχέση με τις αργίλους.

61 Η αύξηση του αριθμού των πασσάλων και η μείωση της αξονικής τους απόστασης εντείνουντην αλληλεπίδραση και οδηγούν σε μεγαλύτερες τιμές συντελεστών R a. Μικρότερες τιμές R a σε σχέση με τις αργίλους.

62 Τύπος εδάφους s S1 S2 S3 η L10 η L15 η L10 η L15 η L10 η L15 2.0D D D D D D D D D D D D D D D D Συντελεστής φέρουσας ικανότητας η L15 : - ίδιας τάξης µε των αργιλικών εδαφών - αυξάνεται µε την αύξηση της διατµητικής αντοχής της άµµου

63 Μέγιστη επίπτωση της αλληλεπίδρασης σε μικρά Τύπος εδάφους s S1 S2 S3 R G1 R G5 R G10 R G1 R G5 R G10 R G1 R G5 R G10 επίπεδα μετακίνησης, σε πυκνά διατεταγμένες ομάδες, με μεγάλο αριθμό πασσάλων καιχαμηλής πυκνότητας άμμους (αντίθετη επίπτωση διατμητικής αντοχής σε σχέση με τις αργίλους) D D D D D D D D D D D D D D D D

64 Μέγιστη επίπτωση της αλληλεπίδρασης σε μικρά επίπεδα μετακίνησης, σε πυκνά διατεταγμένες ομάδες, με μεγάλο αριθμό πασσάλων καιχαμηλής πυκνότητας άμμους (αντίθετη επίπτωση διατμητικής αντοχής σε σχέση με τις αργίλους).

65 3 3, 9.0D 5 5, 9.0D 3 3, 3.0D 5 5, 3.0D

66 S2, 3 3, 3.0D Αυξανόμενη διατμητική αντοχή διεπιφανειών Σταθερή διατμητική αντοχή διεπιφανειών

67 65% ΚΑΤΑΝΟΜΗ ΦΟΡΤΙΟΥ ΣΤΙΣ ΣΕΙΡΕΣ H 1 η σειρά αναλαμβάνει πάντα το μεγαλύτερο φορτίο Για μικρές μετακινήσεις η τελευταία σειρά προηγείται πάντα τουλάχιστον της προτελευταίας και έπεται της 1 ης Για μεγάλες μετακινήσεις ακολουθούν οι επόμενες σειρές διαδοχικά (2 η, 3 η, 4 η και 5 η )

68 65% Η αύξηση της πυκνότητας οδηγεί σε μεγαλύτερη διαφοροποίηση μεταξύ των πασσάλων της ομάδας H αύξηση της μετακίνησηςοδηγεί σε μεγαλύτερη διακύμανση μεταξύ των πασσάλων της ίδιας ομάδας και σε µεγαλύτερη διαφοροποίηση µεταξύ των ίδιων πασσάλων διαφορετικής οµάδας Μεγαλύτερος αριθμός πασσάλωνοδηγεί σε μεγαλύτερο εύρος διακύμανσης

69 S1, 3 3, 3.0 D Σημαντικά μεγαλύτερη ροπή από τον μεμονωμένο ΔM=20%M P5 Υψηλότερο σημείο μηδενισμού ροπών για μικρότερα φορτία Μικρότερη διακύμανση σε σχέση με τις τέμνουσες y G =1.4%D, H m = 350 kn y G = 12.5%D, H m = 1750 kn

70 S1, 3 3, 3.0 D ΔV=50%V P5 y G = 1.4%D, H m = 350 kn y G = 12.5%D, H m = 1750 kn

71 S1, 3 3, 3.0 D S2, 3 3, 3.0 D Η αύξηση της διατμητικής αντοχής οδηγεί σε μικρότερες ροπές τέμνουσες Υψηλότερο σημείο μηδενισμού ροπών τεμνουσών για πυκνότερες άμμους H m = 1400 kn H m = 1300 kn

72 S1, 5 5, 3.0 D Για την ίδια μετακίνηση, ο μεμονωμένος πάσσαλος αναπτύσσει σημαντικά μεγαλύτερη ροπή από τους πασσάλους της ομάδας. H s = H m = 1050 kn y G = y s 9.5%D (H s = 2100 kn, H m = 1050 kn)

73 Συσχέτιση απόκρισης ομάδας και μεμονωμένου πασσάλου, αξιοποιώντας τα αποτελέσματα της παραμετρικής ανάλυσης. y y ng G = = R R a a y y s ns R R a a a d = 1+ ( m 1) y 5 d = 1+ 2( m 1) 20 b ns a d y d b ns 1.3 m + 3 ( log nc ) log ( 1 2y ) m tanφ ln 3 tan25 o u 30 log d 15 d, m= log( n ( 1 2y ), m= log( n + n ) n 2 ns ns 4 x x + n 2 y y ) n x x

74 Υπολογισμός του μέσου σφάλματος δυσκαμψίας και του σφάλματος δυναμικής ενέργειας για τις 112 περιπτώσεις της τριδιάστατης ανάλυσης. K m err K K i i 1 G Gp G = j W i err = i= 1, j K G WG W W Gp

75 τύπος εδάφους s Κ err,m (%) C1 C2 C3 C4 W err (%) Κ err,m (%) W err (%) Κ err,m (%) W err (%) Κ err,m (%) W err (%) 2.0D R a d b 1.3 m 15 a = + ( m 1) yns d + u 2 ( log nc ) log ( 1 ) 1 y 5 3 d ns D D D D D D D D D D D D D D D Εύρος εφαρμογής: 1%D y ns 15%D

76 Εύρος εφαρμογής: 1%D y ns 15%D

77 Πειραματικά στοιχεία από διατάξεις ομάδας: Brown κ.ά., 1987: 3 x3, 3.0D, c u = kpa, οριακές συνθήκες ίσης μετακίνησης και ελεύθερης περιστροφής κεφαλής Rollins κ.ά..1998:3 x3, 3.0D, c u = kpa(τοπικά 100kPa), οριακές συνθήκες ίσης μετακίνησης και ελεύθερης περιστροφής κεφαλής Ilyasκ.ά., 2004: σε φυγοκεντριστή, 2 x2και 3 x3, 3.0D, ΝC καολίνης c u = 0 20 kpa, ΟC καολίνηςc u = kpa, πακτωμένης κεφαλής Επαλήθευση μεθοδολογίας για συνθήκες ελεύθερης κεφαλής και για μικρότερο μήκος πασσάλων (L/D = 12):

78

79 (Βrownet al, 1987) 3 x 3, 3.0D c u = 100 kpa (Rollins et al, 1998) 3 x 3, 3.0D c u = 50 kpa

80 Επαλήθευση για οριακές συνθήκες ελεύθερης κεφαλής Επαλήθευση για L/D = 12

81 τύπος εδάφους s Κ err,m (%) S1 S2 S3 W err (%) Κ err,m (%) W err (%) Κ err,m (%) W err (%) 2.0D R a = a b yns 1 o ns d + 2( m 1) 20 d m tanφ ln 3 tan25 30 log d ( 1 2y ) D D D D D D D D D D D D D D D Σύγκριση απόκρισης πρόβλεψης και 3D ανάλυσης Επαλήθευση µεθοδολογίας για µεταβαλλόµενο µέτρο ελαστικότητας µε το βάθος

82

83 Σύγκριση αποκρίσεων για μέτρο ελαστικότητας σταθερό (Ε=30 ΜPa) και μεταβαλλόμενο (Ε=20+1.1z = MPa)

84 Πειραματικά στοιχεία από διατάξεις ομάδας: Brown κ.ά., 1988: 3 x3, 3.0D, φ= 38.5 ο, οριακές συνθήκες ίσης μετακίνησης και ελεύθερης περιστροφής κεφαλής Rollins κ.ά., 2005: 3 x 3, 3.3D, φ = ο, οριακές συνθήκες ίσης µετακίνησης και ελεύθερης περιστροφής κεφαλής Ruesta& Townsend, 1997: πραγματικής κλίμακας, 4 x 4, 3.0D, φ = 32 ο, ελεύθερης κεφαλής

85 (Rollins et al, 2005) 3 x 3, 3.0D c u = 50 kpa

86 Κατανοµή φορτίου στους χαρακτηριστικούς πασσάλους 3x3, s=2.0d 3x3, s=3.0d 3x3, s=6.0d

87 3x3, s=3.0d, Ν=0.4MΝ 3x3, s=3.0d, Ν=0.8MΝ

88 P 3 P 6 s P 9 s έδαφος 2.0D 3.0D 9.0D s έδαφος 2.0D 3.0D 9.0D ιεύθυνση φόρτισης P 2 P 1 P 5 P 4 P 8 P 7 C C Πολλαπλασιαστές p για y G = y s = 5%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C Πολλαπλασιαστές p για y G = y s = 10%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς µ.ό. σειράς

89 Αποτίμηση της προτεινόμενης μεθόδου P 3 P 6 s P 9 s έδαφος 2.0D 3.0D 9.0D s έδαφος 2.0D 3.0D 9.0D ιεύθυνση φόρτισης P 2 P 1 P 5 P 4 P 8 P 7 C C Πολλαπλασιαστές p για y G = y s = 5%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C Πολλαπλασιαστές p για y G = y s = 10%D µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς C µ.ό. σειράς µ.ό. σειράς

90

91 τέλος

Υπολογισµός Καµπύλης Απόκρισης

Υπολογισµός Καµπύλης Απόκρισης Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Φέρουσα Ικανότητα Μέθοδος Broms Οµάδα Πασσάλων Υπολογισµός Καµπύλης Απόκρισης p-y µέθοδος

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...11 Πίνακας κυριότερων συμβόλων...13 ΚΕΦΑΛΑIΟ 1: Εισαγωγή 21 ΚΕΦΑΛΑIΟ 2: Απόκριση μεμονωμένου πασσάλου υπό κατακόρυφη φόρτιση 29 2.1 Εισαγωγή...29 2.2 Οριακό και επιτρεπόμενο

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα

Διαβάστε περισσότερα

Βαθιές Θεµελιώσεις Εισαγωγή

Βαθιές Θεµελιώσεις Εισαγωγή Φέρουσα Ικανότητα Απόκριση Πασσαλοθεµελιώσεων Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές

Διαβάστε περισσότερα

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ)

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) Σχεδιασμός Θεμελιώσεων με Πασσάλους με βάση τον Ευρωκώδικα 7.1 Β. Παπαδόπουλος Τομέας Γεωτεχνικής ΕΜΠ ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) ΑΣΤΟΧΙΑΣ Απώλεια συνολικής ευστάθειας

Διαβάστε περισσότερα

Επαλήθευση πασσάλου Εισαγωγή δεδομένων

Επαλήθευση πασσάλου Εισαγωγή δεδομένων Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης

Διαβάστε περισσότερα

«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος

«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος 01-014 ΙΑΛΕΞΗ 1: ΟΡΙΖΟΝΤΙΑ ΦΟΡΤΙΣΗ ΜΕΜΟΝΩΜΕΝΩΝ ΠΑΣΣΑΛΩΝ Οι διαλέξεις υπάρχουν στην

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση

Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση Pile response after cracking: horizontal pile load test using fiber optics 3D nonlinear analysis

Διαβάστε περισσότερα

16ο Συνέδριο Σκυροδέματος, ΤΕΕ, ΕΤΕΚ, 21-23/10/ 2009, Πάφος, Κύπρος

16ο Συνέδριο Σκυροδέματος, ΤΕΕ, ΕΤΕΚ, 21-23/10/ 2009, Πάφος, Κύπρος 1 Η επίδραση της ρηγµάτωσης στην απόκριση πασσάλου οπλισµένου σκυροδέµατος υπό οριζόντια φόρτιση The effect of cracking to the response of a concrete pile under horizontal loading Αιµίλιος Μ. ΚΩΜΟ ΡΟΜΟΣ

Διαβάστε περισσότερα

8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση

8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία :.09.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Μεταλλικές κατασκευές

Διαβάστε περισσότερα

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7 Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας

Διαβάστε περισσότερα

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 0.08.006 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Ενισχυμένη

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

Σήραγγες Μέθοδος ΝΑΤΜ. Αιμίλιος Κωμοδρόμος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήμιο Θεσσαλίας Τμήμα Πολιτικών Μηχανικών

Σήραγγες Μέθοδος ΝΑΤΜ. Αιμίλιος Κωμοδρόμος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήμιο Θεσσαλίας Τμήμα Πολιτικών Μηχανικών 1 ΜΕΤΡΑ ΑΜΕΣΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΕΚΤΟΞΕΥΟΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Συστατικά Υλικά Τσιμέντο, λεπτόκοκκα αδρανή (έως 10 mm), νερό, πρόσμικτα επιτάχυνσης πήξης Μέθοδος Εφαρμογής Εκτόξευση Υγρού Μίγματος (μεγάλες απαιτούμενες

Διαβάστε περισσότερα

0.3m. 12m N = N = 84 N = 8 N = 168 N = 32. v =0.2 N = 15. tot

0.3m. 12m N = N = 84 N = 8 N = 168 N = 32. v =0.2 N = 15. tot ΚΕΦΑΛΑΙΟ : Αριθµητικές Εφαρµογές... Παράδειγµα γ: Ελαστική ευστάθεια πασσαλοθεµελίωσης Το παράδειγµα αυτό αφορά την µελέτη της ελαστικής ευστάθειας φορέως θεµελίωσης, ο οποίος αποτελείται από µια πεδιλοδοκό

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...13 Πίνακας κυριότερων συμβόλων...17 Εισαγωγή...25 ΚΕΦΑΛΑIΟ 1: Επιφανειακές θεμελιώσεις 33 1.1 Εισαγωγή...33 1.2 Διατάξεις Ευρωκώδικα ΕΝ 1997-1...35 1.3 Μεμονωμένα πέδιλα...39

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 9 Θεμελιώσεις με πασσάλους Αξονική φέρουσα ικανότητα έγχυτων πασσάλων 21.12.25 2. Αξονική φέρουσα ικανότητα μεμονωμένου

Διαβάστε περισσότερα

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΓΕΩΤΕΧΝΙΚΟΣ ΤΟΜΕΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΓΕΩΤΕΧΝΙΚΟΣ ΤΟΜΕΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΓΕΩΤΕΧΝΙΚΟΣ ΤΟΜΕΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Διερεύνηση της Απόκρισης Ομάδας Πασσάλων υπό Οριζόντια Φόρτιση Εκπόνηση: Γκαραγκούνη Ελένη Μπαρέκα

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων

Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου Υπολ ενεργητικών

Διαβάστε περισσότερα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα Version 1.0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 Μπελόκας Γεώργιος ιδάκτωρ Πολιτικός Μηχανικός

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

Ανάλυση εγκάρσια φορτιζόµενων µεµονωµένων πασσάλων σε αδροµερή εδάφη βάσει δοκιµαστικών φορτίσεων

Ανάλυση εγκάρσια φορτιζόµενων µεµονωµένων πασσάλων σε αδροµερή εδάφη βάσει δοκιµαστικών φορτίσεων Ανάλυση εγκάρσια φορτιζόµενων µεµονωµένων πασσάλων σε αδροµερή εδάφη βάσει δοκιµαστικών φορτίσεων Analysis of laterally loaded single piles in coarse-grained soils based on load tests ΚΕΡΑΜΙ ΑΣ, Ε. ΡΙΤΣΟΣ,

Διαβάστε περισσότερα

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ. Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Θεµελιώσεις - Αντιστηρίξεις Επιφανειακές Θεµελιώσεις

Θεµελιώσεις - Αντιστηρίξεις Επιφανειακές Θεµελιώσεις Οριακή Κατάσταση Σχεδιασµός έναντι θραύσης Απαιτήσεις Ευρωκώδικα 7 Μηχανισµός Θραύσης - Παραδοχές Υπολογισµός Φέρουσας Ικανότητας Μέθοδοι: Terzaghi, Meyerhof, Hansen, Vesic, Caquot-Kerisel, Ευρωκώδικας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ

ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ Φέρουσα ικανότητα εδάφους (Dunn et al., 1980, Budhu, 1999) (Τελική) φέρουσα ικανότητα -q, ονοµάζεται το φορτίο, ανά µονάδα επιφανείας εδάφους,

Διαβάστε περισσότερα

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος v ΣΥΜΒΟΛΑ Λατινικά A b A g A e A f = εμβαδόν ράβδου οπλισμού = συνολικό εμβαδόν διατομής = εμβαδόν περισφιγμένου σκυροδέματος στη διατομή = εμβαδόν διατομής συνθέτων υλικών A f,tot = συνολικό εμβαδόν συνθέτων

Διαβάστε περισσότερα

ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο

ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο Response evaluation of pile groups based οn rock ΜΠΑΡΕΚΑ Σ., Πολιτικός Μηχανικός, Υπ. ιδάκτωρ, Π.Θ ΛΑΖΟΥ Η Ρ., Πολιτικός Μηχανικός,

Διαβάστε περισσότερα

14. Θεµελιώσεις (Foundations)

14. Θεµελιώσεις (Foundations) 14. Θεµελιώσεις (Foundations) 14.1 Εισαγωγή Οι θεµελιώσεις είναι η υπόγεια βάση του δοµήµατος που µεταφέρει στο έδαφος τα φορτία της ανωδοµής. Για τον σεισµό σχεδιασµού το σύστηµα θεµελίωσης πρέπει να

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» εδαφικής μάζας εύρος καθιζήσεων

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΥΦΙΣΤΑΜΕΝΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΕΦΑΛΟΥ ΚΑΛΛΙΟΠΗ Α.Μ. 554

ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΥΦΙΣΤΑΜΕΝΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΕΦΑΛΟΥ ΚΑΛΛΙΟΠΗ Α.Μ. 554 ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΥΦΙΣΤΑΜΕΝΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΕΦΑΛΟΥ ΚΑΛΛΙΟΠΗ Α.Μ. 554 Προσομοίωση του κτιρίου στο πρόγραμμα ΧΩΡΙΣ ΤΟΙΧΟΠΛΗΡΩΣΕΙΣ ΜΕ ΤΟΙΧΟΠΛΗΡΩΣΕΙΣ Παράμετροι - Χαρακτηριστικά Στάθμη Επιτελεστικότητας Β Ζώνη Σεισμικότητας

Διαβάστε περισσότερα

ΑΝΕΛΑΣΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ (PUSHOVER) ΥΦΙΣΤΑΜΕΝΟΥ ΚΤΗΡΙΟΥ ΜΠΟΥΡΣΙΑΝΗΣ ΧΑΡΗΣ

ΑΝΕΛΑΣΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ (PUSHOVER) ΥΦΙΣΤΑΜΕΝΟΥ ΚΤΗΡΙΟΥ ΜΠΟΥΡΣΙΑΝΗΣ ΧΑΡΗΣ ΑΝΕΛΑΣΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ (PUSHOVER) ΥΦΙΣΤΑΜΕΝΟΥ ΚΤΗΡΙΟΥ ΜΠΟΥΡΣΙΑΝΗΣ ΧΑΡΗΣ Περίληψη Στην παρούσα εργασία θα παρουσιαστούν τα βασικά σηµεία στα οποία βασίζεται η ανελαστική µέθοδος αποτίµησης ή ανασχεδιασµού,

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 3 Ανάλυση της Φέρουσας Ικανότητας Επιφανειακών Θεμελιώσεων κατά τον Ευρωκώδικα 7 8.0.2005 Έλεχος επάρκειας επιφανειακών

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ

ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΟΡΙΣΜΟΙ ΑΝΤΟΧΗ = Οριακή αντίδραση ενός στερεού μέσου έναντι ασκούμενης επιφόρτισης F F F F / A ΑΝΤΟΧΗ [Φέρουσα Ικανότητα] = Max F / Διατομή (Α) ΑΝΤΟΧΗ = Μέτρο (δείκτης) ικανότητας

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα.

Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα. Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα. Γ. Ν. ΒΑ ΑΛΟΥΚΑΣ Πολιτικός Μηχανικός, 4Μ-VK Προγράµµατα Πολιτικού Μηχανικού, Ε.Π.Ε. Α. Γ. ΠΑΠΑΧΡΗΣΤΙ

Διαβάστε περισσότερα

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση Fespa 10 EC For Windows Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή Αποτίμηση της φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, εκέμβριος 2012 Version

Διαβάστε περισσότερα

1 η Επανάληψη ιαλέξεων

1 η Επανάληψη ιαλέξεων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011 ΕΔΑΦΟΜΗΧΑΝΙΚΗΔ Α Φ Ο Μ Α Ν Ι Κ Η Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος Ι Ελέγξτε τις γνώσεις σας με τις παρακάτω ερωτήσεις οι οποίες συνοψίζουν τα βασικά σημεία του κάθε κεφαλαίου. Γ. Μπουκοβάλας

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

ΤΣΙΤΩΤΑΣ Α. ΜΙΧΑΗΛ ΙΠΛ. ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΤΣΙΤΩΤΑΣ Α. ΜΙΧΑΗΛ ΙΠΛ. ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΙ ΗΡΟΠΑΓΟΥΣ ΣΚΥΡΟ ΕΜΑΤΟΣ ΤΣΙΤΩΤΑΣ Α. ΜΙΧΑΗΛ ΙΠΛ. ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Δράσεις

Βασικές Αρχές Σχεδιασμού Δράσεις Βασικές Αρχές Σχεδιασμού Δράσεις Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Εξέλιξη των Κανονισμών 1959 Κανονισμός Έργων από Σκυρόδεμα και Αντισεισμικός Κανονισμός (ΒΔ 59) Επιτρεπόμενες

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Πέδιλα ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΠΕΔΙΛΟ-001, Μεμονωμένο, κεντρικό πέδιλο, με ροπ ή και σεισμό 1.1. Διαστάσεις-Υλικά-Φορτία 1.2. Κανονισμοί 1.3. Ελεγχοι φέρουσας ικανότητας εδάφους

Διαβάστε περισσότερα

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Σεισµική επισκευή στοιχείων ΩΣ µε ινωπλισµένα πολυµερή, µετά από πρόκληση εκτεταµένης βλάβης Seismic repair of severely damaged reinforced concrete members by FRP sheets Θεόδωρος Χ. Ρουσάκης ρ. Πολιτικός

Διαβάστε περισσότερα

ΟΙ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΤΙΣ ΕΠΕΜΒΑΣΕΙΣ. καθ. Στέφανος Η. Δρίτσος Τμήμα Πολιτικών Μηχανικών, Πανεπιστημίου Πατρών

ΟΙ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΤΙΣ ΕΠΕΜΒΑΣΕΙΣ. καθ. Στέφανος Η. Δρίτσος Τμήμα Πολιτικών Μηχανικών, Πανεπιστημίου Πατρών Ημερίδα: Αποτίμηση και Επεμβάσεις σε Κτίρια από Οπλισμένο Σκυρόδεμα & Τοιχοποιίες ΟΙ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΤΙΣ ΕΠΕΜΒΑΣΕΙΣ ΣΥΜΦΩΝΑ, ΜΕ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 8-3, ΤΟΝ ΚΑΝ.ΕΠΕ., ΚΑΙ ΤΟΝ ΚΑΔΕΤ καθ.

Διαβάστε περισσότερα

Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ

Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός Δ.Π.Θ., M.Sc. ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

προσομοίωση της τριαξονικής δοκιμής με τη Μέθοδο των Διακριτών Στοιχείων

προσομοίωση της τριαξονικής δοκιμής με τη Μέθοδο των Διακριτών Στοιχείων Τριαξονική Επιρροή δοκιμή μικροπαραμέτρων Αντοχή Γωνία διαστολικότητας στην Γωνία εσωτερικής τριβής Κρίσιμη γωνία τριβής Κορυφαία γωνία τριβής Δυστμησία Ξηρά μη συνεκτικά εδάφη Μικροδομή Τριαξονική δοκιμή

Διαβάστε περισσότερα

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφάλαιο 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Τα υποστυλώµατα έχουν συνήθως τη µορφή κατακόρυφου αµφίπακτου ραβδόµορφου φορέα όπως φαίνεται στο σχήµα 1.8. Τα τµήµατα του υποστυλώµατος µεταξύ πάκτωσης και σηµείου καµπής θα µπορούσαν

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8γ Θεμελιώσεις με πασσάλους Υπολογισμός αξονικής φέρουσας ικανότητας μέσω : Αποτελεσμάτων επιτόπου δοκιμών Αξιοποίησης

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 0 Θεμελιώσεις με πασσάλους : Ανάλυση φέρουσας ικανότητας κατά τον Ευρωκώδικα 7 2.2.2005 ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ.

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Η σεισμική συμπεριφορά κτιρίων από φέρουσα τοιχοποιία εξαρτάται κυρίως από την ύπαρξη ή όχι οριζόντιου διαφράγματος. Σε κτίρια από φέρουσα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Παραδόσεις Θεωρίας. Προσομοίωση φορέα με χρήση πεπερασμένων στοιχείων. ιδάσκων: Κίρτας Εμμανουήλ. Σέρρες, Σεπτέμβριος 2008

ΚΕΦΑΛΑΙΟ 1. Παραδόσεις Θεωρίας. Προσομοίωση φορέα με χρήση πεπερασμένων στοιχείων. ιδάσκων: Κίρτας Εμμανουήλ. Σέρρες, Σεπτέμβριος 2008 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΕΙ ΙΚΑ

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Φέρουσα Ικανότητα Επιφανειακών Θεμελιώσεων 0.03.007 P Καμπύλες τάσεωνπαραμορφώσεων του εδάφους Γραμμική συμπεριφορά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ

ΚΕΦΑΛΑΙΟ 10 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ οκιµή Κυλινδρικής Τριαξονικής Φόρτισης Σελίδα ΚΕΦΑΛΑΙΟ 0 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ 0. Εισαγωγή Σε προηγούµενα Κεφάλαια µελετήθηκε η παραµόρφωση των

Διαβάστε περισσότερα

Ασύνδετοι τοίχοι. Σύνδεση εγκάρσιων τοίχων. Σύνδεση εγκάρσιων τοίχων & διάφραγμα στη στέψη τοίχων

Ασύνδετοι τοίχοι. Σύνδεση εγκάρσιων τοίχων. Σύνδεση εγκάρσιων τοίχων & διάφραγμα στη στέψη τοίχων ΛΕΙΤΟΥΡΓΙΑ ΤΡΙΣΔΙΑΣΤΑΤΟΥ ΚΙΒΩΤΙΟΥ Οι σεισμικές δυνάμεις ασκούνται στο κτίριο κατά τις 2 οριζόντιες διευθύνσεις. Για ένα τοίχο η μία δύναμη είναι παράλληλη στο επίπεδό του (εντός επιπέδου) και η άλλη κάθετη

Διαβάστε περισσότερα

Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων

Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων Piled raft foundations: load distribution and interaction effects to the iles and the raft ΜΠΑΡΕΚΑ,

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ.

ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ ΚΑΡΑΧΑΛΙΟΥ ΜΑΡΙΑ Περίληψη Αντικείμενο της παρούσας εργασίας είναι η εκτίμηση της φέρουσας

Διαβάστε περισσότερα

ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ. 04 Ανάλυση της Μόνιμης Επένδυσης

ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ. 04 Ανάλυση της Μόνιμης Επένδυσης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ 9 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2013-14 04 Ανάλυση

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ 7 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών -01», Μάρτιος 2001. ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ Εργασία Νο B3 ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία μελετάται το πώς

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ "Α"

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ Α Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΝΔΙΑΜΕΣΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ: ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι (Τμήμα Μ-Ω) Ακαδ. έτος 007-08 5 Ιανουαρίου 008 Διάρκεια: :30 ώρες ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα