«Μαθηματικά και φύση» Εργασία στο μάθημα «Επίλυση προβλήματος στα Μαθηματικά» Υπεύθυνη καθηγήτρια «Κολέζα Ευγενία» Καρακούση Ελένη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "«Μαθηματικά και φύση» Εργασία στο μάθημα «Επίλυση προβλήματος στα Μαθηματικά» Υπεύθυνη καθηγήτρια «Κολέζα Ευγενία» Καρακούση Ελένη"

Transcript

1 «Μαθηματικά και φύση» Εργασία στο μάθημα «Επίλυση προβλήματος στα Μαθηματικά» Υπεύθυνη καθηγήτρια «Κολέζα Ευγενία» Καρακούση Ελένη Πανεπιστήμιο Πατρών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πάτρα

2 Τα μαθηματικά της φύσης Ο χρυσός αριθμός Τι κοινό έχουν οι μέλισσες, το ανθρώπινο σώμα και τα πέταλα ενός λουλουδιού; Υπόκεινται όλα στο κανόνα της φύσης που ονομάζεται χρυσή τομή. Παρουσιάζεται και στα τρία ο χρυσός αριθμός φ, 1,6. τι είναι όμως ο αριθμός φ; Το 1202 ο Λεονάρντο Μπονάτσα προσπάθησε να υπολογίσει την ταχύτητα αναπαραγωγής των κουνελιών στη Γη σε ιδανικές συνθήκες. Ας υποθέσουμε, έλεγε, ότι έχουμε ένα μοναδικό ζευγάρι, το οποίο αρχίζει να αναπαράγεται από τον πρώτο κιόλας μήνα και μετά από κάθε μήνα κύησης γεννά ένα ακόμη ζεύγος. Και ότι κάθε νέο ζεύγος γίνεται γόνιμο σε δύο μήνες μετά τη γέννησή του και αρχίζει να αναπαράγεται με τον ίδιο ρυθμό. Πόσα ζευγάρια κουνελιών θα έχουμε στο τέλος του πρώτου χρόνου; Στο τέλος του πρώτου μήνα το αρχικό ζευγάρι είναι έτοιμο να τεκνοποιήσει, αλλά υπάρχει μόνο αυτό. Στο τέλος του δεύτερου μήνα έχουμε το αρχικό ζευγάρι και το πρώτο ζευγάρι παιδιών του. Στο τέλος του τρίτου μήνα έχουμε το αρχικό ζευγάρι, το πρώτο ζευγάρι παιδιών του, που είναι έτοιμα κι αυτά να τεκνοποιήσουν, και ένα δεύτερο ζεύγος παιδιών του. Στο τέλος του τέταρτου μήνα έχουμε το αρχικό ζευγάρι και το τρίτο ζεύγος παιδιών του, το πρώτο ζεύγος παιδιών και το πρώτο δικό τους ζεύγος παιδιών, καθώς και το δεύτερο ζεύγος παιδιών, που είναι έτοιμο να τεκνοποιήσει. Πιο συγκεκριμένα, η ακολουθία των ζευγαριών κουνελιών είναι: 1, 1, 2, 3, 5. Μπορείτε να εντοπίσετε το μοτίβο που κρύβεται πίσω από αυτή την αλληλουχία; Αν την επεκτείνουμε λίγο ακόμα, τα πράγματα αρχίζουν να ξεκαθαρίζουν: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, Δηλαδή, για να δημιουργήσουμε τη λεγόμενη ακολουθία Φιμπονάτσι (γνωστή και ως «αριθμοί Φιμπονάτσι»), αρκεί να προσθέσουμε τα δύο προηγούμενα νούμερα για να έχουμε το αμέσως επόμενο. Όμως, τι σχέση έχει αυτή η ακολουθία με το χρυσό αριθμό. Το πηλίκο της διαίρεσης κάθε νούμερου της ακολουθίας με το προηγούμενο του πλησιάζει το χρυσό αριθμό. Όσο προχωρεί η ακολουθία, το πηλίκο προσεγγίζει ολοένα και περισσότερο το χρυσό αριθμό. Που αλλού εμφανίζεται o χρυσός αριθμός; Σε ένα μελίσσι! Η μέλισσα γεννιέται από ένα μη γονιμοποιημένο αβγό της βασίλισσας, δηλαδή έχει μητέρα αλλά όχι και πατέρα. Αντιθέτως, τόσο η βασίλισσα (η μοναδική που μπορεί να κάνει αβγά) όσο και οι εργάτριες γεννιούνται από αβγά που έχουν γονιμοποιηθεί από αρσενικό. Αυτές, λοιπόν, έχουν και πατέρα και μητέρα. Επομένως, το γενεαλογικό δέντρο του κηφήνα διαμορφώνεται ως εξής: έχει 1 μητέρα, 2 παππούδες (αρσενικό και θηλυκό), 3 προπαππούδες (δύο από την οικογένεια της γιαγιάς και μία του παππού), 5 προ- προπαππούδες, 8 προ- προ- προπαππούδες και ούτω καθεξής. Το γενεαλογικό δέντρο του κηφήνα είναι μια ακολουθία Φιμπονάτσι! Και όχι μόνο αυτό. Το 1966, ο Νταγκ Γιανέγκα, από το Μουσείο Έρευνας στην Εντομολογία του Πανεπιστημίου της Καλιφόρνιας, ανακάλυψε ότι η αναλογία που υφίσταται ανάμεσα σε εργάτριες μέλισσες και κηφήνες σε ένα μελίσσι προσεγγίζει το χρυσό αριθμό. 2

3 Στο ανθρώπινο σώμα! Το ανθρώπινο σώμα έχει δομηθεί και αναπτύσσεται σε ΑΝΑΛΟΓΙΕΣ Φ. Η απόσταση ζωτικών οργάνων (π.χ. εγκέφαλος- καρδιά, στομάχι, γεννητικά όργανα κ.λπ.) εμπεριέχει αναλογίες Φ. Δεν είναι τυχαίο ότι πολλές "ανατολίτικες θρησκείες" και κινήματα στα πλαίσια της διδασκαλίας τους για ΔΙΑΛΟΓΙΣΜΟ και "αυτοσυγκέντρωση" και σε εκείνες τις προσπάθειες για διαλογισμό ή στο λεγόμενο "γιόγκα" η στάση του Ανθρώπινου σώματος (η οκλαδόν) γίνεται κατά αυτό τον τρόπο έτσι ώστε τα "κεντρικά - κομβικά" σημεία του σώματος να βρίσκονται σε μία αναλογία μεταξύ τους ΧΡΥΣΗ, σε αναλογίες Φ(το Φ υψωμένο σε δυνάμεις 2,3,4 και το αντίστροφο 1/Φ υψωμένο σε δυνάμεις 2,3,4). Εξάλλου είναι γνωστό ότι οι περισσότεροι Πλαστικοί χειρούργοι στις επεμβάσεις τους χρησιμοποιούν τον ΧΡΥΣΟ ΑΡΙΘΜΟ και επιδιώκουν να επιτύχουν αναλογίες βασισμένες στο θεώρημα της Χρυσής τομής και τον Χρυσό αριθμό Φ. Ένα ακόμη ενδιαφέρον στοιχείo είναι ότι στο ανθρώπινο σώμα, το κέντρο είναι ο ομφαλός. Επομένως, αν ένας άντρας ξαπλώσει με το πρόσωπο προς τα πάνω, τα χέρια και τα πόδια του αναπτυγμένα, και σχεδιάσουμε έναν κύκλο με κέντρο τον ομφαλό, τα δάχτυλα των χεριών και των ποδιών θα αγγίξουν την περιφέρεια του κύκλου. Μπορούμε επίσης να περικλείσουμε το σώμα με ένα ορθογώνιο σχήμα. Αν διαιρέσουμε τη μια πλευρά του ορθογωνίου (το ύψος του ανθρώπου) με την ακτίνα του κύκλου (την απόσταση από τον ομφαλό μέχρι την άκρη των δαχτύλων), θα έχουμε το χρυσό αριθμό. Σ αυτό το συμπέρασμα κατέληξε ο Leonardo da Vinci τo 1490 σχεδιάζοντας τον βιτρούβιο άνθρωπο ο όποιος έγινε ως μελέτη των αναλογιών του (ανδρικού) ανθρώπινου σώματος όπως περιγράφεται σε μια πραγματεία του Ρωμαίου αρχιτέκτονα Βιτρούβιου. 3

4 Στα λουλούδια! Το συγκεκριμένο λουλούδι έχει 8 έλικες προς την κατεύθυνση της φοράς του ρολογιού και 13 προς την αντίστροφη. Το 8 και το 13 είναι δύο διαδοχικοί αριθμοί στην ακολουθία Fibonacci. Σ αυτό το λουλούδι παρατηρούμε ότι σχηματίζονται σπείρες από δεξιά και αριστερά. Στην άκρη υπάρχουν 55 σπείρες από δεξιά προς τα έξω και στο κέντρο 34. Αν πάρουμε κατά ζεύγη τις σπείρες είναι ανάλογες με την ακολουθία Fibonacci. Τα φύλλα, τα πέταλα και οι σπόροι οργανώνονται στα φυτά ακολουθώντας ένα συγκεκριμένο μοτίβο γιατί έτσι, καθώς αναπτύσσονται, αξιοποιούν με τον καλύτερο 4

5 δυνατό τρόπο το διαθέσιμο χώρο. Αν κατανεμηθούν τα φύλλα στο μίσχο σύμφωνα με το χρυσό αριθμό, όλα θα επωφελούνται στο μέγιστο βαθμό από το φως του ήλιου, χωρίς να κρύβει το ένα το άλλο. Τα λουλούδια, χάρη στο χρυσό αριθμό, προσελκύουν όσο το δυνατόν καλύτερα τα έντομα που μεταφέρουν τη γύρη Στο DNA! Ο λόγος του μήκους της μεγάλης ράβδωσης ως προς την μικρή είναι ο αριθμός Φ. Αριθμός π Τι είναι; Η μαθηματική σταθερά π είναι ένας πραγματικός αριθμός που μπορεί να οριστεί ως ο λόγος του μήκους της περιφέρειας ενός κύκλου προς τη διάμετρό του στην Ευκλείδεια γεωμετρία, και ο οποίος χρησιμοποιείται πολύ συχνά στα μαθηματικά, τη φυσική και τη μηχανολογία. Ο συμβολισμός προέρχεται από το αρχικό γράμμα «π» (πι) της λέξης «περιφέρεια», και έχει καθιερωθεί διεθνώς, ενώ στο λατινικό αλφάβητο συμβολίζεται ως Pi, όταν δεν είναι διαθέσιμοι τυπογραφικά ελληνικοί χαρακτήρες. Το π είναι γνωστό επίσης ως σταθερά του Αρχιμήδη (δεν πρέπει να συγχέεται με τον αριθμό του Αρχιμήδη) ή αριθμός του Λούντολφ. Στην Ευκλείδια επιπεδομετρία, το π μπορεί να οριστεί είτε ως ο λόγος της περιφέρειας ενός κύκλου προς τη διάμετρό του, είτε ως ο λόγος του εμβαδού ενός κύκλου προς το εμβαδόν του τετραγώνου που έχει πλευρά ίση με την ακτίνα του κύκλου. Τα εγχειρίδια ανώτερων μαθηματικών ορίζουν το π αναλυτικά χρησιμοποιώντας τριγωνομετρικές συναρτήσεις, για παράδειγμα ως το μικρότερο θετικό x για το οποίο ισχύει ημ(x) = 0, ή ως δύο φορές το μικρότερο θετικό x για το οποίο ισχύει συν(x) = 0. Όλοι αυτοί οι ορισμοί είναι ισοδύναμοι. 5

6 Που υπάρχει στη φύση; Στα ποτάμια! Πριν από μερικά χρόνια, ο Χανς Χένρικ Στέλουμ, καθηγητής γεωλογίας στο Πανεπιστήμιο του Κέιμπριτζ, υποστήριξε ότι κάθε ποτάμι «κρύβει» τον αριθμό 3,14 τον περίφημο λόγο π που προκύπτει αν διαιρέσουμε την περίμετρο ενός κύκλου με τη διάμετρό του. Για να καταλήξει σε αυτό το συμπέρασμα, ο Στέλουμ διαίρεσε το συνολικό μήκος δεκάδων ποταμών με την απόσταση που χωρίζει (σε ευθεία γραμμή) την πηγή με τις εκβολές τους. Ο λόγος αυτός ήταν σχεδόν πάντα λίγο μεγαλύτερος από τρία και τις περισσότερες φορές προσέγγιζε τον «μαγικό» αριθμό 3,14. Σύμφωνα τώρα με τον Einstein, κάθε ποτάμι έχει από τη φύση του την τάση να αποκτά ολοένα και πιο σπειροειδές σχήμα. Το φαινόμενο αυτό, όπως εξηγούσε ο ίδιος ο Αϊνστάιν, οφείλεται στο γεγονός ότι κάθε καμπή που συναντά αναγκάζει συγκεκριμένες ποσότητες νερού (από το εξωτερικό τμήμα) να κινηθούν γρηγορότερα. Αν, για παράδειγμα, η μορφολογία του εδάφους οδηγεί τη ροή του νερού προς τα αριστερά, ο όγκος νερού που βρίσκεται πιο δεξιά πρέπει να κινηθεί ταχύτερα, καθώς έχει να καλύψει μεγαλύτερη απόσταση. Όσο ταχύτερα κινείται όμως το νερό τόσο μεγαλύτερη είναι η διάβρωση του εδάφους και τόσο περισσότερο αυξάνει η καμπή του ποταμού. Η καμπή λοιπόν αυξάνει την ταχύτητα και η ταχύτητα την καμπή, με αποτέλεσμα το ποτάμι να αποκτά συνεχώς περισσότερες και μεγαλύτερες σπείρες. Η φύση φαίνεται να οδεύει αναπόδραστα προς ολοένα και πιο σύνθετες και, κατ επέκταση, χαοτικές καταστάσεις. Συμμετρία Συμμετρία ονομάζεται η ιδιότητα μερικών γεωμετρικών σχημάτων στα οποία σε κάθε σημείο τους υπάρχει αντίστοιχο σημείο που ανήκει στο σχήμα και το μέσο αυτού του ευθύγραμμου τμήματος να ανήκει σε ένα στοιχειώδες γεωμετρικό σχήμα. δηλαδή ένα σημείο, μια ευθεία, ή ένα επίπεδο. Στον τρισδιάστατο ευκλείδειο χώρο υπάρχουν τρία είδη συμμετρίας: Αξονική συμμετρία σε αυγό. 6

7 Σφαιρική συμμετρία ή σημειακή συμμετρία ως προς το σημείο Ο: Για κάθε σημείο Α του σχήματος, στο σχήμα ανήκει και το σημείο Β, το οποίο ανήκει στο προεκτεταμένο ευθύγραμμο τμήμα ΑΟ έτσι, ώστε ΑΟ=ΟΒ. Αξονική συμμετρία ως προς τον άξονα ε: Για κάθε σημείο Α του σχήματος, στο σχήμα ανήκει και το σημείο Β που βρίσκεται σε τέτοιο σημείο, ώστε να απέχει από την ευθεία ε απόσταση ίδια με το Α και το ευθύγραμμο τμήμα ΑΒ να τέμνεται από την ευθεία ε. Κατοπτρική συμμετρία ως προς επίπεδο Π: Για κάθε σημείο Α του σχήματος, στο σχήμα ανήκει και το σημείο Β που βρίσκεται σε τέτοιο σημείο, ώστε να απέχει από το επίπεδο Π απόσταση ίδια με το Α και το ευθύγραμμο τμήμα ΑΒ να τέμνεται κάθετα από το επίπεδο Π. Η κατοπτρική συμμετρία εμφανίζεται στους καθρέφτες. Η συμμετρία ελκύει εξίσου καλλιτέχνες και επιστήμονες. Είναι στενά συνδεδεμένη με μια έμφυτη στον άνθρωπο αντίληψη του μορφώματος. Είναι απολύτως ενσωματωμένη σε πολλά από τα βαθύτερα μορφώματα της φύσης και στη σύγχρονη εποχή είναι θεμελιώδης για την επιστημονική κατανόηση του σύμπαντος. Οι αρχές διατήρησης, όπως της ενέργειας ή της ορμής, εκφράζουν μια συμμετρία την οποία (πιστεύουμε) κατέχει ολόκληρο το συνεχές του χωροχρόνου: οι νομοί της φυσικής είναι οι ίδιοι παντού. Η κβαντομηχανική των στοιχειωδών σωματιδίων, ένας τρελός κόσμος στον όποιο ένα πρωτόνιο μπορεί να πάρει τη θέση ενός νετρονίου, και του όποιου και του όποιου οι νομοί πρέπει να αντανακλούν αυτή τη πιθανότητα, διατυπώνεται με τη μαθηματική γλωσσά των συμμετριών. Οι συμμετρίες των κρυστάλλων, όχι μόνο ταξινομούν τα σχήματα τους, αλλά και καθορίζουν πολλές από τις ιδιότητες τους. Η συμμετρία έπαιζε καθοριστικό ρόλο στην πυθαγόρεια θεωρία των αριθμών και στις μουσικές τους κλίμακες. Για τους Πυθαγόρειους, όλοι οι αριθμοί έπρεπε να είναι ρητοί, δηλαδή, είτε ακέραιοι είτε κλάσματα, μια και τα τελευταία μπορούν να γραφτούν στη «συμμετρική» μορφή των περιοδικών, δεκαδικών αριθμών (π.χ. το 2/3 γράφεται 0,6666 ). Η ειρωνεία της τύχης ήταν ότι έλαχε στους ίδιους τους Πυθαγόρειους να ανακαλύψουν τους άρρητους αριθμούς (δηλαδή, εκείνους που δεν μπορούν να εκφραστούν ως περιοδικοί αριθμοί, π.χ. η τετραγωνική ρίζα του δύο), κάτι που κατέστρεψε τη συμμετρία στο αριθμητικό τους Σύμπαν. Αυτή η εμμονή με τη συμμετρία εξηγείται εύκολα ως απλή αντανάκλαση, στη φαντασία των ανθρώπων, συμμετριών που προϋπάρχουν στη Φύση - από τα φύλλα των φυτών και τα κουκουνάρια των δέντρων, μέχρι τις πεταλούδες και τους αστερίες. Σχεδόν όλοι οι πολυκύτταροι οργανισμοί, με αξιοσημείωτη εξαίρεση τους σπόγγους, εμφανίζουν τη μια ή την άλλη συμμετρία. Αλλά γιατί αγαπάει τόσο τη συμμετρία η Φύση; Η απάντηση δεν είναι αυτονόητη. Το βέβαιο είναι ότι κάθε συμμετρία σχετίζεται με το αναλλοίωτο κάποιας φυσικής ιδιότητας. Η μεταφορική συμμετρία σχετίζεται με τη διατήρηση της ορμής (γινόμενο μάζας επί ταχύτητα), η περιστροφική με τη διατήρηση ενός άλλου φυσικού 7

8 μεγέθους, της στροφορμής και η συμμετρία ανάμεσα στο παρελθόν και το μέλλον με τη διατήρηση της ενέργειας. Με άλλα λόγια, οι βασικές συμμετρίες σχετίζονται άμεσα με τους πιο θεμελιώδεις «υπερνόμους» της Φύσης. 'Eπειτα, είναι γνωστό ότι η Φύση προτιμά τις καταστάσεις της ελάχιστης δυνατής ενέργειας και αυτές συνδέονται άμεσα με τη συμμετρία κάθε φυσικού συστήματος. Στη Βιολογία, τα συμμετρικά σχήματα μπορεί να είναι αποτέλεσμα φυσικής επιλογής, αφού απαιτούν λιγότερη πληροφορία, επομένως λιγότερο γονιδιακό υλικό, από τα ασύμμετρα για την αναπαραγωγή τους. Αυτό μπορεί να εξηγεί εν μέρει και την ενστικτώδη προτίμησή μας για συμμετρικά πρόσωπα - απλούστατα, ο εγκέφαλός μας διευκολύνεται στην καταγραφή τους. Ας παρατηρήσουμε τώρα ορισμένες περιπτώσεις στη φύση που υπόκεινται σε κανόνες συμμετρίας. Κρύσταλλοι Τα πιο εντυπωσιακά παραδείγματα συμμετρίας στην ανόργανη φύση είναι οι κρύσταλλοι. Στην κρυσταλλική κατάσταση της ύλης τα άτομα ταλαντώνονται γύρω από θέσεις ισορροπίας, οι οποίες σχηματίζουν στο χώρο ένα καθορισμένο κανονικό σχήμα.. Όλες οι κλάσεις κρυστάλλων διαιρούνται σε έξι συστήματα, με βάση το μήκος των αξόνων και τις υπόλοιπες λεπτομέρειες των συμμετριών τους. [Συνολικά υπάρχουν 230 είδη ομάδων συμμετρίας στους κρυστάλλους]. Στη φυσική, ένα σύστημα θεωρείται συμμετρικό εάν παραμένει αμετάβλητο όταν υπόκειται σε διαδικασίες όπως κατοπτρική αντιστροφή, αντιστροφή της διεύθυνσης του χρόνου και μετασχηματισμό του χωροχρόνου. Πολλά φυσικά συστήματα υπακούν σε τέτοιου είδους συμμετρίες, με τις οποίες σχετίζονται οι νόμοι διατήρησης της φυσικής. Η σχέση αυτή έχει μια ιδιαίτερη σημασία στη φυσική των σωματιδίων, όπου συγκεκριμένες συμμετρίες, που λέγονται εσωτερικές, παρατηρούνται. Τέτοιες συμμετρίες υπάρχουν στο χώρο της μαθηματικής σκέψης και στηρίζουν τη διατήρηση τέτοιων ποσοτήτων όπως το φορτίο, η ισότητα, το πλήθος των βαρυόνιων και λεπτόνιων, και η ολικά ασυνήθιστη κατάσταση όταν συγκεκριμένα σωμάτια αντικαθίστανται μεταξύ τους. Στη σύγχρονη θεωρητική φυσική, πάντως, τέτοιες συμμετρίες είναι γνωστές μόνο κατά προσέγγιση, εκτός όμως από τα βαρυόνια και τα λεπτόνια, όπου παραβιάζονται κατά τα πειράματα με αυτά. Όταν οι εσωτερικές συμμετρίες δεν λειτουργούν με τον ίδιο τρόπο, αλλά αντιθέτως μπορούν να διαφέρουν σε κάθε σημείο του χωροχρόνου, αποκαλούνται συμμετρίες gauge. Οι θεωρητικοί φυσικοί ελπίζουν ότι θα καταφέρουν να μειώσουν όλες τις συμμετρίες σε συμμετρίες gauge στην προσπάθεια τους να αναπτύξουν μια μεγάλη ενοποιητική θεωρία (Θεωρία των Πάντων), η οποία θα ενσωματώνει όλες της θεμελιώδεις λειτουργίες και ιδιότητες της ύλης. Αστερίας Ο πιο καταφανής μετασχηματισμός είναι αυτός που κάνει όλα τα πόδια να προσχωρούν κατά ένα βήμα Να στραφούν κατά μια γωνία 72 ο ( το ένα πέμπτο μιας πλήρους περιστροφής). Αν αφήσουμε ένα αστερία πάνω σε ένα τραπέζι και την ώρα 8

9 που έχουμε γυρισμένη την πλάτη κάποιος τον περιστρέψει κατά 72 ο δε θα καταλάβουμε τίποτα. Αν αντί για 72 ο τον περιστρέψουν κατά 45 ο τότε θα παρατηρήσουμε μια αλλαγή στον προσανατολισμό του αστερία. Υπάρχουν ακριβώς πέντε διαφορετικές γωνίες κατά τις οποίες ένας ιδανικός αστερίας μπορεί να περιστραφεί χωρίς η αλλαγή να γίνει αντιληπτή: ο μοίρες, 72 μοίρες, 144 μοίρες, 216 μοίρες και 288 μοίρες- τα ακεραία πολλαπλάσια του ενός πέμπτου μιας πλήρους περιστρέφεις. Ανεπίσημα, θα λέμε ότι ένας αστερίας έχει πενταπλή περιστροφική συμμετρία. Οι περιστροφές πάνω στο επίπεδο δεν έχουν άξονα περιστροφής αλλά ένα συγκεκριμένο σημείο, το κέντρο περιστροφής, το όποιο δε μετακινείται καθόλου. Το κέντρο της περιστροφής είναι το κέντρο της του αστερία. Αυτές οι περιστροφές είναι οι εμφανέστερες συμμετρίες ενός αστερία, αλλά στην πραγματικότητα υπάρχουν κι άλλες, αφού ένας αστερίας μέσα στον καθρέφτη εξακολουθεί να μοιάζει με αστερία. Καθένα από τα μελή του είναι αμφίπλευρα συμμετρικό και ο άξονας συμμετρίας του μέλους διέρχεται από το κέντρο της περιστροφικής συμμετρίας. Έτσι, ο αστερίας έχει αμφίπλευρη συμμετρία. Ο αστερίας έχει πέντε διαφορετικές αμφίπλευρες συμμετρίες, αφού έχει πέντε πόδια και καθένα έχει το δικό του άξονα συμμετρίας. Υπάρχουν πέντε ξεχωριστοί κατοπτρισμοί που αφήνουν έναν αστερία αμετάβλητο οι άξονες των όποιων έχουν διαφορετικό κατά γωνία 72 ο. Ανθρώπινο σώμα Το ανθρώπινο σώμα παρουσιάζει αμφίπλευρη συμμετρία, δηλαδή τη συμμετρία στην οποία παρόμοια ανατομικά μέρη είναι διευθετημένα σε αντίθετες πλευρές ενός ενδιάμεσου άξονα, έτσι ώστε μόνο ένα επίπεδο ή ευθεία να μπορεί να διαιρεί το όλο σε δύο ουσιαστικά ίδια. έχει τα επιμέρους τμήματα του κατανεμημένα ομοιόμορφα γύρω από ένα κάθετο ενδιάμεσο άξονα, έτσι ώστε να χωρίζεται νοητά σε δύο όμοια μισά, που το ένα μπορεί να προκύψει από το άλλο με τη διαδικασία που λέγεται κατοπτρισμός ή ανάκλαση. Fractals Ο όρος "φράκταλ" προέρχεται από το λατινικό fractio (θραύσμα, κομμάτι), λόγω της κλασματικής διάστασής του, και πρωτοχρησιμοποιήθηκε από τον Γάλλο μαθηματικό Benoit Mandelbrot το Ηδη από τα τέλη της δεκαετίας του 1960, αλλά κυρίως την επόμενη δεκαετία, ο Mandelbrot φρόντισε να προσφέρει έναν αρκετά ευρύ αλλά μαθηματικά ακριβή ορισμό τους καθώς και των ιδιαίτερων ιδιοτήτων τους (αυτοομοιότητα, κλασματική διάσταση, μικρή επιφάνεια φράκταλ αλλά άπειρη σε μήκος περίμετρος). Τα φράκταλ είναι μια γενίκευση των κλασικών γεωμετρικών σχημάτων (τρίγωνα, ορθογώνια, παραλληλόγραμμα, πυραμίδες κ.τ.λ.) σε μη κανονικά και συχνά πολύπλοκα "γεωμετρικά" σχήματα, τα οποία είτε βρίσκονται στη φύση είτε κατασκευάζονται από τον άνθρωπο για διάφορες 9

10 εφαρμογές ή απλώς για την ομορφιά τους. Ετσι, η φρακταλική γεωμετρία μάς επιτρέπει να περιγράφουμε ικανοποιητικά και να απεικονίζουμε πολύπλοκες φυσικές δομές όπως τα φύλλα των δέντρων, τα φτερά των πουλιών, το νεφρό του ανθρώπου, μονοκύτταρους οργανισμούς, πυρήνες κυττάρων αλλά και σύννεφα, ποτάμια, γαλαξίες. Επιπλέον, η βαθύτερη κατανόηση των πολύπλοκων γεωμετρικών ιδιοτήτων και σχέσεων των φράκταλ φαίνεται να αποκαλύπτει κάποιους εγγενείς μηχανισμούς μορφογένεσης στον οργανικό και τον ανόργανο κόσμο. Η φύση,δηλαδη, επέλεξε αυτό τον κλάδο των μαθηματικών για να στηρίξει τις σημαντικότερες αποφάσεις της, όπως είναι το μέγεθος που θα έχει κάθε οργανισμός, η διάρκεια ζωής του κ.ά Αναρωτηθήκατε ποτέ τι θα συμβεί σε ένα μικρό ποντικάκι και έναν ελέφαντα, εάν πέσουν από ύψος ενός χιλιομέτρου; Για τον ελέφαντα, η τραγική κατάληξη είναι δεδομένη, σε αντίθεση με το ποντίκι που θα υποστεί απλώς ένα ισχυρό σοκ και θα απομακρυνθεί τρομαγμένο από την περιοχή. Η παρατήρηση αυτή οδήγησε αρκετούς βιολόγους, φυσικούς και μαθηματικούς στο συμπέρασμα ότι το μέγεθος των ζώων δεν είναι απλώς ζήτημα όγκου, αλλά κατασκευής. Ενας ελέφαντας, δηλαδή, δεν είναι απλώς ενα ποντίκι μεγεθυσμένο κατά φορές, αλλά ένας εντελώς διαφορετικός οργανισμός. Σύμφωνα με ερευνητές, η μαθηματική αυτή ακρίβεια της φύσης δεν οφείλεται σε κάποια υπερφυσική δύναμη, αλλά στην ανάγκη ρύθμισης του μεταβολισμού κάθε οργανισμού ανάλογα (όχι όμως και σε απόλυτη αναλογία) με τη μάζα του. Κάθε οργανισμός χρησιμοποιεί την επιφάνειά του για να αποβάλει την θερμότητα που παράγεται από τον μεταβολισμό. Η επιφάνεια, όμως, αυτή δεν είναι ανάλογη με τη μάζα του. Η επιφάνεια, δηλαδή, αυξάνεται με αναλογικά μικρότερους ρυθμούς απ ότι η μάζα και αυτό γιατί, αν ο ρυθμός μεταβολισμού ήταν απλώς ανάλογος της μάζας, θα παρουσιάζονταν σοβαρότατα προβλήματα. Ένας αρουραίος, για παράδειγμα, αναλογικά με τη μάζα του θα έπρεπε να παράγει 100 φορές περισσότερη ενέργεια από ένα μικροσκοπικό χάμστερ. Η επιφάνειά του όμως είναι μόλις 22 φορές μεγαλύτερη από αυτή του χάμστερ. Το αποτέλεσμα θα ήταν ένας καυτός αρουραίος. Ο μεταβολισμός λοιπόν πρέπει να είναι μικρότερος όσο μεγαλύτερη είναι η μάζα του οργανισμού, για να αποφευχθεί η «υπερθέρμανση». Βάση του μεταβολισμού, όμως, ρυθμίζονται οι χτύποι της καρδιάς και ο μέσος όρος ζωής κάθε οργανισμού. Προχωρώντας ένα ακόμα βήμα και συνδυάζοντας αρχές γεωμετρίας δικτύων και υδροδυναμικής, οι επιστήμονες ανακάλυψαν ότι ο νόμος που διατύπωσαν ισχύει και σε επίπεδο κύτταρων και μιτοχονδρίων. Κατέληξαν έτσι στο συμπέρασμα ότι η σχέση μεταβολισμού και μάζας εξαρτάται από τη δομή του δικτύου διανομής ενέργειας και τροφής που διαθέτει κάθε οργανισμός και το οποίο έχει μορφή fractal. Κύριο χαρακτηριστικό των fractals είναι ότι κάθε τμήμα του, σε οποία κλίμακα και αν το εξετάσουμε, αποτελεί μικρογραφία του συνόλου. Εξετάζοντας τη fractal δομή του δικτύου παραγωγής και διανομής ενέργειας, οι επιστήμονες πιστεύουν ότι σύντομα θα δώσουν απαντήσεις σε μεγάλα ερωτήματα της βιολογίας αλλά ακόμα και της κοινωνιολογίας και τα οποία φορούν την ποικιλομορφία των ειδών και την εξέλιξη οργανισμών. Για όλα αυτά βέβαια απαιτείται η χρήση γεωμετρίας fractal και φυσικά σύγχρονων μαθηματικών. 10

11 Προβλήματα που λύνονται με τη βοήθεια των μαθηματικών Όσο βεβαία και αν η φύση διέπεται από μαθηματικούς κανόνες, η σχέση μαθηματικών και φύσης δεν εξαντλείται εδώ. Τα μαθηματικά έχουν διαχρονικά αποδειχτεί ως πολύτιμος βοηθός επιστήμων στη προσπάθεια τους να αντιμετωπίσουν προβλήματα που προέρχονται από τη φύση. Εξάλλου αν σκεφτούμε την ετυμολογία της λέξης γεωμετρία γίνεται φανερό ότι προέρχεται από τις λέξεις «γη και μετρώ». Την εμπειρική γεωμετρία τη χρησιμοποίησαν οι αιγύπτιοι για να υπολογίζουν τα όρια των χωραφιών τους μετά τις πλημμύρες του Νείλου. Στην Ελλάδα, τώρα, ο Ερατοσθένης ήταν αυτός που μέτρησε τη περιφέρεια της γης. Πως; Γνώριζε αρχικά ότι κατά το θερινό ηλιοστάσιο, ο ήλιος βρίσκεται ακριβώς πάνω Από τη πόλη Συήνη. Θεώρησε ευλόγα ότι οι ακτίνες του ήλιου είναι παράλληλες. Επομένως η γωνία α που σχηματίζεται η άκρη της σκιάς ενός ραβδίου με τη κορυφή του ραβδίου στην Αλεξάνδρεια, που υπέθεσε ότι βρίσκεται στον ίδιο μεσημβρινό κύκλο με τη Συήνη, είναι ίση με την επίκεντρο γωνία που αντιστοιχεί στην απόσταση δυο πόλεων, για την οποία ο Ερατοσθένης γνώριζε ότι είναι 5000 στάδια. Τη γωνία α όμως ο Ερατοσθένης μπορούσε προφανώς να τη μετρήσει και τη βρήκε να είναι περίπου όση με το 1/50 μιας πλήρους περιφέρειας, δηλαδή όση περίπου με γωνία φ= 7 ο 12. επομένως, Εύκολα υπολογίζουμε τότε ότι το μήκος της περιφέρειας της Γης είναι περίπου στάδια. Τη μέθοδο με την οποία ο Ερατοσθένης μέτρησε τη περιφέρεια της γης καθώς και το αποτέλεσμα μας τα διασώζει ο Κλεομήδης (μέσα του 1 ου π.χ. αιώνα). Ο Ήρων, ο Στράβων και ο Θέων της Σμύρνας αναφέρουν ότι ο Ερατοσθένης βρήκε ότι η περιφέρεια της Γης είναι στάδια. 11

12 Ένα ακόμη πολύ ενδιαφέρον πρόβλημα που λύθηκε με τη βοήθεια των μαθηματικών είναι η δημιουργία του ευπαλίνιου ορύγματος από τον Ευπαλίνο. Ας πάρουμε όμως τα πράγματα από την αρχή. Στο τέλος του 6αι. π.χ την εξουσία στη Σάμο πήρε από τους Αριστοκρατικούς ο Πολυκράτης. Αυτός κυβέρνησε το νησί σαν τύραννος από το π.χ. Κατά τη διάρκεια της τυραννίας του εκτέλεσε μεγάλα έργα όπως το τείχος γύρω από την πόλη της Σάμου (σημερινό Πυθαγόρειο) το μεγάλο λιμενοβραχίονα μήκους 360 μέτρων και βάθους στο άκρο του 36 μέτρων, το ναό της Ήρας διαστάσεων 108,70x52,40 μέτρων με 155 κίονες και το περίφημο υδραγωγείο της πόλης. Οι προδιαγραφές που έβαλε ο Πολυκράτης για το υδραγωγείο ήταν : 1. Να τροφοδοτείται από το νερό της πλούσιας πηγής των Αγιάδων. 2. Να είναι υπόγειο με επισκέψιμα τα τμήματα του αγωγού. 3. Να βράζει νερό σε ορισμένο σημείο εσωτερικό των τειχών και σε στάθμη υψηλότερη της τότε πόλης για την αβίαστη διανομή του. 12

13 Η πηγή όμως βρισκόταν πίσω από το βουνό, το οποίο αποτελούσε με τον όγκο του ανυπέρβλητο εμπόδιο στη ροή του νερού. Έτσι για την ασφαλή, σε περίπτωση πολιορκίας, ροή του νερού έπρεπε να τρυπηθεί το βουνό και να κατασκευασθεί μια σήραγγα στην αρχή και το τέλος της. Η κατασκευή του έργου ανατέθηκε στον αρχιτέκτονα Ευπαλίνο από τα Μέγαρα. Αυτός αφού έκανε τις αναγκαίες τοπογραφικές εργασίες για τον προσδιορισμό της διεύθυνσης και της κλίσης της σήραγγας άρχισε τις εργασίες της διάνοιξης και από τα δύο προκαθορισμένα άκρα της. Τέτοια διάτρηση βουνού δεν είχε επιχειρηθεί ξανά από κανένα πολιτισμό και σε καμιά εποχή πριν από τον Ευπαλίνο. Το τόλμημα ήταν ριψοκίνδυνο γιατί υπήρχε το ενδεχόμενο οι δυο σήραγγες από κακή χάραξη, να μην συναντηθούν ποτέ. Τελικά οι δυο σήραγγες συναντήθηκαν με πολύ μικρή απόκλιση από την ευθεία. Το συνολικό μήκος της διάτρησης είναι 1035 μ. (Κατά τον Ηρόδοτο 7 στάδια = 1294 μ.) Από αυτά τα 615 μ. είναι το μήκος της βόρειας σήραγγας και τα 420 της νότιας. Η απόκλιση από την ευθεία των δυο σηράγγων ήταν μόλις 6 μ. Το πλάτος της σήραγγας είναι περίπου 2,30 μ. και το ύψος 1,90. Στο δάπεδο της σήραγγας υπάρχει αυλάκι μέσα στο οποίο ήταν τοποθετημένοι οι πήλινοι σωλήνες που έφεραν το νερό. Η διάτρηση του βουνού διήρκησε περίπου 6 χρόνια ενώ η εκτέλεση και των άλλων έργων (τάφρος, σωληνώσεις κ.λ.π) πρέπει να ολοκληρώθηκε σε 10 χρόνια περίπου. Το υδραγωγείο του Ευπαλίνου λειτούργησε μέχρι τον 5 αι. μ.χ γύρω στα 1000 χρόνια. Μετά φαίνεται στέρεψε η πηγή του, έπαψε η συντήρησή του και καταχώθηκε από χώματα. Η οριστική του αποκατάσταση του και ο καθαρισμός του από άλλα υλικά έγινε το 1971 από το Γερμανικό αρχαιολογικό Ινστιτούτο. Αν και σήμερα είναι άγνωστη η γεωμετρική διαδικασία που ακολουθήθηκε για τη χάραξη της διάτρησης το ότι το έργο ολοκληρώθηκε μπορούμε να πούμε σήμερα ότι τότε γνώριζαν πολύ περισσότερα από όσα εμείς γνωρίζουμε για τις γνώσεις της εποχής εκείνης. Μας βεβαιώνει ότι ο Ευπαλίνος, γύρω στο 530 π.χ γνώριζε : Το Πυθαγόρειο Θεώρημα Τον υπολογισμό των τετραγωνικών ριζών 13

14 Τέλος, μια ακόμη περίπτωση από τα μαθηματικά συνέβαλαν στην αντιμετώπιση προβλημάτων που γεννά η ιδία η φύση είναι η χρήση μαθηματικών τύπων για να προβλεφτεί ένα τσουνάμι. Πως, όμως, τα μαθηματικά μας βοηθούν να κατανοήσουμε τη συμπεριφορά ενός φυσικού φαινομένου όπως το τσουνάμι; Οι μαθηματικοί συχνά μιλούν για μια εξίσωση που αποδίδει το φαινόμενο. Αυτή η γλώσσα σημαίνει ότι η εξίσωση ορίζει μια σχέση ανάμεσα σε μεταβλητές όπως η ταχύτητα του κύματος ή το μήκος κύματος και φυσικές παράμετροι όπως η βαρύτητα και το βάθος του ωκεανού, αυτή η σχέση μπορεί να χρησιμοποιηθεί για να παραβλεφθεί η μελλοντική συμπεριφορά του ίδιου του κύματος. Για παράδειγμα, η συνηθισμένη προσέγγιση για τη ταχύτητα του κύματος σε ανοιχτό ωκεανό είναι μια φόρμουλα: δηλαδή, η ταχύτητα είναι ανάλογη με τη τετραγωνική ρίζα της δύναμης της βαρύτητας επί το βάθος του ωκεανού. Τέτοιες μετρήσιμες σχέσεις επιτρέπουν στους επιστήμονες να προειδοποιήσουν για τσούξαμε που πλησιάζει με προβλέψεις και για τη ώρα άφιξης και το μέγεθος του κύματος, έτσι ώστε η λιμενικές αρχές να μπορέσουν να καλέσουν για εκκένωση. Αυτή η περιγραφική προσέγγιση γίνεται πιο σύνθετη επειδή το σχήμα του κύματος μπορεί να αλλάξει ως αποτέλεσμα της αλλαγής στο φυσικό περιβάλλον. Ένα τσουνάμι σε ανοιχτό ωκεανό είναι δυσδιάκριτη αλλαγή στην ανύψωση της στάθμης της θάλασσας πάνω από ένα αριθμό μιλίων. Καθώς ένα τσουνάμι προσεγγίζει την ακτή και γίνεται ολοένα και πιο αισθητή η παρουσία του στο πάτο της θάλασσας, αρχίζει να επηρεάζει το σχήμα του κύματος οδηγώντας στην ανάπτυξη ενός τείχους νερού. Υπάρχουν εξισώσεις που περιγράφουν τσουνάμι και είναι εφαρμόσιμες σε διαφορετικές καταστάσεις: ένα είδος εξίσωσης εφαρμόζεται σε τσουνάμι σε ανοιχτό ωκεανό, όπου το βάθος είναι πολύ μεγάλο, αλλά ένα δεύτερο σετ εξισώσεων εφαρμόζεται σε παρεμφερείς καταστάσεις, όπου το σχήμα του κύματος επηρεάζεται από τη δυνατότητα μεταφοράς του νερό σε όλο το κεκλιμένο, πιο ρηχό βυθό της θάλασσας. Ένα πρόσφατο ερευνητικό πρόβλημα εφαρμοσμένων μαθηματικών είναι να αναπτύξουν μια καλή περιγραφή της μετάβασης ανάμεσα στον ανοιχτό ωκεανό και τη παράκτια ζώνη. Πίνακας ορισμών Αυτοομοιώτητα: είναι η ιδιότητα ενός σχήματος να είναι όμοιο με ένα ή περισσότερα τμήματά του. Βαρυόνια: είναι υποατομικά σωματίδια τα οποία δημιουργούνται με συνδυασμούς τριών κουάρκ Λεπτόνια: είναι σωματίδια ύλης,τα οποία δεν μπορούν να μετέχουν σε ισχυρές αλληλεπιδράσεις. Μαζί με τα κουάρκ αποτελούν τους δομικούς λίθους της ύλης. Μεταβολισμός: είναι το αθροιστικό σύνολο των χημικών διεργασιών που γίνονται στα κύτταρα ενός ζωικού ή φυτικού οργανισμού κατά τις οποίες είτε αποθηκεύεται ενέργεια (διαδικασία αναβολισμού), είτε απελευθερώνεται από τα μόρια ενέργεια (περίπτωση καταβολισμού) 14

15 Στροφορμή: είναι ένα φυσικό μέγεθος αλλά και ιδιότητα που χαρακτηρίζει γενικά τα περιστρεφόμενα σώματα. Ως ιδιότητα χαρακτηρίζει την αδράνεια ως προς τη κίνηση ενός σώματος ή συστήματος σωμάτων γύρω από ένα άξονα, που μπορεί να διέρχεται, ή όχι, από το σώμα ή το σύστημα αντίστοιχα. Ως μέγεθος εμφανίζεται στην περιστροφική κίνηση και είναι διανυσματικό μέγεθος που απαιτεί τη γνώση τόσο του μέτρου της όσο και της διεύθυνσης και φοράς της, προκειμένου να γίνει περιγραφή της Βιβλιογραφία Fractals: «Φράκταλ και γεωμετρία του Χάους» συνέντευξη του μαθηματικού Αλέξη Μπακόπουλου. ακολουθία Fibonacci και χρυσή τομή Site της μαθηματικής κοινότητας «O χρυσός αριθμός Φ» αριθμός π el.wikipedia.org/wiki/αριθμός_π συμμετρία el.wikipedia.org/wiki/συμμετρία «Είναι ο θεός γεωμέτρης;» Συγγραφείς: Ian Stewart, Μartin Golubitsky Εκδόσεις: Kωσταράκη, 1992 υδραγωγείο του Ευπαλίνου gym- n- souliou.ser.sch.gr/ergasies/mathimatikoi.htm υπολογισμός περιμέτρου γης: «Αριθμοί, σύνολα, σχήματα : μαθηματικά για τη δασκάλα και τον δάσκαλο» Συγγραφέας: Κώστας Χατζηκυριάκου. Εκδόσεις: σοφία, 2008 Πρόβλεψη τσουνάμι (μετάφραση στα ελληνικά) 15

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Οδηγός για τον εκπαιδευτικό Περιεχόμενα Προετοιμασία δραστηριότητας Α. Υλικά και φύλλα εργασίας 3 Β. Εγκατάσταση του προγράμματος "Google

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Το Πυθαγόρειο θεώρημα: μία διάσημη μαθηματική σχέση στον εργαστηριακό πάγκο της Φυσικής Παναγιώτης Μουρούζης Το Πυθαγόρειο θεώρημα, το οποίο συνήθως περιγράφεται φορμαλιστικά από μία σχέση της μορφής 2

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη

Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Στις 14 Οκτωβρίου 2010 έφυγε από τη ζωή ο Μπενουά Μάντελμπροτ (Benoît Mandelbrot), ο άνθρωπος που έδωσε το όνομά του σ ένα από τα πιο περίπλοκα

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Το μοτίβο ταπετσαρίας: μια σύντομη εισαγωγή στην φύση και τα είδη του.

Το μοτίβο ταπετσαρίας: μια σύντομη εισαγωγή στην φύση και τα είδη του. Το μοτίβο ταπετσαρίας: μια σύντομη εισαγωγή στην φύση και τα είδη του. σημειώσεις για το μάθημα Εικαστική Σύνθεση 2, του τμήματος ΕΑΔΣΑ στο ΤΕΙ Σερρών. Οι αναφορές στα μοτίβα είναι βασισμένες επάνω στο

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Περίθλαση φωτός από συμπαγή δίσκο (CD)

Περίθλαση φωτός από συμπαγή δίσκο (CD) Περίθλαση φωτός από συμπαγή δίσκο (CD) Επίδειξη-Πείραμα Σκοπός Με την άσκηση αυτή θέλουμε να εξοικειωθούν οι μαθητές με τα φαινόμενα της συμβολής και περίθλασης, χρησιμοποιώντας ένα καθημερινό και πολύ

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

Μιχάλης Μακρή EFIAP. www.michalismakri.com

Μιχάλης Μακρή EFIAP. www.michalismakri.com Μιχάλης Μακρή EFIAP www.michalismakri.com Γιατί κάποιες φωτογραφίες είναι πιο ελκυστικές από τις άλλες; Γιατί κάποιες φωτογραφίες παραμένουν κρεμασμένες σε γκαλερί για μήνες ή και για χρόνια για να τις

Διαβάστε περισσότερα

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007 2 ο Εργαστήρι Λεσχών Ανάγνωσης Πάρος 2-6 Ιουλίου 2007 Περίληψη Η Αλίκη µισεί τα µαθηµατικά και θεωρεί πως δε χρησιµεύουν σε τίποτα. Μια µέρα που κάθεται και διαβάζει στο πάρκο, ένα παράξενο άτοµο την προσκαλεί

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης 1 ο ΕΤΟΣ 1 η φάση: Ερώτημα συζήτησης: Που χρησιμοποιείται τη γεωμετρία στην εργασία σας και στην καθημερινή σας ζωή. (Μια διδακτική ώρα).

Διαβάστε περισσότερα

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή Η ιδέα, ότι όλα τα υλικά πράγµατα συντίθενται από αυτά τα τέσσερα πρωταρχικά στοιχεία, αποδίδεται στον προγενέστερό Εµπεδοκλή, Έλληνα φιλόσοφο, ποιητή και πολιτικό [493-433 π.χ.] που γεννήθηκε στον Ακράγαντα

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΣΥΜΜΕΤΡΙΑ ΚΑΙ ΕΠΙΠΕΔΟ

ΣΥΜΜΕΤΡΙΑ ΚΑΙ ΕΠΙΠΕΔΟ ΣΥΜΜΕΤΡΙΑ ΚΑΙ ΕΠΙΠΕΔΟ Το κεφάλαιο αυτό γράφτηκε από το Βαγγέλη Δρίβα Στο κεφάλαιο αυτό θα ασχοληθούμε με την συμμετρία στο επίπεδο. Αυτή έχει την έννοια της μεταφοράς όλων των σημείων ενός αντικειμένου

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

Νέα Οπτικά Μικροσκόπια

Νέα Οπτικά Μικροσκόπια Νέα Οπτικά Μικροσκόπια Αντίθεση εικόνας (contrast) Αντίθεση πλάτους Αντίθεση φάσης Αντίθεση εικόνας =100 x (Ι υποβ -Ι δειγμα )/ Ι υποβ Μικροσκοπία φθορισμού (Χρησιμοποιεί φθορίζουσες χρωστικές για το

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ LOGO ΓΙΑ ΤΗΝ Γ ΤΑΞΗ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ LOGO ΓΙΑ ΤΗΝ Γ ΤΑΞΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ LOGO ΓΙΑ ΤΗΝ Γ ΤΑΞΗ ΑΣΚΗΣΕΙΣ 1. Γράψτε πρόγραμμα σχεδίασης ενός τετραγώνου πλευράς 100. επανάλαβε 4 [μπ 100 δε 90] 2. Γράψτε πρόγραμμα σχεδίασης ενός ισόπλευρου τριγώνου πλευράς 100.

Διαβάστε περισσότερα

Η μεταβλητή "χρόνος" στη δημογραφική ανάλυση - το διάγραμμα του Lexis

Η μεταβλητή χρόνος στη δημογραφική ανάλυση - το διάγραμμα του Lexis Η μεταβλητή "χρόνος" στη δημογραφική ανάλυση - το διάγραμμα του Lexis Η αναφορά στο χρόνο Αναφερόμενοι στο χρόνο, θα πρέπει κατ αρχάς να τονίσουμε ότι αυτός μπορεί να είναι είτε το ημερολογιακό έτος, είτε

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης.

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. 1 Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. Μέχρι τις αρχές του 20ου αιώνα υπήρχε μια αντίληψη για τη φύση των πραγμάτων βασισμένη στις αρχές που τέθηκαν από τον Νεύτωνα

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα