ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ"

Transcript

1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΧΩΡΟ-ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΤΑΛΑΝΤΟΥΜΕΝΩΝ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΕ ΔΙΑΜΟΡΦΩΣΕΙΣ ΔΥΟ ΚΑΙ ΤΡΙΩΝ ΗΛΕΚΤΡΟΔΙΩΝ Παναγιώτης Σταματόπουλος, Αντώνης Καραντώνης Τομέας Επιστήμης και Τεχνικής των Υλικών, Σχολή Χημικών Μηχανικών, ΕΜΠ, 15780, Αθήνα ΠΕΡΙΛΗΨΗ Στην εργασία αυτή γίνεται μία υπολογιστική μελέτη ηλεκτρολυτικών κελιών στα οποία εμφανίζονται περιοδικές ταλαντώσεις του ρεύματος υπό ποτενσιοστατικές συνθήκες. Εισάγεται ένα γενικό κινητικό μοντέλο και θεωρείται ότι στο σύστημα ισχύει η τριτοτοταγής κατανομή ρεύματος. Το χρονικά μεταβαλλόμενο πρόβλημα λύνεται στη μία και στις δύο διαστάσεις και μελετάται η επίδραση των γεωμετρικών χαρακτηριστικών του ηλεκτρολυτικού κελιού και της κινητικής των ηλεκτροδιακών δράσεων σε αστάθειες που οδηγούν σε περιοδικές ταλαντώσεις. ΕΙΣΑΓΩΓΗ Η εμφάνιση ασταθειών που οδηγούν σε αυτόνομες ταλαντώσεις του ρεύματος, είναι ένα φαινόμενο που παρατηρείται σε μία πληθώρα ηλεκτροχημικών συστημάτων υπό ποτενσιοστατικές συνθήκες. Οι ταλαντώσεις που παρατηρούνται πειραματικά είναι συνήθως περιοδικές τύπου αποδιέγερσης και τα χαρακτηριστικά τους (πλάτος και περίοδος) καθορίζεται τόσο από τις κινητικές των ηλεκτροχημικών αντιδράσεων που γίνονται πάνω στα ηλεκτρόδια όσο και από τα ηλεκτρικά και γεωμετρικά χαρακτηριστικά του ηλεκτρολυτικού κελιού. Ο καθορισμός της κινητικής τέτοιων ταλαντούμενων συστημάτων είναι από τη φύση της πολύ δύσκολη λόγω, αφενός, του άγνωστου μηχανισμού και αφεταίρου των τιμών των κινητικών σταθερών. Ακόμα κι όταν η κινητική είναι γνωστή ή σχετικά αποδεκτή, η επίλυση των εξισώσεων που προκύπτουν είναι πολύ δύσκολη [1]. Η δυσκολία έγκειται στο γεγονός ότι το πρόβλημα που προκύπτει είναι ένα πρόβλημα διαφορικών εξισώσεων με μερικές παραγώγους με μη γραμμικές οριακές συνθήκες (τις κινητικές εξισώσεις στις ηλεκτροδιακές επιφάνειες). Για το λόγο αυτό, η μοντελοποίηση αυτών των μη-γραμμικών δυναμικών συστημάτων συνήθως περιορίζεται λαμβάνοντας υπόψη ορισμένες παραδοχές. Η πιο συχνή παραδοχή είναι το μοντέλο της στοιβάδας Nernst όπου θεωρείται ότι όλες οι μεταβολές των συγκεντρώσεων των χημικών ειδών συμβαίνει εντός μίας περιορισμένης στοιβάδας κοντά στα ηλεκτρόδια, σταθερού μήκους, και ότι οι κατανομές των συγκεντρώσεων είναι γραμμικές εντός της στοιβάδας και σταθερές εκτός αυτής. Η προσέγγιση αυτή μετατρέπει την περιγραφή σε ένα πρόβλημα αρχικών συνθηκών με συνήθεις διαφορικές εξισώσεις []. Η μοντελοποίηση αυτή, παραδόξως, είναι ικανή να περιγράψει τις αστάθειες και τις ταλαντώσεις που παρατηρούνται αλλά δεν δίνει ρεαλιστική πληροφορία για τα φαινόμενα που συμβαίνουν στο ηλεκτρολυτικό διάλυμα, καθώς επίσης δεν μπορεί να προβλέψει μεταβολές λόγω αλλαγής της γεωμετρίας του ηλεκτρολυτικού κελιού. Μία άλλη προσέγγιση αγνοεί μεταβολές στο ηλεκτρολυτικό διάλυμα και είναι ικανή να μοντελοποιήσει αποκλειστικά τα επιφανειακά φαινόμενα, δηλαδή κατανομές συγκεντρώσεων και δυναμικού πάνω στην ηλεκτροδιακή επιφάνεια [3]. Στην εργασία αυτή το πρόβλημα εισάγεται μία προσέγγιση μοντελοποίησης των ηλεκτροχημικών ταλαντώσεων, θεωρώντας σχετικά ελάχιστες παραδοχές. Θεωρείται ότι η περιγραφή της ροής των χημικών ειδών καθορίζεται από τις εξισώσεις Nernst-Planck, σε άπειρη αραίωση. Λαμβάνεται υπόψη τόσο η διάχυση όσο και η ηλεκτρομεταφορά των σωματιδίων υπό την επίδραση του ηλεκτρικού πεδίου. Επίσης, θεωρείται ότι η κινητική στα ηλεκτρόδια έχει ρυθμό (όχι κατ ανάγκη άπειρο) που καθορίζεται από το δυναμικό των ηλεκτροδίων. Συνεπώς, θεωρείται ότι ισχύει η τριτοτοταγής κατανομή του ρεύματος (tertary current drstrbuton). Προκειμένου να διατηρηθεί η γενικότητα της προσέγγισης, δεν λαμβάνεται υπόψη ένας συγκεκριμένος μηχανισμός των ηλεκτροχημικών αντιδράσεων αλλά μία γενική μη γραμμική εξάρτηση του φαρανταϊκού ρεύματος από το δυναμικό. Ο φορμαλισμός εισάγεται τόσο στη μία όσο και τις δύο διαστάσεις και παρουσιάζεται συνοπτικά η επίδραση κινητικών και γεωμετρικών χαρακτηριστικών στην εμφάνιση ασταθειών που οδηγούν σε ταλαντώσεις του ρεύματος υπό ποτενσιοστατικές συνθήκες. Η ολοκλήρωση των μοντέλων έγινε υπολογιστικά με τη χρήση του προγράμματος COMSOL 4.4. ΑΠΟΤΕΛΕΣΜΑΤΑ - ΣΥΖΗΤΗΣΗ Γεωμετρία μίας διάστασης Η απλούστερη γεωμετρία αποτελείται από υπολογιστικό χωρίο μιας διάστασης, όπου τα ηλεκτρόδια έχουν απόσταση L[cm], Σχ. 1. Στο χωρίο αυτό θεωρούμε στο αριστερό άκρο την άνοδο, (1) και στο δεξί στην κάθοδο, () του ηλεκτροχημικού κελιού. Η επιφάνεια του ηλεκτροδίου της ανόδου είναι 10-6 [m ], αισθητά μικρότερη από την επιφάνεια της καθόδου, 1[m ]. Η παραδοχή αυτή γίνεται έτσι ώστε η κάθοδος να λειτουργεί ως ψευδο-

2 αναφορά. Στο διάλυμα θεωρούμε την ύπαρξη τριών συστατικών όπου το ένα είδος καταναλώνεται στην άνοδο και τα υπόλοιπα δύο αντιδρούν στην κάθοδο. Σχήμα 1. Γεωμετρία υπολογιστικού χωρίου μίας διάστασης. Εντός του διαλύματος γίνεται η επίλυση των εξισώσεων του ισοζυγίου μάζας, Εξ. (1) καθώς και η αρχή της ηλεκτρουδετερότητας, Εξ. (). c t D c Fz u ( c ) (1) z c 0 () όπου στις παραπάνω εξισώσεις, c και D περιγράφουν τη συγκέντρωση [mol/m 3 ] και το συντελεστή διάχυσης [m/s ] του συστατικού. Ο πρώτος όρος της Εξ.(1) περιγράφει τη διάχυση του συστατικού, ενώ ο δεύτερος όρος τη ηλεκτρομεταφορά (μετανάστευση) του συστατικού, όπου F = [C/mol] η σταθερά του Faraday, z το φορτίο του συστατικού και Φ το δυναμικό [V]. Για τους συντελεστές διάχυσης των συστατικών θεωρούμε ότι, D 1 >> D = D 3. Προκειμένου να επιλυθεί το πρόβλημα, θα πρέπει να ορισθούν οι κατάλληλες συνοριακές συνθήκες. Για την άνοδο, όπου x = 0[cm] θεωρείται ότι το ρεύμα είναι το αλγεβρικό άθροισμα της φαρανταϊκής πυκνότητας ρεύματος, η οποία οφείλεται στην ανταλλαγή φορτίου στην ηλεκτροδιακή επιφάνεια F [A/m ] και της πυκνότητας ρεύματος C [A/m ], λόγω της φόρτισης της ηλεκτροχημικής διεπιφάνειας, Σχ.. Οι τιμές των παραπάνω ρευμάτων θεωρείται ότι καθορίζονται από τις Εξ. (3) και (4), F F c ( 0) a [ (0)] [, RT RT (0)] a d[ ext, Anod (0)] C Cdl dt (3) F Anod 1 1 ext ext, Anod (4) Ο ρυθμός μεταβολής της συγκέντρωσης c1, υπολογίστηκε από τη σχέση, dc (0 dt 1 ) F, Anod F (5) Για την κάθοδο, x = L[cm] θεωρείται η ακόλουθη εξίσωση κινητικής, τύπου Butler Volmer, af [ af, ( L)] [ ( L)] ext Cath ext, Cath RT RT F( k c ( L) e k c ( L) e ) (6) F, Cath a όπου ο ρυθμός μεταβολής των συγκεντρώσεων των συστατικών c και c 3 υπολογίζονται ως εξής, c 3 dc ( L dt ) F, Cath F (7)

3 Σχήμα. Αριστερά: δομή των ηλεκτροχημικών διεπιφανειών. Δεξιά: πυκνότητες ρευμάτων στην άνοδο. Στις παραπάνω σχέσεις, R η παγκόσμια σταθερά αερίων με τιμή [(J)/(mol K)], T τιμή της θερμοκρασίας η οποία θεωρείται σταθερή σε όλο το υπολογιστικό χωρίο σε κάθε χρόνο, ίση με 98.15[K]. Η μεταβλητή C dl [F/m ] περιγράφει τη ειδική χωρητικότητα της ηλεκτροχημικής διεπιφάνειας, Σχ.. Τέλος οι τιμές των μεταβλητών α 1 και α επιλέχθηκαν μετά από μελέτη της συνάρτησης ρεύματος, Εξ. (3) έτσι ώστε η πυκνότητα ρεύματος να είναι της μορφής του Σχ. 3. Σχήμα 3. Συνάρτηση του φαρανταϊκού ρεύματος για α 1 = 0. και α = 30. Οι τιμές του δυναμικού για τις οποίες το σύστημα ταλαντώνεται αυτόνομα μπορεί να βρεθεί εφαρμόζοντας διαφορά δυναμικού στα άκρα του ηλεκτρολυτικού κελιού, το οποίο μεταβάλλεται σε συνάρτηση με το χρόνο, Φ ext,anod (t) Φ nt ( Φ π fn Φ nt )asn πt p rd (8) όπου ο αδιάστατος συντελεστής p rd εκφράζει το βήμα σάρωσης του δυναμικού και προκύπτει από τη σχέση, p rd = (Φ fn Φ nt )/β, όπου το αρχικό δυναμικό Φ nt = 0[V] το τελικό Φ fn = 1[V] και η μεταβλητή β [V/s] είναι εκείνη που καθορίζει το ρυθμό σάρωσης του δυναμικού. Η μορφή του εφαρμοζόμενου δυναμικού Φ ext,anod είναι τριγωνικού κύματος, όπως αυτή που εφαρμόζεται στην κλασική κυκλική βολταμετρία. Η εξάρτηση της πυκνότητας ρεύματος στην άνοδο από το εφαρμοζόμενο δυναμικό, για τιμές παραμέτρων του Πιν. 1, παρουσιάζεται στο Σχ. 4. Πίνακας 1. Παράμετροι του προβλήματος Παράμετρος Τιμή L (cm) 10 Φ nt (V) 0 Φ fn (V) 1 p rd 10 3 a 1 0. a 30 c 1 (t=0) (mol/m 3 ) 1000 c (t=0) (mol/m 3 ) 1000 z 1 1 z 1 z 3-1

4 Σχήμα 4. Εξάρτηση της πυκνότητας ρεύματος της ανόδου από το εφαρμοζόμενο δυναμικό (αριστερά), ρεύμα ανόδου μεταβάλλοντας την απόσταση L (δεξιά) Στο διάγραμμα του Σχ. 4 (αριστερά), παρουσιάζεται ενδιαφέρουσα συμπεριφορά για ένα εύρος τιμών του δυναμικού εντός της περιοχής Φ ext,anod (0.75, 0.85), όπου παρατηρούνται απότομες μεταβολές στις τιμές του ρεύματος. Ειδικότερα, κατά την σάρωση προς υψηλές τιμές δυναμικού, το ρεύμα αποκτά μία οριακή τιμή και στη συνέχεια μειώνεται απότομα σε σχεδόν μηδενική τιμή, ενώ κατά τη σάρωση προς χαμηλές τιμές δυναμικού το ρεύμα αυξάνει απότομα σε μία συγκεκριμένη τιμή δυναμικού (overshoot περίπου στα 0.78 V). Κάνοντας αρκετά αργά τη σάρωση του δυναμικού πραγματοποιείται παραμετρική μελέτη για τη απόσταση L των ηλεκτροδίων. Διατηρώντας τις υπόλοιπες τιμές σταθερές και μεταβάλλοντας την απόσταση από 1 cm ως και 1 cm με βήμα 1 cm εξάγουμε τα διαγράμματα του Σχ. 4 (δεξιά). Από το παραπάνω διάγραμμα συμπεραίνεται ότι, για απόσταση των ηλεκτροδίων ίση με 6 cm και για το εύρος τιμών που αναφέρθηκε παραπάνω, το σύστημα εμφανίζει χαρακτηριστική αστάθεια. Απομονώνοντας τα διαγράμματα για τρεις περιπτώσεις μεταβολής του L γίνεται κατανοητή η επίδραση της απόστασης των ηλεκτροδίων στη συμπεριφορά του συστήματος, Σχ. 5. Το δεξιό διάγραμμα του Σχ. 5 εστιάζει στην περιοχή όπου εμφανίζονται οι αυτόνομες ταλαντώσεις. Σχήμα 5. Ρεύμα ανόδου μεταβάλλοντας την απόσταση L=5,6 και 7 cm. Μειώνοντας το βήμα σάρωσης του δυναμικού ως προς το χρόνο προκύπτουν οι αυτόνομες ταλαντώσεις. Επομένως, προκειμένου να επιλεχθεί ένα δυναμικό στο οποίο παρατηρείται ταλαντούμενη συμπεριφορά στο σύστημα, διερευνάται η περιοχή του δυναμικού με τιμές από 0.75 ως 0.775, όπου προκύπτουν τα χρονοαμπερογραφήματα του Σχ. 6. Η τιμή του δυναμικού για την οποία προκύπτουν μεγαλύτερης διάρκειας ταλαντώσεις είναι Φ ext,anod =0.77 V.

5 Σχήμα 6. Χρονοαμπερογραφήματα για διαφορετικές τιμές δυναμικού. Συνοψίζοντας, για το μονοδιάστατο πρόβλημα καταλήγουμε στις τιμές του Πίν. για τις οποίες προκύπτουν αυτόνομες ταλαντώσεις σχετικά μεγάλης διάρκειας Πίνακας. Τιμές παραμέτρων ταλαντούμενης απόκρισης Παράμετρος Τιμή Περιγραφή c 1 (0) (mol/m 3 ) 1000 Συγκέντρωση στο διάλειμμα t=0 c (0) (mol/m 3 ) 1000 Συγκέντρωση στο διάλειμμα t=0 c 3 (0) (mol/m 3 ) - Προκύπτει από την ηλεκτροουδετερότητα L (cm) 6 Απόσταση ηλεκτροδίων Φ ext,anod (V) Εφαρμοζόμενο δυναμικό Σχήμα 7. Μεταβολή της πυκνότητας ρεύματος της ανόδου, των συγκεντρώσεων στην άνοδο και στην κάθοδο για τιμές παραμέτρων του Πίν. Χαρακτηριστικές χρονικές μεταβολές του ρεύματος και των συγκεντρώσεων στην άνοδο και στην κάθοδο παρουσιάζονται στο Σχ. 7.

6 Γεωμετρία δύο διαστάσεων Έχοντας ως αφετηρία τις τιμές των μεταβλητών για τις οποίες προέκυψαν ταλαντώσεις στο πρόβλημα μιας διάστασης, καθώς επίσης διατηρώντας την ίδια συνάρτηση για το ρεύμα και εφαρμοζόμενο δυναμικό, κατασκευάζεται ένα χωρίο δύο διαστάσεων, όπως φαίνεται στο Σχ. 8. Για το παρόν πρόβλημα χρειάστηκε να γίνει διακριτοποίηση του χωρίου σε 46 στοιχεία όπως επίσης και η τοπική πύκνωση του πλέγματος στις περιοχές της ανόδου και της καθόδου. Σχήμα 8. Γεωμετρία υπολογιστικού χωρίου (αριστερά), πλέγμα διακριτοποίησης (δεξιά). Ακλουθώντας την ίδια διαδικασία με το πρόβλημα μίας διάστασης πραγματοποιείται μελέτη σχετικά με την απόσταση μεταξύ των ηλεκτροδίων. Όπως παρατηρούμε στο Σχ. 9, όταν η απόσταση x είναι 8 cm και 10 cm προκύπτουν ταλαντώσεις για συγκεκριμένο εύρος εφαρμοζόμενου δυναμικού. Σχήμα 9. Ρεύμα ανόδου μεταβάλλοντας την απόσταση x. Στη συνέχεια μελετάται η συμπεριφορά του συστήματος καθώς μεταβάλλεται ο συντελεστής a 1 στη συνάρτηση του φαρανταϊκού ρεύματος, Εξ. (3). Από το Σχ. 10 παρατηρούμε ότι το εύρος τιμών της μεταβλητής αυτής για τις οποίες προκύπτουν ταλαντώσεις είναι για a 1 [1,], πολύ μεγαλύτερη από τις τιμές που χρησιμοποιήθηκαν στο πρόβλημα μιας διάστασης.

7 Σχήμα 10. Παραμετρική μελέτη μεταβλητής a 1 Σχήμα 11. Αυτόνομες ταλαντώσεις ρεύματος στην ανόδο. Στο Σχ. 11 παρουσιάζονται οι αυτόνομες ταλαντώσεις της πυκνότητας ρεύματος της ανόδου για τη γεωμετρία δύο διαστάσεων. Είναι προφανές ότι παρατηρείται και σε αυτή την περίπτωση μία αστάθεια που οδηγεί σε ταλαντώσεις του ρεύματος, οι οποίες διαρκούν περίπου 00 s. Στο Σχ. 1 παρουσιάζονται οι κατανομές των συγκεντρώσεων των τριών χημικών ειδών στο διάλυμα, μεταξύ των δύο ηλεκτροδίων, σε χρόνο 100 s. Παρατηρείται ότι η μεταβολή των συγκεντρώσεων περιορίζεται σε μία περιοχή κοντά στην επιφάνεια των δύο ηλεκτροδίων, ενώ παραμένει σταθερή στον κύριο όγκο του διαλύματος. Σχήμα 1. Συγκεντρώσεις συστατικών σε χρόνο t = 100 s. Στο Σχ. 13, παρουσιάζονται τρία στιγμιότυπα της κατανομής του ηλεκτρικού δυναμικού στο ηλεκτρολυτικό διάλυμα. Παρατηρείται η ταλάντωση του δυναμικού καθώς αυξομειώνεται μεταξύ ανόδου και καθόδου.

8 Σχήμα 13. Μεταβολή δυναμικού στο ηλεκτρολυτικό διάλυμα για t = 100, 104 και 108 s. ΣΥΜΠΕΡΑΜΑΤΑ Η μοντελοποίηση της ταλαντούμενης συμπεριφοράς ηλεκτροχημικών συστημάτων είναι εφικτή λαμβάνοντας μικρό αριθμό παραδοχών και θεωρώντας τριτοταγή κατανομή του ρεύματος στο ηλεκτρολυτικό κελί. Τόσο η κινητική των ηλεκτροδιακών δράσεων όσο και τα γεωμετρικά (και έμμεσα τα ηλεκτρικά χαρακτηριστικά) του ηλεκτρολυτικού κελιού, καθορίζουν την αστάθεια που οδηγεί σε ταλαντώσεις. Η αριθμητική ολοκλήρωση με το πρόγραμμα COMSOL δίνει τη δυνατότητα υπολογισμού των κατανομών των συγκεντρώσεων και του δυναμικού καθώς και του ολικού ρεύματος που ρέει από το σύστημα, συνεπώς περιγράφει πλήρως τις μεταβολές όλων των δυναμικών μεταβλητών του συστήματος κατά την ταλαντούμενη χρονική εξέλιξη. ΒΙΒΛΙΟΓΡΑΦΙΑ [1]. Russel Ph., Newman J., J. Electrochem. Soc. 134: 1051 (1987). []. Koper M. and Sluyters J.H., J. Electroanal. Chem. 347:31 (1993). [3]. Karantons A., Benasz L., Nakabayash S., PCCP 5: 1831 (003).

Π. Χρυσαφίδης, Δ. Καραουλάνης, Α. Καραντώνης Τομέας Επιστήμης και Τεχνικής των Υλικών, Σχολή Χημικών Μηχανικών, ΕΜΠ, 15780 Αθήνα

Π. Χρυσαφίδης, Δ. Καραουλάνης, Α. Καραντώνης Τομέας Επιστήμης και Τεχνικής των Υλικών, Σχολή Χημικών Μηχανικών, ΕΜΠ, 15780 Αθήνα ΗΛΕΚΤΡΟΧΗΜΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΔΙΕΠΙΦΑΝΕΙΩΝ ΣΕ ΠΟΤΕΝΣΙΟΣΤΑΤΙΚΕΣ ΚΑΙ ΓΑΛΒΑΝΟΣΤΑΤΙΚΕΣ ΣΥΝΘΗΚΕΣ ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΠΕΡΙΟΔΙΚΩΝ ΚΑΙ ΧΑΟΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ Π. Χρυσαφίδης, Δ. Καραουλάνης, Α. Καραντώνης

Διαβάστε περισσότερα

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5)

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5) Κίνηση των ιόντων υπό την επίδραση ηλεκτρικού πεδίου Αντώνης Καραντώνης 15 Μαρτίου 2011 1 Σκοπός της άσκησης Σκοπός της άσκησης είναι ο προσδιορισμός της οριακής ταχύτητας των ιόντων υπό την επίδραση ηλεκτρικού

Διαβάστε περισσότερα

M M n+ + ne (1) Ox + ne Red (2) i = i Cdl + i F (3) de dt + i F (4) i = C dl. e E Ecorr

M M n+ + ne (1) Ox + ne Red (2) i = i Cdl + i F (3) de dt + i F (4) i = C dl. e E Ecorr Επιταχυνόμενες μέθοδοι μελέτης της φθοράς: Μέθοδος Tafel και μέθοδος ηλεκτροχημικής εμπέδησης Αντώνης Καραντώνης, και Δημήτρης Δραγατογιάννης 1 Σκοπός της άσκησης Στην άσκηση αυτή θα μελετηθεί η διάβρωση

Διαβάστε περισσότερα

[Fe(CN) 6 ] 3 + e [Fe(CN) 6 ] 4

[Fe(CN) 6 ] 3 + e [Fe(CN) 6 ] 4 Μελέτη μίας αντιστρεπτής ηλεκτροχημικής αντίδρασης με την τεχνική της κυκλικής βολταμμετρίας Αντώνης Καραντώνης και Δήμητρα Γεωργιάδου 1 Σκοπός της άσκησης Η κυκλική βολταμμετρία αποτελεί μια ευρέως χρησιμοποιούμενη

Διαβάστε περισσότερα

ΠΡΟΣΟΜΕΙΩΣΗ ΤΗΣ ΝΕΥΡΟΦΥΣΙΟΛΟΓΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΝΑΨΗΣ ΜΕΣΩ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΘΥΣΑΝΟΕΙΔΩΝ ΤΑΛΑΝΤΩΤΩΝ

ΠΡΟΣΟΜΕΙΩΣΗ ΤΗΣ ΝΕΥΡΟΦΥΣΙΟΛΟΓΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΝΑΨΗΣ ΜΕΣΩ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΘΥΣΑΝΟΕΙΔΩΝ ΤΑΛΑΝΤΩΤΩΝ ΠΡΟΣΟΜΕΙΩΣΗ ΤΗΣ ΝΕΥΡΟΦΥΣΙΟΛΟΓΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΝΑΨΗΣ ΜΕΣΩ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΘΥΣΑΝΟΕΙΔΩΝ ΤΑΛΑΝΤΩΤΩΝ Α. Καραντώνης, Δ. Κουτσαύτης, Ν. Κουλουμπή Τομέας Επιστήμης και Τεχνικής των Υλικών, Σχολή Χημικών Μηχανικών,

Διαβάστε περισσότερα

Θέµατα προηγούµενων εξεταστικών περιόδων. 1 ο Θέµα Ιανουαρίου 2005

Θέµατα προηγούµενων εξεταστικών περιόδων. 1 ο Θέµα Ιανουαρίου 2005 Θέµατα προηγούµενων εξεταστικών περιόδων 1 ο Θέµα Ιανουαρίου 2005 Σε ένα επίπεδο ηλεκτρόδιο ενεργού επιφάνειας 2 cm 2, που χρησιµοποιείται ως άνοδος σε µία ηλεκτρολυτική κυψέλη που περιέχει διάλυµα 2*10-3

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Φίλιππος Μπρέζας & Κωνσταντίνος-Στέφανος Νίκας

Φίλιππος Μπρέζας & Κωνσταντίνος-Στέφανος Νίκας Heriot-Watt University Technological Education Institute of Piraeus Φίλιππος Μπρέζας & Κωνσταντίνος-Στέφανος Νίκας 3 Δεκεμβρίου 2011, Αθήνα Περίληψη Εισαγωγή Δημιουργία πλέγματος & μοντελοποίηση CFD Διακρίβωση

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

W el = q k φ (1) W el = z k e 0 N A φn k = z k F φn k (2)

W el = q k φ (1) W el = z k e 0 N A φn k = z k F φn k (2) Το ηλεκτρολυτικό διάλυμα στην ισορροπία Αντώνης Καραντώνης 19 Απριλίου 211 Σταθερές 1. Σταθερά των αερίων, R = 8.314 J mol 1 K 1 2. Στοιχειώδες φορτίο, e = 1.62 1 19 C 3. Αριθμός Avogadro, N A = 6.23 1

Διαβάστε περισσότερα

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5)

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5) Κίνηση των ιόντων υπό την επίδραση ηλεκτρικού πεδίου - Αγωγιμομετρία Α. Καραντώνης, Χ. Καραγιάννη, Κ. Χαριτίδης, Η. Κούμουλος 1 Σκοπός της άσκησης Σκοπός της άσκησης είναι: (α) Ο προσδιορισμός της οριακής

Διαβάστε περισσότερα

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής - ΗΛΕΚΤΡΟΧΗΜΕΙΑ Χρήστος Παππάς Επίκουρος Καθηγητής 1 Οξείδωση ονομάζεται η αύξηση του αριθμού οξείδωσης. Κατά τη διάρκεια της οξείδωσης αποβάλλονται ηλεκτρόνια. Αναγωγή ονομάζεται η μείωση του αριθμού

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5

ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5 ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5 Μοντελοποίηση της ροής σε ένα πόρο μεταβλητής γεωμετρίας και σε τρισδιάστατα δίκτυα παρουσία νερού ή οργανικής φάσης Ε.Ε. 5.1. : Μοντελοποίηση της ροής σε ένα πόρο απλής και μεταβλητής

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ 1 ο ΘΕΜΑ (1,5 Μονάδες) Στην παράδοση είχε παρουσιαστεί η αριθµητική επίλυση της εξίσωσης «καθαρής συναγωγής» σε µία διάσταση, η µαθηµατική δοµή της οποίας είναι

Διαβάστε περισσότερα

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1)

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1) ΑΓΩΓΙΜΟΤΗΤΑ ΗΕΚΤΡΟΥΤΩΝ Θέµα ασκήσεως Μελέτη της µεταβολής της αγωγιµότητας ισχυρού και ασθενούς ηλεκτρολύτη µε την συγκέντρωση, προσδιορισµός της µοριακής αγωγιµότητας σε άπειρη αραίωση ισχυρού οξέος,

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

(1) i mig,k = z 2 kf 2 u k c k (2) i mig = i mig,k = z 2 kf 2 u k c k. k=1. k=1

(1) i mig,k = z 2 kf 2 u k c k (2) i mig = i mig,k = z 2 kf 2 u k c k. k=1. k=1 Αριθμοί μεταφοράς Α. Καραντώνης 1 Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός των αριθμών μεταφοράς με τη μέθοδο Hittorf. Ειδικότερα, προσδιορίζονται ο αριθμοί μεταφοράς κατιόντων υδρογόνου

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΤΗΛ. 6945-9435 ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΜΕΓΕΘΟΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΠΙΤΑΧΥΝΣΗ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΣΤΗΝ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΧΩΡΙΣ ΑΡΧΙΚΗ ΜΕΤΑΤΟΠΙΣΗ ΣΤΗΝ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΧΩΡΙΣ ΑΡΧΙΚΗ ΣΤΗΝ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό. Βασικές Εξισώσεις Σχεδιασμού (ΣΔΟΥΚΟΣ 2-, 2-) t = n i dn i V n i R και V = n i dn i t n i R Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

Δείτε εδώ τις Διαφάνειες για την Άσκηση 8. Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ

Δείτε εδώ τις Διαφάνειες για την Άσκηση 8. Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ Δείτε εδώ τις Διαφάνειες για την Άσκηση 8 Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ Διάγραμμα Ροής Βήμα 1. Υπολογισμός της πραγματικής αρχικής συγκέντρωσης του διαλύματος κιτρικού οξέος στη

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Σκοπός: Περιγραφή της συμπεριφοράς των νευρικών κυττάρων και ποσοτικά και ποιοτικά.

Σκοπός: Περιγραφή της συμπεριφοράς των νευρικών κυττάρων και ποσοτικά και ποιοτικά. Σκοπός: Περιγραφή της συμπεριφοράς των νευρικών κυττάρων και ποσοτικά και ποιοτικά. Τα νευρικά κύτταρα περιβάλλονται από μία πλασματική μεμβράνη της οποίας κύρια λειτουργία είναι να ελέγχει το πέρασμα

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ Ταχύτητα αντίδρασης και παράγοντες που την επηρεάζουν Διδάσκοντες: Αναπλ. Καθ. Β. Μελισσάς, Λέκτορας Θ. Λαζαρίδης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Η βαθμίδα του ηλεκτρικού πεδίου της μεμβράνης τείνει να συγκρατήσει τα θετικά φορτισμένα ιόντα.

Η βαθμίδα του ηλεκτρικού πεδίου της μεμβράνης τείνει να συγκρατήσει τα θετικά φορτισμένα ιόντα. Τα ιόντα χλωρίου βρίσκονται σε πολύ μεγαλύτερη πυκνότητα στο εξωτερικό παρά στο εσωτερικό του κυττάρου, με αποτέλεσμα να εμφανίζεται παθητικό ρεύμα εισόδου τους στο κύτταρο. Τα αρνητικά φορτισμένα ιόντα

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Chapman... 72

Chapman... 72 Βασικές Αρχές Ηλεκτροχημείας Ιοντικά Διαλύματα & Ηλεκτροχημική Κινητική Αντώνης Καραντώνης 30 Ιουνίου 2014 2 Περιεχόμενα 1 Ηλεκτροχημικές αντιδράσεις 9 1.1 Χημικές και ηλεκτροχημικές αντιδράσεις.............

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2007

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2007 ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2007 Θέμα 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού

Διαβάστε περισσότερα

Λυχνία Κλύστρον Ανακλάσεως

Λυχνία Κλύστρον Ανακλάσεως Λυχνία Κλύστρον Ανακλάσεως Σκοπός της εργαστηριακής άσκησης είναι η μελέτη της λειτουργίας μιας λυχνίας Κλύστρον ανακλάσεως τύπου 2K25 και η παρατήρηση των διαφορετικών τρόπων ταλάντωσης που υποστηρίζει

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak 1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ Industrial Safety for the onshore and offshore industry ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ Μ.Ν. Χριστόλη, Πολ. Μηχ. Περ/γου DEA Ν.Χ. Μαρκάτου, Ομότ.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ

ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ 5-1 ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ Έννοιες που θα γνωρίσετε: Δομή και δυναμικό ηλεκτρικής διπλής στιβάδας, πολώσιμη και μη πολώσιμη μεσεπιφάνεια, κανονικό και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που. και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα).

Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που. και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα). ΗΛΕΚΤΡΟΧΗΜΕΙΑ Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που λαμβάνουν χώρα σε διαλύματα ή τήγματα, όπου συμμετέχουν και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα). Πραγματοποίηση

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης ΙΑΧΥΣΗ ΟΡΙΣΜΟΣ - ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ιάχυση (diffusin) είναι ο µηχανισµός µεταφοράς ατόµων (όµοιων ή διαφορετικών µεταξύ τους) µέσα στη µάζα ενός υλικού, λόγω θερµικής διέγερσής τους. Αποτέλεσµα της διάχυσης

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος

Διαβάστε περισσότερα

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης Ηλεκτρικές Ταλαντώσεις ο ΘΕΜΑ Α Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Ηλεκτρικό

Διαβάστε περισσότερα

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Όπου χρειάζεται, θεωρείστε ότι g = 10m/s 2 1. Σε μία απλή αρμονική ταλάντωση η μέγιστη απομάκρυνση από την θέση ισορροπίας είναι Α = 30cm. Ο χρόνος που χρειάζεται

Διαβάστε περισσότερα

() { ( ) ( )} ( ) () ( )

() { ( ) ( )} ( ) () ( ) Ηλεκτρική Ισχύς σε Μονοφασικά και Τριφασικά Συστήματα. Μονοφασικά Συστήματα Έστω ότι σε ένα μονοφασικό καταναλωτή η τάση και το ρεύμα περιγράφονται από τις παρακάτω δύο χρονικές συναρτήσεις: ( t cos( ω

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης Γενικά, όταν έχουμε δεδομένα συγκέντρωσης-χρόνου και θέλουμε να βρούμε την τάξη μιας αντίδρασης, προσπαθούμε να προσαρμόσουμε τα δεδομένα σε εξισώσεις

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΒΙΟΦΥΣΙΚΗ. Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης.

ΒΙΟΦΥΣΙΚΗ. Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης. ΒΙΟΦΥΣΙΚΗ Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης http://eclass.uoa.gr/courses/md73/ Ε. Παντελής Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Εργαστήριο προσομοίωσης 10-746

Διαβάστε περισσότερα

ΑΡΧΗ ΤΗΣ 1ΗΣ ΣΕΛΙΔΑΣ-Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ ΤΗΣ 1ΗΣ ΣΕΛΙΔΑΣ-Γ ΗΜΕΡΗΣΙΩΝ 6ο ΓΕΛ ΑΙΓΑΛΕΩ ΑΡΧΗ ΤΗΣ 1ΗΣ ΣΕΛΙΔΑΣ-Γ ΗΜΕΡΗΣΙΩΝ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΗΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ(ΕΠΑΝΑΛΗΠΤΙΚΟ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ A: Στις

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U A A N A B P Y T A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σωλήνας U Γ U= B Θ.Ι. B Κατακόρυφος ισοπαχής σωλήνας σχήματος U περιέχει ιδανικό υγρό, δηλαδή, υγρό που σε κάθε επιφάνεια ασκεί δυνάμεις κάθετες στην

Διαβάστε περισσότερα

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ 1 ΤΥΠΟΛΟΓΙΟ ΚΥΜΑΤΩΝ ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ Μήκος κύματος Ταχύτητα διάδοσης Συχνότητα Εξίσωση αρμονικού κύματος Φάση αρμονικού κύματος Ταχύτητα ταλάντωσης, Επιτάχυνση Κινητική Δυναμική ενέργεια ταλάντωσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ 5.1 ΑΣΚΗΣΗ 5 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ Α' ΜΕΡΟΣ: Ηλεκτρόλυση του νερού. ΘΕΜΑ: Εύρεση της μάζας οξυγόνου και υδρογόνου που εκλύονται σε ηλεκτρολυτική

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση

Διαβάστε περισσότερα

Εργαστήριο Ελέγχου και Ευστάθειας Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ελέγχου και Ευστάθειας Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ελέγχου και Ευστάθειας Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 4 Συμπεριφορά σύγχρονου κινητήρα υπό φορτίο Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύματα. Ομάδα Δ.

2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη: Ταλαντώσεις Γ Λυκείου Θετ.-Τεχν Κατ. 13-09-13 Θέμα 1 ο : 1. Σε μια χορδή απείρου μήκους που ταυτίζεται με τον άξονα x 0x διαδίδεται εγκάρσιο αρμονικό κύμα με εξίσωση

Διαβάστε περισσότερα

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ.

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2.21. σε γραμμικό ελαστικό μέσο. Δύο σύγχρονες πηγές Ο 1 και Ο 2 παράγουν αρμονικά κύματα που διαδίδονται με ταχύτητα υ=2m/s κατά μήκος ενός γραμμικού ελαστικού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ Μ Α Θ Η Μ Α : Υ ΤΙΚΗ ΚΑΣΕΤΘΤΝΗ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ Α :........ Σ Μ Η Μ Α :..... Η Μ Ε Ρ Ο Μ Η Ν Ι Α : 1 3 / 1 0 / 2 0 1 3 Ε Π Ι Μ Ε Λ Ε Ι Α Θ Ε Μ Α Σ Ω Ν : ΥΑΡΜΑΚΗ ΠΑΝΣΕΛΗ

Διαβάστε περισσότερα

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών. Γ Λυκείου 26 Απριλίου 2014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα

Διαβάστε περισσότερα

Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας

Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τομέας Μηχανολογικών Κατασκευών και Αυτομάτου Ελέγχου 2.3.26.3 Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας Εξέταση 3 ου Eξαμήνου (20 Φεβρουαρίου

Διαβάστε περισσότερα

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ ((Α ΟΜΑ Α)) 77 1111 -- 22001100 Θέμα 1 ο (Μονάδες 25) 1. Η εξίσωση που δίνει την ένταση του ρεύματος σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC

Διαβάστε περισσότερα

Μετρήσεις µε παλµογράφο

Μετρήσεις µε παλµογράφο Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ

Διαβάστε περισσότερα

ΚΕΦ.6 ΒΟΛΤΑΜΜΕΤΡΙΑ 6.4 ΑΜΠΕΡΟΜΕΤΡΙΑ

ΚΕΦ.6 ΒΟΛΤΑΜΜΕΤΡΙΑ 6.4 ΑΜΠΕΡΟΜΕΤΡΙΑ ΚΕΦ.6 ΒΟΛΤΑΜΜΕΤΡΙΑ 6.4 ΑΜΠΕΡΟΜΕΤΡΙΑ Μ. ΚΟΥΠΠΑΡΗΣ 1 ΒΟΛΤΑΜΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Βολταμμετρικές (βολταμπερομετρικές) τεχνικές (Volt, Ampere-μετρώ): ομάδα αναλυτικών τεχνικών που βασίζονται στην παρατήρηση της

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΠΡΟΒΛΗΜΑ Σώμα () μικρών διαστάσεων και μάζας m = 4kg, δρα ως ηχητική πηγή κυμάτων συχνότητας f s =330 Hz κινούμενο πάνω σε λείο οριζόντιο δάπεδο με

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Τρίτη Ιουνίου 9 11. 14. ΤΟ

Διαβάστε περισσότερα

δ. έχουν πάντα την ίδια διεύθυνση.

δ. έχουν πάντα την ίδια διεύθυνση. Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν

Διαβάστε περισσότερα

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά Κύκλωμα RLC σε σειρά. Σκοπός Σκοπός της άσκησης είναι η εξοικείωση των σπουδαστών με τη συμπεριφορά ενός κυκλώματος RLC συνδεδεμένο σε σειρά όταν τροφοδοτείται από εναλλασσόμενη τάση. Συγκεκριμένα, επιδιώκεται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΧΗΜΙΚΗ ΑΠΟΜΑΚΡΥΝΣΗ ΤΩΝ ΝΙΤΡΙΚΩΝ ΙΟΝΤΩΝ ΑΠΟ Y ΑΤΙΚΑ ΙΑΛΥΜΑΤΑ

ΗΛΕΚΤΡΟΧΗΜΙΚΗ ΑΠΟΜΑΚΡΥΝΣΗ ΤΩΝ ΝΙΤΡΙΚΩΝ ΙΟΝΤΩΝ ΑΠΟ Y ΑΤΙΚΑ ΙΑΛΥΜΑΤΑ ΗΛΕΚΤΡΟΧΗΜΙΚΗ ΑΠΟΜΑΚΡΥΝΣΗ ΤΩΝ ΝΙΤΡΙΚΩΝ ΙΟΝΤΩΝ ΑΠΟ Y ΑΤΙΚΑ ΙΑΛΥΜΑΤΑ Χ. Πολατίδης, Γ. Κυριάκου Τµήµα Χηµικών Μηχανικών, Αριστοτέλειο Πανεπιστήµιο, 54124 Θεσσαλονίκη ΠΕΡΙΛΗΨΗ Στην εργασία αυτή µελετήθηκε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

ΕΞΑΣΘΕΝΗΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΚΑΤΑ ΤΗΝ ΔΙΕΛΕΥΣΗ ΤΗΣ ΔΙΑΜΕΣΟΥ ΤΗΣ ΥΛΗΣ

ΕΞΑΣΘΕΝΗΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΚΑΤΑ ΤΗΝ ΔΙΕΛΕΥΣΗ ΤΗΣ ΔΙΑΜΕΣΟΥ ΤΗΣ ΥΛΗΣ ΕΞΑΣΘΕΝΗΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΚΑΤΑ ΤΗΝ ΔΙΕΛΕΥΣΗ ΤΗΣ ΔΙΑΜΕΣΟΥ ΤΗΣ ΥΛΗΣ ΘΕΜΑ Εξασθένηση της ακτινοβολίας β και γ από δύο διαφορετικά υλικά. Μέτρηση του πάχους υποδιπλασιασμού (d 1 2 ) και του συντελεστή εξασθένησης

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα