p q 0 P =

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "0 1 0 0 0 1 p q 0 P ="

Transcript

1 Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία είναι σα να μην έχουν δοθεί. Ειδικότερα, αν σε κάποιο θέμα χρησιμοποιήσετε μια στοχαστική διαδικασία που δεν έχει οριστεί στην εκφώνηση, θα πρέπει να την ορίσετε με ακρίβεια. (3) Γράψτε αμέσως τα στοιχεία σας στο γραπτό σας. Γραπτό χωρίς στοιχεία στη διάρκεια της εξέτασης μηδενίζεται. Στο τέλος του διαγωνίσματος παραδίδονται ΟΛΕΣ οι κόλλες, περιλαμβανομένου και του πρόχειρου. (4) Επιτρέπεται η χρήση calculator αλλά ΟΧΙ κινητού τηλεφώνου. Κινητό τηλέφωνο που εντοπίζεται να χρησιμοποιείται ή να βρίσκεται πάνω στο έδρανο συνεπάγεται μηδενισμό του γραπτού, ΑΝΕΞΑΡΤΗΤΑ απο τον σκοπό για τον οποίο χρησιμοποιείται (π.χ. για ρολόι). (5) Διάρκεια διαγωνίσματος : 2.5 ώρες. Πρώτη αποχώρηση : 45 λεπτά. Καλή Επιτυχία! ΠΡΟΒΛΗΜΑ 1. Εστω μια Μαρκοβιανή αλυσίδα διακριτού χρόνου με χώρο καταστάσεων S = {0, 1, 2}, και πίνακα πιθανοτήτων μετάβασης ενός βήματος τον παρακάτω: P = p q 0 όπου p, q > 0, p + q = 1. (α) Να υπολογιστούν οι πιθανότητες μετάβασης p (2) 00, p (3) 00, p (5) 00. (β) Να αποδειχθεί ότι η αλυσίδα είναι θετικά επαναληπτική και απεριοδική. (γ) Να υπολογιστούν τα όρια lim n p (n) 10, lim n p (n) 01. ΠΡΟΒΛΗΜΑ 2. Ενα συμμετρικό ζάρι έχει τους αριθμούς 1,1,2,2,8,8 στις πλευρές του. Με το ζάρι αυτό παίζεται το παρακάτω παιχνίδι: Το ζάρι ρίχνεται διαδοχικά μέχρι την πρώτη φορά που ο αριθμός που θα εμφανιστεί να είναι αυστηρά μικρότερος από τον αμέσως προηγούμενο. Τότε το παιχνίδι σταματά και ο παίκτης κερδίζει ένα ποσό σε ευρώ ίσο με τον αριθμό που είχε εμφανιστεί στην προτελευταία ρίψη (δηλαδή το μέγιστο αριθμό ρεκόρ που έχει εμφανιστεί). Για παράδειγμα αν οι διαδοχικές ρίψεις είναι 1,1,1,2,2,8,8,8,2 τότε το παιχνίδι θα σταματήσει στην 9η ρίψη και ο παίκτης θα κερδίσει 8 ευρώ. (α) Να υπολογιστεί ο αναμενόμενος αριθμός ρίψεων σε ένα παιχνίδι. (β) Να υπολογιστούν οι πιθανότητες στο τέλος του παιχνιδιού ο παίκτης να κερδίσει 2 ή 8 ευρώ. (Υπόδειξη) Μπορείτε να χρησιμοποιήσετε τη Μαρκοβιανή αλυσίδα {X n, n = 0, 1,... }, όπου η κατάσταση X n παίρνει την τιμή 0 αν το παιχνίδι δεν έχει αρχίσει, 1,2,8 αν η αμέσως προηγούμενη ρίψη ήταν 1,2,8, αντίστοιχα, και 20,80, αν το παιχνίδι έχει τελειώσει με τιμή ρεκόρ 2 ή 8, αντίστοιχα. Συνέχεια πίσω

2 ΠΡΟΒΛΗΜΑ 3. Ενας εργαζόμενος έχει ένα αυτοκίνητο που χρησιμοποιεί μόνο για τις μετακινήσεις του από το σπίτι στο γραφείο. Το αυτοκίνητο το χρησιμοποιεί μόνο όταν βρέχει και μόνο αν το έχει διαθέσιμο όταν φεύγει, διαφορετικά περπατάει. Για παράδειγμα, αν το πρωί το αυτοκίνητο είναι στο σπίτι και βρέχει, θα πάει στο γραφείο με το αυτοκίνητο, ενώ αν δε βρέχει ή αν το αυτοκίνητο δεν είναι στο σπίτι θα περπατήσει. Αντίστοιχα το απόγευμα αν το αυτοκίνητο είναι στο γραφείο και βρέχει θα επιστρέψει στο σπίτι με το αυτοκίνητο, ενώ αν δε βρέχει ή αν το αυτοκίνητο δεν είναι στο γραφείο θα περπατήσει. Η πιθανότητα βροχής είναι ίση με p και το πρωί και το απόγευμα και τα ενδεχόμενα βροχής πρωί ή απόγευμα και μεταξύ διαφορετικών ημερών είναι ανεξάρτητα μεταξύ τους. Να βρεθεί το ποσοστό ημερών που ο εργαζόμενος θα περπατήσει βρεγμένος τουλάχιστον μια φορά μέσα στη μέρα. (Υπόδειξη) Μπορείτε να χρησιμοποιήσετε τη Μαρκοβιανή αλυσίδα {X n, n = 0, 1,... }, όπου η κατάσταση X n παίρνει την τιμή 1 ή 0, αν το πρωί της μέρας n το αυτοκίνητο βρίσκεται στο σπίτι ή στο γραφείο, αντίστοιχα. ΠΡΟΒΛΗΜΑ 4. Στη στάση ενός λεωφορείου φτάνουν επιβάτες σύμφωνα με μια διαδικασία Poisson με ρυθμό λ. Το λεωφορείο έχει άπειρη χωρητικότητα και περνάει από τη στάση σύμφωνα με μια διαδικασία Poisson με ρυθμό µ, ανεξάρτητη αυτής των επιβατών. (α) Να ορίσετε μια Μαρκοβιανή διαδικασία συνεχούς χρόνου που περιγράφει τον αριθμό επιβατών που περιμένουν στη στάση και να γράψετε τον πίνακα και το διάγραμμα ρυθμών μετάβασης. (β) Να δείξετε ότι η διαδικασία είναι εργοδική και να υπολογίσετε την οριακή κατανομή. (γ) Σε τι ποσοστό χρόνου (μέσα σε άπειρο ορίζοντα) η στάση είναι άδεια;

3

4

5

6

7

8

9

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος. 532 Στοχαστικές Διαδικασίες. Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης

Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος. 532 Στοχαστικές Διαδικασίες. Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος 532 Στοχαστικές Διαδικασίες Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης Κύρια Βιβλιογραφία 1. Στοχαστικές μέθοδοι στις επιχειρησιακές έρευνες, Βασιλείου Παναγιώτης

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I ΟΔΗΓΙΕΣ Να μην αντιγράψετε τα θέματα στην κόλα σας. Να γράψετε το ονοματεπώνυμό σας και τον αριθμό μητρώου σας (ΑΜ) στα θέματα και σε κάθε κόλα που θα χρησιμοποιήσετε. Τα θέματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ Τομέας Οργάνωσης Παραγωγής & Βιομηχανικής Διοίκησης Σημειώσεις του μαθήματος: ΣΤΟΧΑΣΤΙΚΑ ΠΡΟΤΥΠΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Γιώργος Λυμπερόπουλος

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

Προβλήματα Μαρκοβιανών Αλυσίδων

Προβλήματα Μαρκοβιανών Αλυσίδων Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών Προβλήματα Μαρκοβιανών Αλυσίδων Γιώργος Λυμπερόπουλος 2009 1. Να βρεθούν οι κλάσεις καταστάσεων στις παρακάτω Μαρκοβιανές αλυσίδες και να σημειωθεί αν

Διαβάστε περισσότερα

Σουτ σε στόχο με ακρίβεια

Σουτ σε στόχο με ακρίβεια Σουτ σε στόχο με ακρίβεια Σουτ σε στόχο με ακρίβεια, με το μέσα μέρος του ποδιού Σταμάτημα της μπάλας με το πόδι, αριστερό και δεξί Διαθέτω χρόνο (κάποια δευτερόλεπτα) για να είμαι ήρεμος/μη και σίγουρος/ρη

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ 1. Δίνεται η αριθμητική πρόοδος με α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ 1. ίνεται η αριθµητική πρόοδος µε α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα.

Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα. Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα. Ηξερα οτι υπαρχουν επαγγελματιες παιχτες που κερδιζουν πολλα χρηματα απο το στοιχημα και εψαχνα να βρω τη "μυστικη formula" 'Ετσι κ εσυ. Πηρες μια απο τις

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

Η μπάλα στο σημείο Δεξιότητες: Ρίξιμο κάτω από τον ώμο σε ύψος. Πιάσιμο της μπάλας στον αέρα ή μετά από μια αναπήδηση.

Η μπάλα στο σημείο Δεξιότητες: Ρίξιμο κάτω από τον ώμο σε ύψος. Πιάσιμο της μπάλας στον αέρα ή μετά από μια αναπήδηση. Η μπάλα στο σημείο Ρίξιμο κάτω από τον ώμο σε ύψος. Πιάσιμο της μπάλας στον αέρα ή μετά από μια αναπήδηση. Στέλνω το αντικείμενο στον κενό χώρο. Ξεκινώ και επανατοποθετούμαι κάθε φορά στην Παίζω με διαφορετικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

Η Ιστορία. Προετοιμασία του παιχνιδιού. Μια περιπετειώδης αποστολή στον παράδεισο.

Η Ιστορία. Προετοιμασία του παιχνιδιού. Μια περιπετειώδης αποστολή στον παράδεισο. Η Ιστορία Μια περιπετειώδης αποστολή στον παράδεισο. Ένα στρατηγικό τυροπαιχνίδι με ζάρια για 2-4 παιδία ηλικίας 4 ετών και άνω. Είδος Παιχνιδιού: Οικογενειακό Παίκτες: 2-4 παίκτες 4 ετών και άνω Περιεχόμενα:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Συμπληρωματικές Ασκήσεις

Συμπληρωματικές Ασκήσεις Συμπληρωματικές Ασκήσεις Ασκήσεις Στατιστικής ΙΙ Αν για ένα ενδεχόμενο ισχύει Α, να ρείτε την πιθανότητα εμφάνισης του Έστω, τα ενδεχόμενα ότι ένας συγκεκριμένος γιατρός ρίσκεται στις πμ στο ιατρείο του

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Παγκόσμια Ολυμπιάδα Ρομποτικής Κατηγορία Πανεπιστημίου. «WRO Bowling» Κανόνες δοκιμασίας

Παγκόσμια Ολυμπιάδα Ρομποτικής Κατηγορία Πανεπιστημίου. «WRO Bowling» Κανόνες δοκιμασίας Παγκόσμια Ολυμπιάδα Ρομποτικής Κατηγορία Πανεπιστημίου «WRO Bowling» Κανόνες δοκιμασίας 2015 1 1. Περιγραφή δοκιμασίας Το φετινό όνομα της δοκιμασίας του διαγωνισμού στην κατηγορία του Πανεπιστημίου είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ. 5 " " " " παθήσεις α και δ. 4 " " " " παθήσεις α και γ. 7 " " " " παθήσεις β και γ 2 " " " " παθήσεις γ και δ

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ. 5     παθήσεις α και δ. 4     παθήσεις α και γ. 7     παθήσεις β και γ 2     παθήσεις γ και δ ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ 1. Τρεις εφημερίδες Α, Β, Γ, εκδίδονται σε μια ορισμένη πόλη και έχει εκτιμηθεί ότι από τον ενήλικο πληθυσμό της πόλης 20% διαβάζει την εφημερίδα Α 16% " " " Β 14% " " " Γ 8% διαβάζει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

Οι ποντικοί και το τυρί Δεξιότητες: Τρέξιμο σε διάφορες κατευθύνσεις και με διάφορες ταχύτητες. Σταμάτημα και αλλαγή κατεύθυνσης.

Οι ποντικοί και το τυρί Δεξιότητες: Τρέξιμο σε διάφορες κατευθύνσεις και με διάφορες ταχύτητες. Σταμάτημα και αλλαγή κατεύθυνσης. Οι ποντικοί και το τυρί Τρέξιμο σε διάφορες κατευθύνσεις και με διάφορες ταχύτητες. Οργάνωση: Εργασία σε ζευγάρια. Τα δυο παιδιά είναι οι ποντικοί και η μπάλα το τυρί. Ο ένας ποντικός κρατά το τυρί Σκοπός

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008 ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν

Διαβάστε περισσότερα

Το 1ο βήμα ανανέωσης. Νέα οθόνη ΚΙΝΟ. Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ

Το 1ο βήμα ανανέωσης. Νέα οθόνη ΚΙΝΟ. Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ ΚΙΝΟ BONUS Το 1ο βήμα ανανέωσης Νέα οθόνη ΚΙΝΟ Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ Το 2 ο βήμα ανανέωσης Δελτίο με 4 Βήματα για τον «Άπειρο Παίκτη» που παίζει πρώτη φορά Δελτίο με περισσότερες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

Πάνω στον πίνακα έχουµε γραµµένο το γινόµενο 1 2 3 4 595. ύο παίκτες Α και Β παίζουν το εξής παιχνίδι. Ο ένας µετά τον άλλο, διαγράφουν από έναν παράγοντα του γινοµένου αρχίζοντας από τον παίκτη Α. Νικητής

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Γ. Λυμπερόπουλος Ιανουάριος 2012 Θέμα 1 Ένα εργοστάσιο που δουλεύει ασταμάτητα έχει τέσσερις (4) πανομοιότυπες γραμμές παραγωγής. Από αυτές, μπορούν

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο Κινητές επικοινωνίες Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο 1 ΓΕΝΙΚΑ Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο. Κατά

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6 ΔΤ3 ΔΤ4 151

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6  ΔΤ3 ΔΤ4  151 ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Σε ένα μετεωρολογικό κέντρο χρειάζεται να βρεθεί η μέγιστη και η ελάχιστη θερμοκρασία από τις μέσες ημερήσιες θερμοκρασίες ενός μήνα. Να γραφεί ένας αλγόριθμος που θα διαβάζει τη

Διαβάστε περισσότερα

Ο φύλακας του μαγικού κύκλου Δεξιότητες: Ρίξιμο σε στόχο. Πλάγια βήματα. Θέση ετοιμότητας θέση άμυνας.

Ο φύλακας του μαγικού κύκλου Δεξιότητες: Ρίξιμο σε στόχο. Πλάγια βήματα. Θέση ετοιμότητας θέση άμυνας. Ο φύλακας του μαγικού κύκλου Ρίξιμο σε στόχο. Πλάγια βήματα. Θέση ετοιμότητας θέση άμυνας. Φρουρώ τον αντίπαλο για να εμποδίσω τις κινήσεις του. Μετακινούμαι με το αντικείμενο σε χώρο που μπορώ να σκοράρω.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Εισαγωγικά ΘΕ ΠΛΗ 204-5 ONLINE ΕΡΓΑΣΙΑ E2- Η Online Εργασία Ε2- αποτελεί (όπως περιγράφεται αναλυτικότερα και στον Οδηγό Σπουδών της Θ.Ε. που σας έχει διατεθεί) συμπληρωματική άσκηση στα πλαίσια της Γραπτής

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Στόχοι- Υποστόχοι- Δραστηριότητες Ασημίνα Ασβεστά, Κωνσταντίνα Ζαχαροπούλου, Σοφία Αιζενμπαχ Πείραμα Τύχης Πιθανότητα Ενδεχομένου ΠΕΙΡΑΜΑ ΤΥΧΗΣ Α Β Γ Δ

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ ΤΕΛΙΚΕΣ ΕΝΙΑΙΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013-2014 Μάθημα: Ελληνικά Επίπεδο: Ε1 Διάρκεια: 2 ώρες Υπογραφή

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ: Ευρωπαϊκό τυπολόγιο Υπολογιστής τσέπης χωρίς δυνατότητα προγραμματισμού

Διαβάστε περισσότερα

ΟΙ ΔΕΚΑ ΕΝΤΟΛΕΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΟΙ ΔΕΚΑ ΕΝΤΟΛΕΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΟΙ ΔΕΚΑ ΕΝΤΟΛΕΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Παρατήρηση: Ο σημερινός φοιτητής του Τμήματος Χημείας και αυριανός Χημικός θα πρέπει, όταν προσέρχεται στις εξετάσεις του μαθήματος «Γενική Χημεία», να γνωρίζει απ έξω: (α)

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ www.askisopolis.gr 3 4 .5381 Ένα κουτί περιέχει άσπρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 0, οι κόκκινες είναι 7, ενώ όλες οι μπάλες μαζί είναι

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη

Διαβάστε περισσότερα

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επιμέλεια: Σ. Ασημέλλης 1. Σε ένα ποδοσφαιρικό πρωτάθλημα μετέχουν 16 ομάδες. Κάθε ομάδα παίζει με όλες τις υπόλοιπες ως γηπεδούχος και ως φιλοξενούμενη. Νίκη μιας ομάδας

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα