Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση"

Transcript

1 Χειμερινό Εξάμηνο Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας

2 Σύνθεση Χρωμάτων

3 Αφαιρετική Παραγωγή Χρώματος

4 Χρωματικά Μοντέλα

5 HSB

6 HSB (II)

7 Μοντέλα με βάση την ανθρώπινη αντιληψη

8 CRT οθόνες

9 Χαρακτηριστικά CRT

10 Ψηφιακή Επεξεργασία Εικόνας

11 Μέθοδοι Επεξεργασίας

12 Σημειακές Μέθοδοι

13 Φίλτρα Γειτνίασης

14 Γεωμετρικές μέθοδοι

15 ΣυμπίεσηΕικόνας

16 Βασικοί Ορισμοί Ένα δισδιάστατο (2-D) σήμα έχει την μορφή πίνακα και στην γενική του μορφή δηλώνεται ως: x n1, n2, 0 n1 N1, 0 n2 N2

17 Σημαντικές Ακολουθίες (1) Μοναδιαίος Παλμός n, n 1 2 1, 0, n 1, n 2 αλλού 0 Μοναδιαίο Βήμα Εκθετική Ακολόυθία u n, n 1 2 1, 0, n 1, n 2 αλλού 0 x n1 n2 n, n a b, n n 1 2 1, 2

18 Σημαντικές Ακολουθίες (2) n2 μοναδιαίος παλμός δ(n1,n2) n1 μοναδιαίο βήμα u(n1,n2) n2 n1 n2 δ(n1) παλμός στήλης n2 δ(n2) n1 παλμός γραμμής n1

19 Βασικοί Μετασχηματισμοί στο Πεδίο των Συχνοτήτων Συνήθεις μετασχηματισμοί: DFT, DCT Γιατί οι μετασχηματισμοί είναι χρήσιμοι στην επεξεργασία εικόνας; Επεξεργασία στο πεδίο των συχνοτήτων. Φιλτράρισμα, αφαίρεση θορύβου, κυκλική μετατόπιση, συμπίεση, περιγραφή σχήματος Πλεονεκτήματα: μικρότερη υπολογιστική πολυπλοκότητα / εναλλακτική ερμηνεία

20 Περιγραφή Συχνοτικού Περιεχομένου Χαμηλές συχνότητες Ομαλές περιοχές στην εικόνα Υψηλές συχνότητες Περιγράμματα και άκρα εικόνας λόγω παραθύρωσης

21 Η μορφή της εικόνας στο πεδίο της συχνότητας (1) Συχνοτικό περιεχόμενο του DFT (συγκέντρωση ενέργειας γύρω από το (0,0)) lenna Λογαριθμική απεικόνιση του πλάτους του DFT

22 Η μορφή της εικόνας στο πεδίο της συχνότητας (2) Παραδείγματα συγκέντρωσης της ενέργειας πάνω σε συγκεκριμένες διευθύνσεις

23 Η μορφή της εικόνας στο πεδίο της συχνότητας (3) Συχνοτικό περιεχόμενο του DCT (συγκέντρωση ενέργειας στη μία γωνία) lenna Γραμμική απεικόνιση του πλάτους του DCT

24 Φιλτράρισμα (1) Οι εικόνες αναπαριστώνται σαν 2D πίνακες Το ίδιο και τα φίλτρα Low-pass: παρεμβολή εξομάλυνση High-pass: διαφόριση αύξηση της έντασης σε λεπτομέρειες και απότομες αλλαγές Band-pass: το ίδιο, αλλά σε περιορισμένο εύρος συχνοτήτων

25 Φιλτράρισμα (2) low pass high pass

26 Φιλτράρισμα στο πεδίο της εικόνας Συνέλιξη με τον πίνακα (kernel) κάθε φίλτρου Ουσιαστικά, πολλαπλασιασμός κάθε pixel με τον πίνακα και πρόσθεση των επιμέρους αποτελεσμάτων

27 Low-Pass Filter

28 Κβαντισμός (1) Ο κβαντισμός αναφέρεται στη διακριτοποίηση της τιμής f του κάθε εικονοστοιχείου (δηλαδή του πεδίου τιμών) Διαδικασία κβαντισμού To πεδίο τιμών της f χωρίζεται σε L υποδιαστήματα Οι ακραίες τιμές κάθε υποδιαστήματος είναι τα όρια απόφασης d i-1, d i και μια τιμή μεταξύ αυτών ονομάζεται επίπεδο κβάντισης r i Αν d i-1 < f d i τότε το f q = Q(f) = r i

29 Κβαντισμός (2) Επανακβαντισμός εύρους τιμών [0:255] στα πέντε επίπεδα [0:51:255] και αντιστοίχιση στην κεντρική τιμή Παρατηρήστε ότι στην νέα εικόνα εμφανίζονται μόνο πέντε επίπεδα του γκρι

30 Διανυσματικός Κβαντισμός (1) Σε αυτή την περίπτωση οι ποσότητες που κβαντίζονται είναι Ν-διάστατα διανύσματα που παράγονται είτε από μια διανυσματική πηγή είτε μετά από ομαδοποίηση βαθμωτών ποσοτήτων Δημιουργείται ένας Ν-διάστατος χώρος Διαδικασία κβαντισμού (δοθέντος του διαν. κβαντιστή) Ο χώρος είναι διαχωρισμένος σε L υποπεριοχές R i Τα όρια αυτών των υποπεριοχών είναι τα όρια απόφασης και επιλέγεται κάποιο διάνυσμα εντός των ορίων που ονομάζεται επίπεδο κβάντισης r i Αν το διάνυσμα g ανήκει στην περιοχή R i τότε το g q = =Q(g)=r i και g=g q +e q

31 Διανυσματικός Κβαντισμός (2) Έστω g=[g 1 g 2 ] T, 0 g 1,g 2 1 και L=4 Οι περιοχές μπορούν να έχουν οποιοδήποτε σχήμα και τα διανύσματα r i μπορεί να μην είναι στο κέντρο κάθε περιοχής

32 Διανυσματικός Κβαντισμός (3) Επιλογή R i, r i Βέλτιστη επιλογή με βάση κάποιο κριτήριο (π.χ. Ευκλείδιο απόσταση) D=E[d(g,g q )], d(g,g q )=(g q -g) T (g q -g) Για τον βέλτιστο διανυσματικό κβαντιστή πρέπει να ισχύουν οι εξής ιδιότητες (1) g q =Q(g)=r i, αν και μόνο αν d(g,r i ) d(g,r j ), j i, 1 j L (2) To r i πρέπει να είναι κεντροειδές, δηλαδή

33 Διανυσματικός Κβαντισμός (4) Ο καθορισμός των r i μπορεί να γίνει με τον αλγόριθμο Κ-means (1) Επιλέγονται τυχαία M (Μ>>L) διανύσματα g i (διανύσματα εκπαίδευσης) (2) Από αυτά επιλέγονται L και θεωρούνται τα κεντροειδή διανύσματα. (3) Χρησιμοποιώντας το MSE D (MSE Distance) κατηγοριοποιούνται τα διανύσματα στις L υποπεριοχές (ιδιότητα 1 του βέλτιστου κβαντιστή) (4) Για κάθε υποπεριοχή υπολογίζονται τα νέα κεντροειδή Όταν χρησιμοποιείται το MSE D τότε τα κεντροειδή υπολογίζονται από τον μέσο όρο των διανυσμάτων κάθε περιοχής (5) Επιστροφή στο βήμα 3 χρησιμοποιώντας να νέα κεντροειδή αυτή η διαδικασία συνεχίζεται έως ότου τα κεντροειδή παραμείνουν τα ίδια

34 Βελτίωση Εικόνας Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει κάποια χαρακτηριστικά Αντίθεση, Εξομάλυνση Περιγράμματα Αφαιρεί θόρυβο Οπτικά εφέ π.χ., Ψευδοχρωματισμός

35 Τεχνικές Χωρικές τεχνικές επεξεργασίας Σημειακές Ιστογράμματος Μάσκας Επεξεργασίες στις χωρικές συχνότητες Μάσκες στο πεδίο χωρικών συχνοτήτων Ομοιομορφικό φίλτρο

36 Σημειακές Επεξεργασίες (1) g(x,y)=t(f(x,y)), όπου Τ τελεστής Εφαρμόζεται στα εικονοστοιχεία π.χ. Αύξηση αντίθεσης r = f(x,y), s = g(x,y) π.χ. ο Τ είναι η σιγμοειδής συνάρτηση s T(r) r

37 Σημειακές Επεξεργασίες (2) Σιγμοειδής

38 Ιστόγραμμα (1) Το r (επίπεδα του γκρι) θεωρείται τυχαία μεταβλητή με σ.π.π. p(r) Η εκτίμηση του p(r) γίνεται με την χρήση του ιστογράμματος Το ιστόγραμμα περιγράφει την συχνότητα εμφάνισης των διαφόρων επιπέδων του γκρι στα εικονοστοιχεία μιας εικόνας p(r k )=n k /n, n k =πλήθος τιμών r k, n=πλήθος εικονοστοιχείων Παρέχει σημαντική πληροφορία για το περιεχόμενο της εικόνας

39 Ιστόγραμμα (2)

40 Ιστιόγραμμα (3)

41 Ιστιόγραμμα (4)

42 Τεχνικές Ιστογράμματος Εξίσωση ιστογράμματος Ολική εξίσωση (περιγράφεται στην συνέχεια) Εφαρμόζεται σε όλη την εικόνα ταυτόχρονα Υπάρχει πρόβλημα με τις ομοιόμορφες περιοχές Τοπική εξίσωση Σάρωση εικόνας με ένα μικρό ή μεσαίο παράθυρο και εφαρμογή ολικής εξίσωσης στο παράθυρο Υψηλή υπολογιστική πολυπλοκότητα Τροποποίηση ιστογράμματος

43 Εξίσωση Ιστογράμματος Αν οι τιμές φωτεινότητας είναι συγκεντρωμένες σε μια μικρή περιοχή Χαμηλή αντίθεση Χαμηλή υποκειμενική ποιότητα Με εξίσωση ιστογράμματος βελτιώνεται η κατάσταση Με την τεχνική αυτή το ιστόγραμμα γίνεται πιο επίπεδο

44 Ολική Εξίσωση Ιστογράμματος

45 Τοπική Εξίσωση Ιστογράμματος Αρχική Εικόνα Εξισωμένη Εικόνα Εξισωμένη Εικόνα

46 Αφαίρεση λευκού θορύβου Μοντέλο g n (x,y)=f n (x,y)+w n (x,y) w λευκός θόρυβος με μέση τιμή 0, ασυσχέτιστος χωρικά και χρονικά με την εικόνα f Τρεις βασικές τεχνικές Στον χρόνο Λήψη της εικόνας f πολλαπλές φορές Στον χώρο Από μια μόνο λήψη απορρίπτεται ο θόρυβος επειδή είναι χωρικά ασυσχέτιστος Στην συχνότητα (με χρήση κατάλληλων φίλτρων)

47 Αφαίρευση λευκού θορύβου Λαμβάνεται ο μέσος όρος της ακολουθίας των εικόνων g i και προκύπτει νέα εικόνα στην οποία ο θόρυβος έχει μικρότερη ισχύ Το n είναι λευκός θόρυβος μηδενικής μέσης τιμής με διασπορά Μ φορές μικρότερη από αυτή του θορύβου w n

48 Αφαίρεση θορύβου στο χρόνο

49 Αφαίρεση θορύβου στο χώρο (1) Χρήση μάσκας, υπολογισμός μέσου όρου και αντικατάσταση κεντρικού στοιχείου μάσκας Υπάρχει εξομάλυνση στα περιγράμματα Κεντρικά Σημεία Κεντρικά σημεία Μάσκες Μάσκες

50 Αφαίρεση θορύβου στο χώρο (2) Θόρυβος Μάσκα 3x3 Μάσκα 10x10

51 Sharpening Όξυνση της αντίθεσης στα όρια των περιοχών Βελτίωση της διακριτότητας των αντικειμένων Ο άνθρωπος ξεχωρίζει τα αντικείμενα σαν τα όρια ομοιόμορφων περιοχών Υλοποίηση: αύξηση της έντασης σε περιοχές υψηλών συχνοτήτων π.χ. φιλτράρισμα με μη συμμετρικό high-pass

52 Sharpening (2)

53 Ανίχνευση Ακμών Οι ακμές οριοθετούν τα αντικείμενα σε μια εικόνα δίνουν πληροφορίες κίνησης και βοηθούν στην εξαγωγή χαρακτηριστικών Τυπικός ορισμός εντοπισμός σημαντικών τοπικών μεταβολών σε μια grayscale εικόνα τι συμβαίνει με τις προοδευτικές μεταβολές;

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 3 η Παρουσίαση : Συμπίεση Διδάσκων: Γιάννης Ντόκας Εισαγωγή 2 Συμπίεση πληροφορίας πολυμέσων 3 Γιατί χρειάζεται συμπίεση? 4

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1

Εικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1 Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Α.Τ.Ε.Ι. Ηρακλείου ιδάσκων: Βασίλειος Γαργανουράκης 1 Περιγραφή Μαθήµατος ΘΕΩΡΙΑ Fast Fourier Transform Συνελίξεις Μη Γραµµικοί Μετασχηµατισµοί Ψηφιακή Επεξεργασία Εικόνας ΕΜΕΙΣ

Διαβάστε περισσότερα

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της

Διαβάστε περισσότερα

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής.

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής. Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 2 η : «Βασικές Β έ αρχές ψηφιακού ήχου» Φλώρος Ανδρέας Επίκ. Καθηγητής Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν

Διαβάστε περισσότερα

2.1 ΕΙΣΑΓΩΓΗ 2.1 2.2 ΤΟ ΦΩΣ 2.2 2.3 ΘΕΜΕΛΙΩΔΗ ΣΤΟΙΧΕΙΑ ΧΡΩΜΑΤΟΣ 2.5

2.1 ΕΙΣΑΓΩΓΗ 2.1 2.2 ΤΟ ΦΩΣ 2.2 2.3 ΘΕΜΕΛΙΩΔΗ ΣΤΟΙΧΕΙΑ ΧΡΩΜΑΤΟΣ 2.5 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕΔΑ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 ΣΥΣΤΗΜΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΤΙΣ

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού

Διαβάστε περισσότερα

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1 Βίντεο Εισαγωγή Χαρακτηριστικά του βίντεο Απόσταση θέασης Μετάδοση τηλεοπτικού σήματος Συμβατικά τηλεοπτικά συστήματα Ψηφιακό βίντεο Εναλλακτικά μορφότυπα Τηλεόραση υψηλής ευκρίνειας Κινούμενες εικόνες

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 4 η Παρουσίαση : Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Εισαγωγή στις Έννοιες των Εικόνων Στο χώρο των πολυμέσων χρησιμοποιείται

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος 2005 2006, Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος 2005 2006, Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 5: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 5 6 Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ. Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ. Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΕΠΙΚΟΙΝΩΝΙΑΣ & ΣΠΟΥΔΩΝ ΔΙΑΔΙΚΤΥΟΥ ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ

ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ Πρόκληση ο σχεδιασμός κι η ανάπτυξη εξ αποστάσεως εκπαιδευτικού υλικού. Ζητούμενο

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Συµπίεση Εικόνας: Εισαγωγή, χρωµατικά µοντέλα, βασικές τεχνικές συµπίεσης

Συµπίεση Εικόνας: Εισαγωγή, χρωµατικά µοντέλα, βασικές τεχνικές συµπίεσης ΒΕΣ 04 Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση Εικόνας: Εισαγωγή, χρωµατικά µοντέλα, βασικές τεχνικές συµπίεσης Πόσες λέξεις αξίζει µια εικόνα; Εισαγωγή Εξαρτάται από την εικόνα και τις λέξεις φυσικά!

Διαβάστε περισσότερα

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Νιαβής Παναγιώτης Επιβλέπων: Καθ. Γ. Μουστακίδης Περιεχόμενα Εισαγωγή Μικροφωνισμός σε ακουστικά βαρηκοΐας Προσαρμοστική αναγνώριση συστήματος

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007 Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας Ακαδημαϊκό Έτος 2006-2007 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος Διδάσκων: Φλώρος Ανδρέας Περιεχόμενα 1 Περιγραφή

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Το Φως Είναι Εγκάρσιο Κύμα!

Το Φως Είναι Εγκάρσιο Κύμα! ΓΙΩΡΓΟΣ ΑΣΗΜΕΛΛΗΣ Μαθήματα Οπτικής 3. Πόλωση Το Φως Είναι Εγκάρσιο Κύμα! Αυτό που βλέπουμε με τα μάτια μας ή ανιχνεύουμε με αισθητήρες είναι το αποτέλεσμα που προκύπτει όταν φως με συγκεκριμένο χρώμα -είδος,

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Εισαγωγή στο Equalizing

Εισαγωγή στο Equalizing Επιμέλεια: Νίκος Σκιαδάς ΠΕ 17.13 Μουσικής Τεχνολογίας Με τον όρο equalizing εννοούμε την εξισορρόπηση των συχνοτήτων που ενυπάρχουν σε ένα σήμα. Πρακτικά, το equalizing λαμβάνει χώρα για να «χρωματίσουμε»

Διαβάστε περισσότερα

ΕΝΟΤΗΤΕΣ ΣΤΟΧΟΙ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ. Κωδικός (ΑΑ) ΠΕΡΙΟΧΗ. 1 3 Το περιβάλλον εργασίας του Dreamweaver

ΕΝΟΤΗΤΕΣ ΣΤΟΧΟΙ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ. Κωδικός (ΑΑ) ΠΕΡΙΟΧΗ. 1 3 Το περιβάλλον εργασίας του Dreamweaver Αναλυτικό Πρόγραμμα Σπουδών Σεμιναρίου Εφαρμοσμένων Τεχνών Εισαγωγή στην δημιουργία ιστοχώρου με το Dreamweaver και εικαστική σχεδίαση με τα λογισμικά Photoshop και CoreDraw X4 Συνολική Διάρκεια: 48 ώρες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Τι συσχετίζεται με τον ήχο

Τι συσχετίζεται με τον ήχο ΗΧΟΣ Τι συσχετίζεται με τον ήχο Υλικό Κάρτα ήχου Προενυσχιτής Equalizer Ενισχυτής Ηχεία Χώρος Ανθρώπινη ακοή Ψυχοακουστικά φαινόμενα Ηχητική πληροφορία Σημείο αναφοράς 20 μpa Εύρος συχνοτήτων Δειγματοληψία

Διαβάστε περισσότερα

Κεφάλαιο 11 Πολυμέσα. Εφ. Πληροφορικής Κεφ. 11 Καραμαούνας Π. 1

Κεφάλαιο 11 Πολυμέσα. Εφ. Πληροφορικής Κεφ. 11 Καραμαούνας Π. 1 Κεφάλαιο 11 Πολυμέσα Εφ. Πληροφορικής Κεφ. 11 Καραμαούνας Π. 1 Εφαρμογές πολυμέσων: πολλές μορφές πληροφορίας, αποθηκευμένες σε ψηφιακή μορφή, με δυνατότητα αλληλεπίδρασης κατά την παρουσίασή τους 11.1

Διαβάστε περισσότερα

Προηγμένες εφαρμογές των μαθηματικών στην ψηφιακή επεξεργασία σήματος με χρήση της Matlab

Προηγμένες εφαρμογές των μαθηματικών στην ψηφιακή επεξεργασία σήματος με χρήση της Matlab ATEI Κρήτης Παράρτημα Χανίων τμ. Ηλεκτρονικής Προηγμένες εφαρμογές των μαθηματικών στην ψηφιακή επεξεργασία σήματος με χρήση της Matlab Iterative Shadowgraphic Method (ISM) Παναγιώτης Αργυρέας 5/12/2010

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

1.1 ΣΚΟΠΟΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΙΑΤΑΞΗΣ

1.1 ΣΚΟΠΟΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΙΑΤΑΞΗΣ 1.1 ΣΚΟΠΟΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΙΑΤΑΞΗΣ Σχήµα 1.1.α Σκοπός της διατάξεως που φαίνεται και στο σχήµα 1.1.α είναι ο µη καταστροφικός 100% ποιοτικός έλεγχος σε γραµµή παραγωγής µαρµάρινων πλακιδίων. Τα πλακίδια εξετάζονται

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

1. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ ΕΦΑΡΜΟΓΕΣ ΙΟΝΤΙΖΟΥΣΩΝ ΑΚΤΙΝΟΒΟΛΙΩΝ

1. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ ΕΦΑΡΜΟΓΕΣ ΙΟΝΤΙΖΟΥΣΩΝ ΑΚΤΙΝΟΒΟΛΙΩΝ 1. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ 1 x y 1. γ-κάµερα ή Κύκλωµα Πύλης Αναλυτής Ύψους Παλµών z κάµερα Anger (H. Anger, Berkeley, 1958) Λογικό Κύκλωµα Θέσης ιάταξη Φωτοπολλαπλασιαστών Μολύβδινη Θωράκιση

Διαβάστε περισσότερα

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ Διαγνωστικές και θεραπευτικές εφαρμογές ακτινοβολιών : Κεφάλαιο 11 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΑΥΤΟΠΟΙΗΣΗ ΔΗΜΙΟΥΡΓΟΥ ΠΙΝΑΚΩΝ ΖΩΓΡΑΦΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΟΡΘΟΓΩΝΙΩΝ

Διαβάστε περισσότερα

Ανακατασκευή εικόνας από προβολές

Ανακατασκευή εικόνας από προβολές Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους

Διαβάστε περισσότερα

Δομικά στοιχεία πολυμέσων: Κείμενο Εικόνα Ήχος Κίνηση Βίντεο

Δομικά στοιχεία πολυμέσων: Κείμενο Εικόνα Ήχος Κίνηση Βίντεο Δομικά στοιχεία πολυμέσων: Κείμενο Εικόνα Ήχος Κίνηση Βίντεο Πρωτογενές υλικό Μια εικόνα μπορεί να εισαχθεί στον υπολογιστή από: σαρωτή (Scanner) ψηφιακή φωτογραφική μηχανή video capture monitor capture

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ανάλυση και Επεξεργασία Εικόνων:Τεχνικές για την βελτίωση αντίθεσης ιατρικών εικόνων ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ανάλυση και Επεξεργασία Εικόνων:Τεχνικές για την βελτίωση αντίθεσης ιατρικών εικόνων ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Ανάλυση και Επεξεργασία Εικόνων:Τεχνικές για την βελτίωση

Διαβάστε περισσότερα

Εξάμηνο σπουδών: Τεχνολογία Συστημάτων Ήχου, Εικόνας και Εκπομπής

Εξάμηνο σπουδών: Τεχνολογία Συστημάτων Ήχου, Εικόνας και Εκπομπής Εξάμηνο σπουδών: Τίτλος Μαθήματος: Αγγλικός Τίτλος: Μορφή Μαθήματος: Β Τεχνολογία Συστημάτων Ήχου, Εικόνας και Εκπομπής Audio, Video and Broadcasting Technology Θεωρία με τεσσάρων (4) ωρών / εβδομάδα Εργαστηριακές

Διαβάστε περισσότερα

Αλγόριθμοι Επεξεργασίας Εικόνας Ανάπτυξη Λογισμικού Αναγνώρισης Προσώπου

Αλγόριθμοι Επεξεργασίας Εικόνας Ανάπτυξη Λογισμικού Αναγνώρισης Προσώπου Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Των Κολλήγα Χρυσούλα Α.Ε.Μ. 173 & Κακαγιάννη Μαρία Α.Ε.Μ. 252 Αλγόριθμοι Επεξεργασίας Εικόνας

Διαβάστε περισσότερα

Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman

Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman Α Π Ε (Χ 2011/2012) Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman Ιωακείμ Πέρρος, ΑΜ: 2007030085 2 Απριλίου 2012 Περιεχόμενα 1 Εισαγωγή / Πρόβλημα 1 2 Προσέγγιση / Λύση 2 2.1

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Περίληψη Τριγωνομετρικές Συναρτήσεις Κυματική Παλμογράφος STEM Εφαρμογές

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Certified Graphics Designer (CGD)

Certified Graphics Designer (CGD) Certified Graphics Designer (CGD) Εξεταστέα Ύλη (Syllabus) Πνευµατικά ικαιώµατα Το παρόν είναι πνευµατική ιδιοκτησία της ACTA Α.Ε. και προστατεύεται από την Ελληνική και Ευρωπαϊκή νοµοθεσία που αφορά τα

Διαβάστε περισσότερα

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ 2 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται

Διαβάστε περισσότερα

Γ ΚΟΙΝΟΤΙΚΟ ΠΛΑΙΣΙΟ ΣΤΗΡΙΞΗΣ

Γ ΚΟΙΝΟΤΙΚΟ ΠΛΑΙΣΙΟ ΣΤΗΡΙΞΗΣ Γ ΚΟΙΝΟΤΙΚΟ ΠΛΑΙΣΙΟ ΣΤΗΡΙΞΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ» 2000-2006 ΑΞΟΝΑΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ: 1 - ΠΑΙ ΕΙΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ ΜΕΤΡΟ: 1.3 ΤΕΚΜΗΡΙΩΣΗ, ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΑΝΑ ΕΙΞΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΠΑΡΑΓΩΓΗ ΔΙΑΦΗΜΙΣΗΣ

ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΠΑΡΑΓΩΓΗ ΔΙΑΦΗΜΙΣΗΣ ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΠΑΡΑΓΩΓΗ ΔΙΑΦΗΜΙΣΗΣ Η διαφήμιση με μία μόνο λέξη χαρακτηρίζεται και ως «υπόσχεση», καθώς δίνει μια υπόσχεση στον υποψήφιο αγοραστή, για το προϊόν που διαφημίζει και αναφέρεται στην επίδραση

Διαβάστε περισσότερα

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 23 Ηλεκτρικό Δυναµικό Διαφορά Δυναµικού-Δυναµική Ενέργεια Σχέση Ηλεκτρικού Πεδίου και Ηλεκτρικού Δυναµικού Ηλεκτρικό Δυναµικό Σηµειακών Φορτίων Δυναµικό Κατανοµής Φορτίων Ισοδυναµικές Επιφάνειες

Διαβάστε περισσότερα

Κεφάλαιο T3. Ηχητικά κύµατα

Κεφάλαιο T3. Ηχητικά κύµατα Κεφάλαιο T3 Ηχητικά κύµατα Εισαγωγή στα ηχητικά κύµατα Τα κύµατα µπορούν να διαδίδονται σε µέσα τριών διαστάσεων. Τα ηχητικά κύµατα είναι διαµήκη κύµατα. Διαδίδονται σε οποιοδήποτε υλικό. Είναι µηχανικά

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΑΝΑΠΤΥΞΗ ΕΞΕΛΙΓΜΕΝΩΝ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΤΗΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Κλάδος: ΗΛΕΚΤΡΟΛΟΓΙΑ Μάθημα: ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Τάξη: A Τμήμα:

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

25/3/2009. Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου. Φλώρος Ανδρέας Επίκ. Καθηγητής Παράμετροι ελέγχου

25/3/2009. Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου. Φλώρος Ανδρέας Επίκ. Καθηγητής Παράμετροι ελέγχου Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 4 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής (Mέρος έ ΙΙ)» Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1. ΔΗΜΙΟΥΡΓΙΑ ΕΓΓΡΑΦΩΝ ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1.1. Ορισµός εγγράφου, προτύπου, πρωτεύοντος και δευτερεύοντος εγγράφου 1.2. Πρότυπα 1.2.1. Δηµιουργία, µεταβολή, χρήση και διαγραφή προτύπων εγγράφων 1.2.2.

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Βασικά στοιχεία εικονοστοιχείου (pixel) Φυσική λειτουργία όρασης Χηµική και ψηφιακή σύλληψη (Κλασσικές και ψηφιακές φωτογραφικές µηχανές)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΘΕΩΡΙΑ ΧΡΩΜΑΤΩΝ

ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΘΕΩΡΙΑ ΧΡΩΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΘΕΩΡΙΑ ΧΡΩΜΑΤΩΝ Συμπλήρωση κενών 1. Η Λαμπρότητα (Brightness) είναι Υποκειμενικός παράγοντας. 2. Το χρώμα ενός αντικειμένου εξαρτάται από το ίδιο και την φωτεινή πηγή. 3. Το Μάτι είναι πολύ

Διαβάστε περισσότερα

Συστήματα μεταβλητής πολλαπλής εισαγωγής. Τα συστήματα μεταβλητής πολλαπλής εισαγωγής παρουσιάζουν τα

Συστήματα μεταβλητής πολλαπλής εισαγωγής. Τα συστήματα μεταβλητής πολλαπλής εισαγωγής παρουσιάζουν τα Συστήματα μεταβλητής πολλαπλής εισαγωγής Τα συστήματα μεταβλητής πολλαπλής εισαγωγής παρουσιάζουν τα τελευταία χρόνια ραγδαία αύξηση στους κινητήρες παραγωγής. Χρησιμοποιούνται ως μέσα βελτίωσης της ροπής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Αρχές συµπίεσης δεδοµένων Ήδη συµπίεσης Συµπίεση εικόνων Αλγόριθµος JPEG Γιατί χρειαζόµαστε συµπίεση; Τα σηµερινά αποθηκευτικά µέσα αδυνατούν

Διαβάστε περισσότερα

Εφαρμογή ψηφιοποίησης RollMan

Εφαρμογή ψηφιοποίησης RollMan Εφαρμογή ψηφιοποίησης RollMan Η εφαρμογή ψηφιοποίησης των ληξιαρχικών πράξεων RollMan (RollManager) δημιουργήθηκε από την εταιρία ειδικά για το σκοπό αυτό στο πλαίσιο της συνεργασίας με τους Δήμους. Από

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΡΟΛΟΓΟΣ...17 ΕΙΣΑΓΩΓΗ...19 ΜΕΡΟΣ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟ ΟΛΟΓΙΑ ΣΧΕ ΙΑΣΗΣ 1.1 Μεθοδολογία σχεδίασης...25 1.2 Η διαδικασία της σχεδίασης...26 1.3 ηµιουργικότητα στη

Διαβάστε περισσότερα

SMART Notebook 11.1 Math Tools

SMART Notebook 11.1 Math Tools SMART Ntebk 11.1 Math Tls Λειτουργικά συστήματα Windws Οδηγός χρήστη Δήλωση προϊόντος Αν δηλώσετε το προϊόν SMART, θα σας ειδοποιήσουμε για νέα χαρακτηριστικά και αναβαθμίσεις λογισμικού. Κάντε τη δήλωση

Διαβάστε περισσότερα