ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ P-INF-003 : ΠΛΗΡΟΦΟΡΙΚΗ : ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ ΣΥΓΓΡΑΦΕΙΣ : Σ. ΛΥΚΟΘΑΝΑΣΗΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΗΧ/ΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Ε. ΓΕΩΡΓΟΠΟΥΛΟΣ ΜΗΧΑΝΙΚΟΣ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ - ΠΑΤΡΑ

2 1. ΥΝΑΤΟΤΗΤΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΚΑΙ ΓΕΝΕΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Σκοπός Στο πρώτο κεφάλαιο, έγινε πρώτα µία σύντοµη αναφορά στις τεχνολογίες της Τεχνητής Νοηµοσύνης (Τ.Ν.) και ακολούθησε σύντοµη εισαγωγή στα Νευρωνικά ίκτυα (Ν..) και στους Γενετικούς Αλγορίθµους (Γ.Α.). Στόχος αυτού του κεφαλαίου ήταν η σύνδεση των Ν.. και των Γ.Α. µε την Τ.Ν. από την οποία προήλθαν. Σε αυτό το κεφάλαιο θα ασχοληθούµε µε την εξέλιξη των Ν.. και τις γνωστές αρχιτεκτονικές που χρησιµοποιούνται. Πρώτα θα γίνει µια σύντοµη ιστορική αναδροµή και θα ακολουθήσει η παρουσίαση του µαθηµατικού µοντέλου του τεχνητού νευρώνα. Στη συνέχεια θα παρουσιαστούν οι διάφορες κατηγορίες νευρωνικών δικτύων σε σχέση µε την αρχιτεκτονική τους και τη λειτουργία που εκτελούν. Σκοπός αυτού του κεφαλαίου είναι να παρέχει όλη την απαραίτητη πληροφορία, έτσι ώστε ο αναγνώστης να είναι έτοιµος για τη µελέτη των αλγορίθµων εκπαίδευσης των Νευρωνικών ικτύων. Προσδοκώµενα Αποτελέσµατα: Όταν θα έχετε τελειώσει τη µελέτη αυτού του κεφαλαίου, θα µπορείτε να: κάνετε µια σύντοµη ιστορική αναδροµή της εξέλιξης των Ν.., δώσετε το µοντέλο του τεχνητού νευρώνα, να παρουσιάσετε τις βασικές αρχιτεκτονικές των Ν... Έννοιες Κλειδιά: µοντέλο τεχνητού νευρώνα συνάρτηση ενεργοποίησης αρχιτεκτονική Ν.. δίκτυα ενός επιπέδου

3 δίκτυα πολλών επιπέδων αναδροµικά δίκτυα δίκτυα Hopfied Εισαγωγικές Παρατηρήσεις: Όπως έχουµε ήδη αναφέρει τα Νευρωνικά ίκτυα (Ν..) αποτελούν µια προσπάθεια προσέγγισης της λειτουργίας του ανθρώπινου εγκεφάλου από µια µηχανή. Έχουν την ικανότητα να εκτελούν υπολογισµούς µε µαζικό παράλληλο τρόπο. Η αρχιτεκτονική τους βασίζεται στην αρχιτεκτονική των Βιολογικών Νευρωνικών ικτύων. Αυτές οι ιδέες αν και ήταν γνωστές από την αρχή του αιώνα, άρχισαν να υλοποιούνται στα µέσα της δεκαετίας του 1940, όταν πρωτοπαρουσιάστηκε το µαθηµατικό µοντέλο του νευρώνα το οποίο εξοµοίωνε την λειτουργία του βιολογικού νευρώνα. Στη συνέχεια µε την εµφάνιση των πρώτων υπολογιστών έγινε η πρώτη προσπάθεια υλοποίησής τους. Μεγάλη ώθηση της εφαρµογής τους έδωσε η εµφάνιση των ψηφιακών υπολογιστών. Τότε άρχισε η ευρεία υλοποίησή τους, τόσο µε λογισµικό όσο και µε υλικό. Έτσι, τα απλά δίκτυα ενός επιπέδου εξελίχτηκαν σε δίκτυα πολλών επιπέδων. Παράλληλα παρουσιάστηκε στην διεθνή βιβλιογραφία µια µεγάλη ποικιλία αλγορίθµων εκπαίδευσης και εφαρµογών τους στην επίλυση πρακτικών προβληµάτων. 2.1 Ιστορική αναδροµή Η µοντέρνα περίοδος των νευρωνικών δικτύων λέγεται [1] ότι άρχισε µε την πρωτοποριακή δουλειά των McCulloch και Pitts (1943). Ο πρώτος ήταν ψυχίατρος και ο δεύτερος µεγαλοφυής µαθηµατικός. Σύµφωνα µε τον Rall (1990) η κλασσική εργασία των McCulloch και Pitts έγινε µέσα σε µια κοινωνία που ασχολούνταν µε τους νευρώνες στο πανεπιστήµιο του Σικάγο, για πάνω από 5 χρόνια. Αυτή η εργασία περιέγραφε το λογικό λογισµό των νευρωνικών δικτύων. Είναι αξιοσηµείωτο το ότι ο von Neumann χρησιµοποίησε ιδεατά στοιχεία καθυστέρησης τα οποία είχαν υπολογιστεί από τα ιδεατά στοιχεία νευρώνων των McCulloch και Pitts, για την κατασκευή του EDVAC ( Electronic Discrete Variable Automatic Computer), ο οποίος κατάληξε στον ENIAC, τον πρώτο γενικού σκοπού υπολογιστή. Η επόµενη µεγάλη ανάπτυξη πάνω στα νευρωνικά δίκτυα, ήρθε το 1949 µε την

4 έκδοση του βιβλίου του Hebb µε τίτλο The Organization of Behavior, στο οποίο έγινε για πρώτη φορά µια ιδιαίτερη δήλωση ενός φυσιολογικού κανόνα µάθησης για συναπτικές τροποποιήσεις. Πιο συγκεκριµένα ο Hebb πρότεινε ότι η συνδετικότητα του εγκεφάλου συνεχώς αλλάζει καθώς ο οργανισµός µαθαίνει διάφορες εργασίες, και ότι οι νευρωνικοί συγκεντρωτές δηµιουργούνται από τέτοιες αλλαγές. Επίσης πρότεινε το διάσηµο αίτηµα µάθησης σύµφωνα µε το οποίο η αποτελεσµατικότητα µιας σύναψης µεταβλητής ανάµεσα σε δύο νευρώνες αυξάνεται από την επαναλαµβανόµενη ενεργοποίηση του ενός νευρώνα από τον άλλο κατά µήκος της σύναψης. Η αναφορά των Rochester, Holland, Habit και Duda (1956) είναι ίσως η πρώτη προσπάθεια για χρήση υπολογιστή που χρησιµοποιεί την εξοµοίωση, για να ελεγχθεί µια καλά σχηµατισµένη νευρωνική θεωρία βασισµένη στο αίτηµα µάθησης του Hebb. Η εξοµοίωση έδειξε ότι χρειαζόταν να προστεθεί παρεµπόδιση ώστε η θεωρία να δουλέψει πραγµατικά. Τον ίδιο χρόνο ο Uttley παρουσίασε την αποκαλούµενη διαρρέουσα ολοκλήρωση ή νευρώνας φωτιάς που αργότερα αναλύθηκε από τον Caianielo. To 1952 εκδόθηκε το βιβλίο του Ashby µε τίτλο Design for a brain: The Origin of Adaptive Behavior, το οποίο ασχολήθηκε µε την βασική έννοια ότι η προσαρµοζόµενη συµπεριφορά δεν είναι έµφυτη αλλά µαθαίνεται. Το 1954 ο Minsky έγραψε τη διδακτορική του διατριβή µε τίτλο Theory of Neural-Analog Reinforcement Systems and Its Application to the Brain-Model Problem και το 1961 ο ίδιος έγραψε µια εργασία µε τίτλο Steps Toward Artificial Intelligence. Επίσης το 1954 η ιδέα των µη γραµµικών προσαρµοζόµενων φίλτρων προτάθηκε από τον Gabor (πρωτοπόρος της θεωρίας επικοινωνιών και εφευρέτης του ολογραφήµατος), ο οποίος υλοποίησε µια τέτοια µηχανή στην οποία η µάθηση επιτυγχανόταν µε τροφοδότηση δειγµάτων στοχαστικών διαδικασιών στη µηχανή, µαζί µε τη συνάρτηση-στόχο, την οποία ήταν αναµενόµενο να παράγει η µηχανή. Ένα θέµα ιδιαίτερου ενδιαφέροντος για τα νευρωνικά δίκτυα είναι αυτό της σχεδίασης ενός αξιόπιστου δικτύου µε νευρώνες που µπορούν να θεωρηθούν σαν µη αξιόπιστα στοιχεία. Αυτό το σηµαντικό πρόβληµα λύθηκε από τον von Neumann (1956) χρησιµοποιώντας την ιδέα του πλεονασµού. 15 χρόνια µετά την έκδοση της εργασίας των McCulloch και Pitts, µια νέα προσέγγιση πάνω στο πρόβληµα της αναγνώρισης προτύπων έγινε από τον Rosenblatt (1958) στην εργασία του πάνω στο αισθητήριο (perceptron). Το ιδιαίτερο επίτευγµα του ήταν το αποκαλούµενο θεώρηµα

5 σύγκλισης αισθητηρίου (perceptron convergence theorem). Το 1960 οι Widrow και Hoff πρότειναν τον αλγόριθµο ελάχιστου µέσου τετραγώνου (least mean-square-lms) και τον χρησιµοποίησαν για να σχηµατίσουν τo Adaline (adaptive linear element). Η διαφορά ανάµεσα στο αισθητήριο και στο Adaline βρίσκεται στον τρόπο µάθησης. Ένα από τα από τα πρόσφατα εκπαιδεύσιµα νευρωνικά δίκτυα µε πολλαπλά στοιχεία είναι η δοµή Madaline (Widrow). Κατά την διάρκεια της κλασσικής περιόδου του perceptron ( 60) πιστευόταν ότι τα νευρωνικά δίκτυα µπορούσαν να κάνουν τα πάντα. Αλλά τότε εκδόθηκε το βιβλίο των Minsky και Papert που µε τη βοήθεια των µαθηµατικών απέδειξε ότι υπάρχουν όρια πάνω στο τι µπορεί να υπολογιστεί από τα αισθητήρια. Ένα σηµαντικό πρόβληµα πάνω στη σχεδίαση ενός πολυεπίπεδου αισθητηρίου είναι το πρόβληµα της ανάθεσης εµπιστοσύνης (credit assignment problem), το οποίο βρήκε την λύση του µόλις την δεκαετία του Κατά την δεκαετία του 70 λόγω των προβληµάτων εγκαταλείφτηκε το ενδιαφέρον πάνω στα νευρωνικά δίκτυα. Μια σηµαντική ενέργεια την δεκαετία αυτή ήταν οι χάρτες αυτοοργάνωσης µε ανταγωνιστική µάθηση. Το 1980 έγιναν πολλές εργασίες πάνω στην θεωρία αλλά και στον σχεδιασµό των νευρωνικών δικτύων. Ο Grossberg (1980) ανέπτυξε µια καινούργια αρχή αυτοοργάνωσης που συνδυάζει φιλτράρισµα από κάτω προς τα πάνω και αντίθετη αύξηση σε µικρή µνήµη µε από πάνω προς τα κάτω ταίριασµα προτύπων και σταθεροποίηση του κώδικα µάθησης. εδοµένης µιας τέτοιας ικανότητας, και αν το πρότυπο εισόδου ταιριάζει µε την ανάδραση µάθησης, λαµβάνει χώρα µία δυναµική κατάσταση που καλείται adaptive resonance. Αυτό το φαινόµενο δίνει την βάση για µια νέα κατηγορία νευρωνικών δικτύων γνωστά σαν adaptive resonance theory (ART). Το 1982 ο Hopfield χρησιµοποίησε την ιδέα µια συνάρτησης ενέργειας για να φτιάξει ένα νέο τρόπο κατανόησης του υπολογισµού που γίνεται από τα δίκτυα µε συµµετρικές συναπτικές συνδέσεις. Επιπλέον καθιέρωσε τον ισοµορφισµό ανάµεσα σε τέτοια περιοδικά δίκτυα και σε ένα Ising µοντέλο που χρησιµοποιείται στην στατιστική. Αυτή η αναλογία άνοιξε τον δρόµο για ένα κατακλυσµό θεωριών για τα νευρωνικά δίκτυα. Αυτή η συγκεκριµένη τάξη νευρωνικών δικτύων µε ανατροφοδότηση έτυχε ιδιαίτερης προσοχής κατά τη δεκαετία του 80 και µε το χρόνο έγιναν γνωστά σαν δίκτυα Hopfield. Το 1983 οι Cohen και Grossberg έδωσαν µια νέα αρχή για σχεδίαση µιας διευθυνσιοδοτούµενης µνήµης (content-addressable memory) που περιλαµβάνει την

6 έκδοση συνεχούς χρόνου του δικτύου Hopfield σαν µια ιδιαίτερη περίπτωση. Μια ακόµα σηµαντική ανάπτυξη το 1982 ήταν η έκδοση της εργασίας του Kohonen πάνω στους χάρτες αυτοοργάνωσης, χρησιµοποιώντας µιας ή δύο διαστάσεων δικτυωτές δοµές. Το 1983 οι Kirkpatrick, Gallat και Vecchi περιέγραψαν µια νέα διαδικασία που λέγεται εξοµοιωµένη ανόπτηση για λύση προβληµάτων συνδυαστικής βελτιστοποίησης. Η εξοµοιωµένη ανόπτηση χρησιµοποιείται στην στατιστική θερµοδυναµική και βασίζεται σε µια απλή τεχνική. Την ίδια χρονιά εκδόθηκε µια εργασία από τους Burto, Sutton και Anderson πάνω στην ενισχυµένη µάθηση, η οποία δηµιούργησε µεγάλο ενδιαφέρων πάνω στην ενισχυµένη µάθηση και την εφαρµογή της. Το 1984 ο Braitenberg εξέδωσε ένα βιβλίο µε τίτλο Vehicles: Experiments in Synthetic Psychology το οποίο περιγράφει διάφορες µηχανές µε απλή εσωτερική αρχιτεκτονική, και το οποίο ενσωµατώνει µερικές σηµαντικές αρχές της αυτοοργανούµενης απόδοσης. Το 1986 η ανάπτυξη του αλγορίθµου για πίσω διάδοση (back-propagation algorithm) παρουσιάστηκε για πρώτη φορά από τον Rumelhart. Αυτός ο αλγόριθµος έγινε πολύ δηµοφιλής και έδωσε νέα ώθηση στις εφαρµογές των νευρωνικών δικτύων. Το 1988 ο Linsker περιέγραψε µια νέα αρχή για την αυτοοργάνωση σε ένα δίκτυο αισθητηρίων (perceptrons). Η αρχή αυτή σχεδιάστηκε ώστε να διατηρεί µέγιστη πληροφορία σχετικά µε την µε τα πρότυπα ενεργειών, που υπόκεινται σε περιορισµούς όπως συναπτικές συνδέσεις και δυναµικές περιοχές σύναψης. Ο Linsker χρησιµοποίησε αφηρηµένες έννοιες πάνω στη θεωρία πληροφοριών ώστε να σχηµατίσει τη αρχή της διατήρησης µέγιστης πληροφορίας. Επίσης το 1988 οι Broomhead και Lowe περιέγραψαν µία διαδικασία για το σχεδιασµό προς τα εµπρός τροφοδότησης (feedforward) δικτύων χρησιµοποιώντας συναρτήσεις ακτινικής βάσης (Radial Basis Functions - RBF), που είναι µια παραλλαγή των πολυεπίπεδων αισθητηρίων. Το 1989 εκδόθηκε το βιβλίο του Mead µε τίτλο VLSI and Neural Systems. Αυτό το βιβλίο δίνει µια ασυνήθιστη µίξη περιεχοµένων από την νευροβιολογία και την τεχνολογία VLSI. Ίσως περισσότερο από κάθε άλλη έκδοση, η εργασία του Hopfield (1982) και το δίτοµο βιβλίο των Rummelhart και McLelland (1986), να ήταν οι πιο σηµαίνουσες εκδόσεις υπεύθυνες για την αναζωογόνηση του ενδιαφέροντος για τα νευρωνικά δίκτυα στην δεκαετία του 80. Τα νευρωνικά δίκτυα έχουν σίγουρα διανύσει πολύ δρόµο από την εποχή των McCulloch και Pitts. Πραγµατικά έχουν εγκαθιδρυθεί σαν ενδοπειθαρχικό αντικείµενο

7 µε βαθιές ρίζες στην επιστήµη των νευρώνων, στην ψυχολογία, στα µαθηµατικά, στις φυσικές επιστήµες και στην µηχανική. εν είναι αναγκαίο να πούµε ότι είναι εδώ για να µείνουν και θα συνεχίσουν να αναπτύσσονται σε θεωρία, σχεδιασµό και εφαρµογές. ραστηριότητα 2.1 / 1: Ποία ήταν κατά τη γνώµη σας τα ορόσηµα στην εξέλιξη των Τεχνητών Νευρωνικών ικτύων; Να γράψετε µία αναφορά, 2-3 σελίδες. Υπόδειξη: Αφού µελετήσετε καλά την ενότητα 2.1, να ανατρέξετε στη σχετική βιβλιογραφία. 2.2 Το µοντέλο του τεχνητού νευρώνα Ένας νευρώνας είναι µια µονάδα επεξεργασίας πληροφορίας, που είναι θεµελιακή για την λειτουργία ενός νευρωνικού δικτύου. Το σχήµα 1 δείχνει το µοντέλο ενός νευρώνα. Τα τρία βασικά στοιχεία αυτού του µοντέλου είναι : 1. Ένα σύνολο από συνάψεις ή συνδετικούς κρίκους, κάθε µια από τις οποίες χαρακτηρίζεται από ένα βάρος ή δύναµη. Συγκεκριµένα, ένα σήµα x j στην είσοδο της σύναψης j που συνδέεται στον νευρώνα k, πολλαπλασιάζεται µε το συναπτικό βάρος w kj. Το βάρος w kj είναι θετικό αν η σύναψη είναι διεγερτική (δηλαδή ωθεί τον νευρώνα να αποκριθεί στη διέγερση) και αρνητικό αν σύναψη είναι απαγορευτική (δηλαδή αποτρέπει την νευρώνα να παράγει µια απόκριση). 2. Έναν αθροιστή για την πρόσθεση των σηµάτων εισόδου, που παίρνουν βάρος από την αντίστοιχη σύναψη. Αυτές οι λειτουργίες αποτελούν το γραµµικό συνδυαστή. 3. Μια συνάρτηση ενεργοποίησης για τη µείωση του εύρους της εξόδου του νευρώνα.

8 Σχήµα 1: Το µη-γραµµικό µοντέλο ενός τεχνητού νευρώνα. Το µοντέλο επίσης περιλαµβάνει ένα εξωτερικά εφαρµοζόµενο κατώφλι θ κ, που έχει επίδραση στην ελάττωση της εισόδου στην εφαρµοζόµενη συνάρτηση ενεργοποίησης, που ακολουθεί. Στην βιβλιογραφία, το κατώφλι αναφέρεται και σαν πόλωση (bias). Με µαθηµατικούς όρους, ένας νευρώνας k περιγράφεται από τις παρακάτω εξισώσεις: u = p w x k kj j j= 1 (1) y = φ( u ϑ ) (2) k k k όπου x j είναι τα σήµατα εισόδου και τα w kj είναι τα synaptic βάρη του k. Το u k είναι η γραµµική συνδυαστική έξοδος του νευρώνα, θ k είναι το κατώφλι, φ(.) είναι η συνάρτηση ενεργοποίησης και y k είναι το σήµα εξόδου του νευρώνα, που αναφέρεται και σαν πραγµατική έξοδος. Η χρήση του κατωφλίου θ κ έχει σαν αποτέλεσµα την εφαρµογή ενός εγγενούς (affine) µετασχηµατισµού της εξόδου u κ του γραµµικού συνδυαστή του σχήµατος 1, όπως φαίνεται από την παρακάτω σχέση: υ = u ϑ (3) k k k Η έξοδος u κ, ανάλογα µε το θ κ αν είναι θετικό ή αρνητικό µεταβάλλεται όπως φαίνεται στο σχήµα 2.

9 Σχηµα 2: Εγγενής µετασχηµατισµός που παράγεται από την παρουσία κατωφλίου. Το κατώφλι θ κ είναι εξωτερική παράµετρος του νευρώνα k. Έτσι µπορούµε να διαµορφώσουµε το συνδυασµό των εξισώσεων (1), (2) ως εξής: p υ k = wkjx j (4) j = 0 και y k = φ( υ k ) (5) Στην εξίσωση (4) έχουµε προσθέσει µια νέα σύναψη, της οποίας η είσοδος είναι και της οποίας το βάρος είναι: x 0 = 1 (6) w k0 = ϑ k (7) Έτσι µπορούµε να αναδιαµορφώσουµε το µοντέλο του νευρώνα k, όπως φαίνεται στα σχήµατα 3a και 3b που είναι ισοδύναµα µε το σχήµα 1.

10 Σχήµα 3: ύο άλλα µη-γραµµικά µοντέλα ενός νευρώνα. Άσκηση αυτοαξιολόγησης 2.2 /1: Η χρήση κατωφλίου στο µοντέλο του τεχνητού νευρώνα χρησιµοποιείται για: 1. να επιβληθεί µια εξωτερική έξοδος στο νευρώνα, 2. να γραµµικοποιήσει την έξοδο του νευρώνα, 3. να ελαττώσει την είσοδο στη συνάρτηση ενεργοποίησης, 4. να µετασχηµατίσει την γραµµική έξοδο του νευρώνα, 5. τα 2 και 3, 6. τα 3 και 4. Απάντηση: Η σωστή απάντηση είναι η 6.

11 2.2.1 Τύποι συναρτήσεων ενεργοποίησης Η συνάρτηση ενεργοποίησης φ(. ), ορίζει την έξοδο ενός νευρώνα συναρτήσει του επιπέδου ενεργοποίησης της εισόδου. Έχουµε 3 βασικούς τύπους συναρτήσεων ενεργοποίησης. 1.Συνάρτηση Κατωφλιού. Για αυτόν τον τύπο συνάρτησης ενεργοποίησης, που περιγράφεται στο σχήµα 4a, έχουµε: 1, υ 0 φ ( υ) = (8) 0, υ < 0 Εποµένως η έξοδος ενός νευρώνα k, που έχει την παραπάνω συνάρτηση ενεργοποίησης, έχει τη µορφή: y k 1, υ k 0 = (9) 0, υ k < 0 όπου υ κ είναι το εσωτερικό επίπεδο ενεργοποίησης του νευρώνα και δίνεται από τη σχέση: p υ = w x ϑ (10) k j = 0 kj j k 2.Τµηµατικά Γραµµική Συνάρτηση. Για την τµηµατικά γραµµική συνάρτηση, που περιγράφεται στο σχήµα 4b, έχουµε: 1, υ 1 2 φ ( υ) = υ,1 2 > υ > 1 2 (10) 0, υ 1 2 Αυτή η µορφή συνάρτησης ενεργοποίησης µπορεί να θεωρηθεί σαν µια προσέγγιση ενός µη-γραµµικού ενισχυτή. 4. Σιγµοειδής. Είναι η πιο συνηθισµένη µορφή συνάρτησης ενεργοποίησης που χρησιµοποιείται στην κατασκευή τεχνητών νευρωνικών δικτύων Ορίζεται σαν αυστηρά αύξουσα συνάρτηση, η οποία παρουσιάζει εξοµάλυνση και ασυµπτωτικές ιδιότητες. Ένα παράδειγµα είναι η λογιστική συνάρτηση, που ορίζεται από τη σχέση:

12 φυ ( ) = exp( αυ) (11) Μεταβάλλοντας την παράµετρο α παίρνουµε διαφορετικές συναρτήσεις, όπως φαίνεται στο σχήµα 4c. Οι προηγούµενες συναρτήσεις ενεργοποίησης κυµαίνονται από 0 ως +1. Αν θέλουµε συνάρτηση που να κυµαίνεται από -1 ως +1, επαναπροσδιορίζουµε την συνάρτηση κατωφλιού ως: 1, υ > 0 φυ ( ) 0, υ = 0 (12) 1, υ < 0 που ονοµάζεται συνάρτηση προσήµου (signum) και συµβολίζεται σαν sgn(.).

13 Σχήµα 4: (α) Συνάρτηση καωφλίου, (b) Τµηµατικά γραµµική συνάρτηση, (c)σιγµοειδής συνάρτηση. Άσκηση αυτοαξιολόγησης 2.2 /2: Στη λογιστική συνάρτηση, η παράµετρος α χρησιµοποιείται για: 1. να κάνει τη συνάρτηση αυστηρά αύξουσα, 2. να παίρνουµε συναρτήσεις µε διαφορετικές κλίσεις, 3. να εξοµαλύνουµε τη συνάρτηση, 4. να δίνει ασυµπτωτικές ιδιότητες στη συνάρτηση.

14 Απάντηση: Η σωστή απάντηση είναι η 2, όπως φαίνεται και στο σχήµα 4b. Άσκηση αυτοαξιολόγησης 2.2 /3: Μια περιττή (odd) σιγµοειδής συνάρτηση είναι το αλγεβρικό σιγµοειδές, το οποίο δίνεται από τη σχέση: υ ϕ( υ) = 2 1+ υ της οποίας οι οριακές τιµές είναι 1 και +1. Να δείξετε ότι η παράγωγος της φ(υ) ως προς υ, δίνεται από τη σχέση: 3 dϕ ϕ ( υ) = 3 dυ υ Ποία είναι η τιµή αυτής της παραγώγου στην αρχή; Απάντηση: Για τον υπολογισµό της παραγώγου, να χρησιµοποιήσετε τον κανόνα παραγώγισης συνθέτων συναρτήσεων. Επίσης είναι φ (0)=1. Άσκηση αυτοαξιολόγησης 2.2 /4: Ένας νευρώνας j δέχεται εισόδους από τέσσερις άλλους νευρώνες, των οποίων τα επίπεδα ενεργοποίησης είναι 10, -20, 4 και 2. Τα αντίστοιχα συναπτικά βάρη του νευρώνα j είναι 0.8, 0.2, -1.0 και 0.9. Να υπολογίσετε την έξοδο του νευρώνα j, για τις επόµενες δύο καταστάσεις: (α) Ο νευρώνας είναι γραµµικός. (β) Ο νευρώνας παριστάνεται από το µοντέλο McCulloch-Pitts. Να υποθέσετε ότι το κατώφλι που εφαρµόζεται στο νευρώνα είναι µηδενικό. Απάντηση: Από τη σχέση (1), για p=4, υπολογίζεται το επίπεδο ενεργοποίησης υ j =1.8. Άρα είναι: (α) από την (4), y j =1.8 και (β) από την (5), y j = Θεωρώντας τα Ν.. σαν κατευθυνόµενους γράφους την Απλοποιούµε εδώ την εµφάνιση των µοντέλων των νευρώνων, χρησιµοποιώντας ιδέα των γράφων ροής σηµάτων, χωρίς να θυσιάζουµε τίποτα από τις

15 λειτουργικές λεπτοµέρειες του µοντέλου. Ένας γράφος ροής σηµάτων, είναι ένα δίκτυο µε κατευθυνόµενα κλαδιά, που συνδέονται σε συγκεκριµένα σηµεία τους κόµβους. Ένας τυπικός κόµβος j σχετίζεται µε ένα σήµα κόµβου x j Ακολουθούνται 3 βασικοί κανόνες: ΚΑΝΟΝΑΣ 1. Ένα σήµα ρέει κατά µήκος της σύνδεσης µόνο στην κατεύθυνση που ορίζεται από το βέλος. Υπάρχουν 2 τύποι σύνδεσης: 1. Συναπτικές συνδέσεις, όπου το σήµα x j πολλαπλασιάζεται µε το βάρος w κj για να παράγει το σήµα y κ, όπως φαίνεται στο σχήµα 5a. 2. Συνδέσεις ενεργοποίησης, που περιγράφει µια συνάρτηση φ(. ), που δεν είναι γραµµική και φαίνεται στο σχήµα 5b. Σχήµα 5: Βασικοί κανόνες για κατασκευή διαγραµµάτων ροής σήµατος. ΚΑΝΟΝΑΣ 2. Το σήµα κόµβου, ισούται µε το αλγεβρικό άθροισµα όλων των σηµάτων που φτάνουν στον κόµβο, σχήµα 5c.

16 ΚΑΝΟΝΑΣ 3. Το σήµα σε έναν κόµβο µεταβιβάζεται σε κάθε εξερχόµενη σύνδεση που ξεκινά από αυτόν, µε την µεταβίβαση να είναι ανεξάρτητη από τις συναρτήσεις µεταφοράς των εξερχόµενων συνδέσεων, σχήµα 5d. Στο σχήµα 6 περιγράφεται το διάγραµµα του σχήµατος 3a. Σχήµα 6: Γράφος ρόης σήµατος ενός νευρώνα. Μπορούµε τώρα να αναφέρουµε τους παρακάτω µαθηµατικούς ορισµούς ενός νευρωνικού δικτύου : Ένα νευρωνικό δίκτυο είναι ένας κατευθυνόµενος γράφος, που αποτελείται από κόµβους µε συναπτικές διασυνδέσεις και συνδέσεις ενεργοποίησης και χαρακτηρίζονται από τις ακόλουθες ιδιότητες : Κάθε νευρώνας, παριστάνεται από ένα σύνολο γραµµικών συναπτικών συνδέσεων, ένα εξωτερικά εφαρµοζόµενο κατώφλι και µια µη-γραµµική σύνδεση ενεργοποίησης. Το κατώφλι παριστάνεται από συναπτικές συνδέσεις µε σήµα εισόδου σταθερής τιµής -1. Οι συναπτικές συνδέσεις ενός νευρώνα ζυγίζουν τα αντίστοιχα σήµατα εισόδου. Το άθροισµα των βαρών των σηµάτων εισόδου καθορίζει το συνολικό εσωτερικό επίπεδο ενεργοποίησης του νευρώνα που ζητείται. Η σύνδεση ενεργοποίησης συνθλίβει (περιορίζει) το εσωτερικό επίπεδο ενεργοποίησης, για την παραγωγή της εξόδου που παριστάνει την κατάσταση του νευρώνα.

17 Υπάρχουν όµως και µερικώς ολοκληρωµένοι κατευθυνόµενοι γράφοι που είναι γνωστοί σαν αρχιτεκτονικοί γράφοι. Ένας τέτοιος γράφος παριστάνεται στο παρακάτω σχήµα 7. Σχήµα 7: Αρχιτεκτονικός γράφος ενός νευρώνα. Πρέπει να σηµειωθεί ότι, τόσο στους κατευθυνόµενους όσο και τους αρχιτεκτονικούς γράφους, οι κόµβοι που παριστάνονται µε τετράγωνο, δεν πραγµατοποιούν καµία λειτουργία. Χρησιµοποιούνται απλώς για το πέρασµα των εισόδων στο δίκτυο. Άσκηση αυτοαξιολόγησης 2.2 /5: Οι συναπτικές συνδέσεις διαφέρουν από τις συναρτήσεις ενεργοποίησης στο ότι: 1. δεν επιτρέπουν καµία λειτουργία, 2. ζυγίζουν τα αντίστοιχα σήµατα εισόδου, ενώ οι συνδέσεις ενεργοποίησης συνθλίβουν το εσωτερικό επίπεδο ενεργοποίησης, 3. δεν παράγουν έξοδο. Απάντηση: η σωστή απάντηση είναι η Αρχιτεκτονικές των Νευρωνικών ικτύων Ο τρόπος µε τον οποίο οι νευρώνες ενός νευρωνικού δικτύου δοµούνται, είναι στενά συνδεδεµένος µε τον αλγόριθµο εκµάθησης που χρησιµοποιείται για την εκπαίδευση του δικτύου. Σαν εµπρός τροφοδότησης, αναφέρονται τα δίκτυα, στα οποία τα σήµατα κατευθύνονται από την είσοδο στην έξοδο. Όταν οι έξοδοι κάποιων νευρώνων, γίνονται είσοδοι σε νευρώνες προηγούµενων επιπέδων (προς το µέρος της εισόδου του δικτύου), τότε έχουµε ανάδραση.

18 Μπορούµε να διακρίνουµε 4 διαφορετικές κλάσεις αρχιτεκτονικών δοµών: Ενός-επιπέδου Εµπρός-Τροφοδότησης ίκτυα. Σε ένα τέτοιο δίκτυο, οι νευρώνες είναι οργανωµένοι σε µορφή επιπέδων. Οι νευρώνες του πηγαίου επιπέδου δείχνουν στους νευρώνες του επόµενου επιπέδου αλλά όχι αντίστροφα, όπως στο Σχήµα 8. Σχήµα 8: Εµπρός-Τροφοδότησης δίκτυο µε ένα επίπεδο νευρώνων. Πολλαπλών-Επιπέδων Εµπρός-Τροφοδότησης ίκτυα. Εδώ έχουµε περισσότερα του ενός κρυφά επίπεδα, των οποίων οι κόµβοι υπολογισµού ονοµάζονται κρυφοί νευρώνες. Τυπικά, οι νευρώνες σε κάθε επίπεδο έχουν σαν εισόδους τα σήµατα εξόδου του προηγούµενου µόνο επιπέδου. Στο σχήµα 9 έχουµε ένα πλήρως συνδεδεµένο νευρωνικό δίκτυο, µε την έννοια ότι κάθε κόµβος συνδέεται µε όλους τους κόµβους του αµέσως επόµενου επιπέδου.

19 Σχήµα 9: Πλήρως συνδεδεµένο δίκτυο εµπρός-τροφοδότησης µε ένα κρυφό επίπεδο και ένα επίπεδο εξόδου. Ένα τέτοιο δίκτυο περιγράφεται συνοπτικά µε το συµβολισµό Αυτός ο συµβολισµός σηµαίνει ότι το Ν.. έχει δέκα εισόδους, ένα κρυφό επίπεδο µε τέσσερις νευρώνες (κόµβους) και το επίπεδο εξόδου έχει δύο νευρώνες ή κόµβους. Γενικά, ένα πολυεπίπεδο δίκτυο εµπρός τροφοδότησης µε p εισόδους, m κρυφά επίπεδα µε h j, j=1,,m κόµβους ανά επίπεδο και n κόµβους εξόδου, συµβολίζεται σαν: p-h 1,h 2, h m -n. Αντίθετα στο σχήµα 10 έχουµε ένα µερικώς συνδεδεµένο νευρωνικό δίκτυο.

20 Σχήµα 10: Μερικώς συνδεδεµένο δίκτυο εµπρός-τροφοδότησης. Αναδροµικά ίκτυα. Η διαφορά µε τα ίκτυα Επανατροφοδότησης είναι ότι έχει ένα τουλάχιστον βρόχο ανάδρασης. Στα σχήµατα 11 και 12 φαίνονται δύο αναδροµικά δίκτυα το πρώτο χωρίς και το δεύτερο µε κρυφούς νευρώνες.

21 Σχήµα 11: Αναδροµικό δίκτυο χωρίς ανατροφοδότηση και χωρίς κρυφούς νευρώνες. Το δίκτυο του σχήµατος 11 λέγεται και δίκτυο Hopfield. Είναι µια µη-γραµµική συσχετιστική µνήµη ή µνήµη διευθυνσιοδοτούµενη από τα περιεχόµενα. Η κύρια λειτουργία µιας τέτοιας µνήµης είναι η ανάκτηση ενός προτύπου, που έχει αποθηκευθεί σε αυτήν, σαν απόκριση σε µια ελλιπή ή θορυβώδη έκδοση αυτού του προτύπου. Σχήµα 12: Αναδροµικό δίκτυο µε κρυφούς νευρώνες.

22 ικτυωτές οµές. Ένα πλέγµα, αποτελείται από έναν πίνακα µιας, δύο ή µεγαλύτερης διάστασης από νευρώνες, µε ένα αντίστοιχο σύνολο από πηγαίους κόµβους, που παρέχουν τα σήµατα εισόδου στον πίνακα, όπως φαίνεται στο Σχήµα 13. Σχήµα 13: (a) Μονοδιάστατο πλέγµα µε 3 νευρώνες. (b) ισδιάστατο πλέγµα µε 3 x 3 νευρώνες. Άσκηση αυτοαξιολόγησης 2.3 /6: Να κατασκευάσετε τον αρχιτεκτονικό γράφο ενός πλήρως διασυνδεδεµένου νευρωνικού δικτύου εµπρός τροφοδότησης µε p=10, h1=4, h2=3 και n=1.

23 Απάντηση: Θα χρησιµοποιήσετε το γράφο του σχήµατος 6 και θα εργασθείτε όπως στο σχήµα 9. Άσκηση αυτοαξιολόγησης 2.3 /7: Να θεωρήσετε ένα πολυεπίπεδο δίκτυο εµπρός τροφοδότησης, του οποίου όλοι οι νευρώνες λειτουργούν στη γραµµική τους περιοχή. Να αποδείξετε ότι ένα τέτοιο δίκτυο είναι ισοδύναµο µε ένα δίκτυο εµπρός τροφοδότησης ενός επιπέδου. Απάντηση: θεωρείστε για παράδειγµα ένα Ν.. µε ένα κρυφό επίπεδο και ένα νευρώνα εξόδου. Να γράψετε πρώτα την σχέση για τον υπολογισµό της εξόδου του δικτύου και στη συνέχεια την αντίστοιχη σχέση για την έξοδο ενός νευρώνα του κρυφού επίπέδου. Στη συνέχεια συνδυάζοντας τις δύο σχέσεις προκύπτει εύκολα το ζητούµενο. Άσκηση αυτοαξιολόγησης 2.3 /8: Να κατασκευάσετε ένα πλήρως αναδροµικό νευρωνικό δίκτυο µε πέντε νευρώνες, αλλά χωρίς αυτο-ανάδραση. Απάντηση: Μπορείτε να εργασθείτε όπως στο σχήµα 11. ραστηριότητα 2.3 / 2: Να ανατρέξετε στη βιβλιογραφία και να µελετήσετε τα δίκτυα Hopfield. Να ετοιµάσετε µια αναφορά, περίπου πέντε σελίδες, όπου να παρουσιάζετε τον αλγόριθµο εκπαίδευσης αυτών των δικτύων και ένα παράδειγµα. Υπόδειξη: Σχετικό υλικό θα βρείτε στην αναφορά [1] στο κεφάλαιο 8.3 (σελίδα 289). 2.4 Σύνοψη κεφαλαίου Σε αυτό το κεφάλαιο είδαµε ότι τα Τεχνητά Νευρωνικά ίκτυα (Τ.Ν..) αποτελούν µια προσπάθεια προσέγγισης της λειτουργίας του ανθρώπινου εγκεφάλου από µια µηχανή και έχουν την ικανότητα να εκτελούν υπολογισµούς µε µαζικό παράλληλο τρόπο. Η αρχιτεκτονική τους βασίζεται στην αρχιτεκτονική των Βιολογικών Νευρωνικών ικτύων. Αυτές οι ιδέες αν και ήταν γνωστές από την αρχή του αιώνα,

24 άρχισαν να υλοποιούνται στα µέσα της δεκαετίας του 1940, όταν πρωτοπαρουσιάστηκε το µαθηµατικό µοντέλο του νευρώνα το οποίο εξοµοίωνε την λειτουργία του βιολογικού νευρώνα. Στη συνέχεια µε την εµφάνιση των πρώτων υπολογιστών έγινε η πρώτη προσπάθεια υλοποίησής τους. Μεγάλη ώθηση της εφαρµογής τους έδωσε η εµφάνιση των ψηφιακών υπολογιστών. Τότε άρχισε η ευρεία υλοποίησή τους, τόσο µε λογισµικό όσο και µε υλικό. Έτσι, τα απλά δίκτυα ενός επιπέδου εξελίχτηκαν σε δίκτυα πολλών επιπέδων. Παράλληλα παρουσιάστηκε στην διεθνή βιβλιογραφία µια µεγάλη ποικιλία αλγορίθµων εκπαίδευσης και εφαρµογών τους στην επίλυση πρακτικών προβληµάτων. Μετά την ιστορική αναδροµή παρουσιάσαµε το µαθηµατικό µοντέλο του τεχνητού νευρώνα. Αναφερθήκαµε τόσο στο γραµµικό όσο και στο µη-γραµµικό µοντέλο. Εκεί είχαµε την ευκαιρία να δούµε διάφορες συναρτήσεις που χρησιµοποιούνται σαν συναρτήσεις ενεργοποίησης του νευρώνα. Η συνέχεια και η παραγωγισιµότητα είναι οι δύο βασικές ιδιότητες, που πρέπει να έχει µια συνάρτηση για να µπορεί να χρησιµοποιηθεί σαν συνάρτηση ενεργοποίησης. Επίσης, όπως θα δούµε στο επόµενο κεφάλαιο, είναι επιθυµητό το να υπολογίζεται εύκολα η παράγωγός τους. Επίσης, παρουσιάστηκαν οι έννοιες του κατευθυνόµενου και του αρχιτεκτονικού γράφου, οι οποίοι βοηθούν στην απλοποίηση της αναπαράστασης των Τ.Ν... Τέλος, παρουσιάσαµε τις βασικές γνωστές αρχιτεκτονικές των Νευρωνικών ικτύων. Στην αρχή ορίσαµε την έννοια της εµπρός τροφοδότησης, όπου τα σήµατα κατευθύνονται από την είσοδο στην έξοδο. Στη συνέχεια ορίσαµε τα δίκτυα εµπρός τροφοδότησης ενός και πολλών επιπέδων, που είναι πλήρως ή µερικά διασυνδεδεµένα. Η παρουσίαση τελείωσε µε τα αναδροµικά δίκτυα, µε ή χωρίς αυτο-ανάδραση και τις δικτυωτές δοµές. Για περισσότερες λεπτοµέρειες, ο αναγνώστης παραπέµπεται στην αναφορά [1], από όπου προέρχεται και το βασικό υλικό αυτού του κεφαλαίου. 2.5 Βιβλιογραφία 1. NEURAL NETWORKS: A Comprehensive Foundation, S. Haykin, Macmillan Publishing Company, N.Y., 1994 (ISBN ) 2. NEURAL NETWORK DESIGN, M. T. Hagan, H. B. Demuth and m. Beal, PWS Publishing Company, Boston, 1996 (ISBN )

25

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών κεφάλαιο 1 Βασικές Έννοιες Επιστήμη 9 1Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ Στόχοι Στόχος του κεφαλαίου είναι οι μαθητές: να γνωρίσουν βασικές έννοιες και τομείς της Επιστήμης. Λέξεις κλειδιά Επιστήμη

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Πολυτεχνείο Κρήτης. Διπλωματική Εργασία ΠΡΟΒΛΕΨΗ AUTOMOTIVE INDUSTRY ΜΕ ΤΗ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΓΕΝΝΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ.

Πολυτεχνείο Κρήτης. Διπλωματική Εργασία ΠΡΟΒΛΕΨΗ AUTOMOTIVE INDUSTRY ΜΕ ΤΗ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΓΕΝΝΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ. Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Διπλωματική Εργασία ΠΡΟΒΛΕΨΗ AUTOMOTIVE INDUSTRY ΜΕ ΤΗ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΓΕΝΝΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Βιόπουλος Γιώργος Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Tεχνητή Νοημοσύνη Εφαρμογές

Tεχνητή Νοημοσύνη Εφαρμογές ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Tεχνητή Νοημοσύνη Εφαρμογές ΠΛΗ31 ΠΑΤΡΑ 2003 Πριν αρχίσετε τη μελέτη του έντυπου αυτού, είναι απαραίτητο να διαβάσετε προσεκτικά τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 7.1. Ανάπτυξη Προγράµµατος Τι είναι το Πρόγραµµα; Το Πρόγραµµα: Είναι ένα σύνολο εντολών για την εκτέλεση ορισµένων λειτουργιών από τον υπολογιστή.

Διαβάστε περισσότερα

Β Εξάµηνο Τίτλος Μαθήµατος Θ Φ Α.Π Ε Φ.E. Π.Μ Προαπαιτούµενα

Β Εξάµηνο Τίτλος Μαθήµατος Θ Φ Α.Π Ε Φ.E. Π.Μ Προαπαιτούµενα ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΣΥΝΟΠΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΑΝΑ ΕΞΑΜΗΝΟ Α Εξάµηνο Τίτλος Μαθήµατος Θ Φ Α.Π Ε Φ.Ε Π.Μ Προαπαιτούµενα Κ10 ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Μάρκος Αβράμης Φοιτητής Τμήματος Διαχείρισης Πληροφοριών ΤΕΙ Καβάλας

Μάρκος Αβράμης Φοιτητής Τμήματος Διαχείρισης Πληροφοριών ΤΕΙ Καβάλας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΚΑΒΑΛΑΣ Σχολή Διοίκησης & Οικονομίας ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ Πτυχιακή Εργασία Εφαρμογή Μοντέλων Νευρωνικών Δικτύων στην Αναγνώριση Χαρακτήρων Μάρκος Αβράμης Φοιτητής

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Τσουχνικά Μαρία ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Επιβλέπων: Dr Γ. Βουγιατζής 1 Νευρωνικά ίκτυα και εφαρµογές 1. Εισαγωγή 2. Γενικές έννοιες 2.1 Η έννοια του τεχνητού νευρωνικού δικτύου 2.2 Η δοµή του νευρώνα

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

ΚΑΡΑΓΙΑΝΝΙΔΗΣ ΓΙΩΡΓΟΣ 772 ΝΖΕΡΕΜΕΣ ΣΠΥΡΟΣ 1036

ΚΑΡΑΓΙΑΝΝΙΔΗΣ ΓΙΩΡΓΟΣ 772 ΝΖΕΡΕΜΕΣ ΣΠΥΡΟΣ 1036 Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ: SPAM-NON SPAM EMAIL/TRAINING AND SIMULATION A NEURAL NETWORK WITH MATLAB ΚΑΡΑΓΙΑΝΝΙΔΗΣ ΓΙΩΡΓΟΣ 772 ΝΖΕΡΕΜΕΣ ΣΠΥΡΟΣ 1036 ΥΠΕΥΘΥΝΟΣ

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

(6) : : 17 60 40 . .

(6) :      :     17 60 40 . . ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΓΙΑ ΠΛΗΡΩΣΗ ΜΙΑΣ ΚΕΝΗΣ ΘΕΣΗΣ ΒΟΗΘΟΥ ΛΕΙΤΟΥΡΓΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟ ΗΜΟ ΛΕΥΚΩΣΙΑΣ Θέµα: Ειδικό

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014 Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

Σχεδιασµός βασισµένος σε συνιστώσες

Σχεδιασµός βασισµένος σε συνιστώσες Σχεδιασµός βασισµένος σε συνιστώσες 1 Ενδεικτικά περιεχόµενα του κεφαλαίου Ποια είναι τα "άτοµα", από τα οποία κατασκευάζονται οι υπηρεσίες; Πώς οργανώνουµε τις συνιστώσες σε ένα αρµονικό σύνολο; Τι είναι

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 1 ο Εξάμηνο Σπουδών Χειμερινό Εξάμηνο 2012/13 Τμήμα Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο Κρήτης Διδάσκων: Χαρμανδάρης Ευάγγελος, email: vagelis@tem.uoc.gr, Ιστοσελίδα

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση )

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ,ΕΙΚΟΝΕΣ ΚΑΙ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΠΙ ΡΑΣΗ ΤΩΝ ΕΙΚΟΝΩΝ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος;

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Για να εξετάσουµε το κύκλωµα LC µε διδακτική συνέπεια νοµίζω ότι θα πρέπει να τηρήσουµε τους ορισµούς που δώσαµε στα παιδιά στη Β Λυκείου. Ας ξεκινήσουµε

Διαβάστε περισσότερα

Μηχανές Πεπερασµένων Καταστάσεων

Μηχανές Πεπερασµένων Καταστάσεων Μηχανές Επεξεργασίας Πληροφοριών Μηχανές Πεπερασµένων Καταστάσεων Είναι µηχανές που δέχονται ένα σύνολο από σήµατα εισόδου και παράγουν ένα αντίστοιχο σύνολο σηµάτων εξόδου Σήµατα Εισόδου Μηχανή Επεξεργασίας

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Εισαγωγή στον προγραµµατισµό Η έννοια του προγράµµατος Ο προγραµµατισµός ασχολείται µε τη δηµιουργία του προγράµµατος, δηλαδή του συνόλου εντολών που πρέπει να δοθούν στον υπολογιστή ώστε να υλοποιηθεί

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα

Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Εισαγωγή Μελέτη συστήµατος αιώρησης µαγνητικού τρένου. Τις προηγούµενες δύο δεκαετίες, κατασκευάστηκαν πρωτότυπα µαγνητικά

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Γ.1 Να γράψετε στο τετράδιό σας τους αριθµούς 1,2,3,4 από τη Στήλη Α και δίπλα το γράµµα α, β της Στήλης Β που δίνει το σωστό χαρακτηρισµό.

Γ.1 Να γράψετε στο τετράδιό σας τους αριθµούς 1,2,3,4 από τη Στήλη Α και δίπλα το γράµµα α, β της Στήλης Β που δίνει το σωστό χαρακτηρισµό. ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΕΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μεταπτυχιακό Πρόγραµµα Σπουδών ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Χάρης Γεωργίου, ΑΜ:Μ-177 Αθήνα, Σεπτέµβριος 2000 - ii - ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα