ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ P-INF-003 : ΠΛΗΡΟΦΟΡΙΚΗ : ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ ΣΥΓΓΡΑΦΕΙΣ : Σ. ΛΥΚΟΘΑΝΑΣΗΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΗΧ/ΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Ε. ΓΕΩΡΓΟΠΟΥΛΟΣ ΜΗΧΑΝΙΚΟΣ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ - ΠΑΤΡΑ

2 1. ΥΝΑΤΟΤΗΤΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΚΑΙ ΓΕΝΕΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Σκοπός Στο πρώτο κεφάλαιο, έγινε πρώτα µία σύντοµη αναφορά στις τεχνολογίες της Τεχνητής Νοηµοσύνης (Τ.Ν.) και ακολούθησε σύντοµη εισαγωγή στα Νευρωνικά ίκτυα (Ν..) και στους Γενετικούς Αλγορίθµους (Γ.Α.). Στόχος αυτού του κεφαλαίου ήταν η σύνδεση των Ν.. και των Γ.Α. µε την Τ.Ν. από την οποία προήλθαν. Σε αυτό το κεφάλαιο θα ασχοληθούµε µε την εξέλιξη των Ν.. και τις γνωστές αρχιτεκτονικές που χρησιµοποιούνται. Πρώτα θα γίνει µια σύντοµη ιστορική αναδροµή και θα ακολουθήσει η παρουσίαση του µαθηµατικού µοντέλου του τεχνητού νευρώνα. Στη συνέχεια θα παρουσιαστούν οι διάφορες κατηγορίες νευρωνικών δικτύων σε σχέση µε την αρχιτεκτονική τους και τη λειτουργία που εκτελούν. Σκοπός αυτού του κεφαλαίου είναι να παρέχει όλη την απαραίτητη πληροφορία, έτσι ώστε ο αναγνώστης να είναι έτοιµος για τη µελέτη των αλγορίθµων εκπαίδευσης των Νευρωνικών ικτύων. Προσδοκώµενα Αποτελέσµατα: Όταν θα έχετε τελειώσει τη µελέτη αυτού του κεφαλαίου, θα µπορείτε να: κάνετε µια σύντοµη ιστορική αναδροµή της εξέλιξης των Ν.., δώσετε το µοντέλο του τεχνητού νευρώνα, να παρουσιάσετε τις βασικές αρχιτεκτονικές των Ν... Έννοιες Κλειδιά: µοντέλο τεχνητού νευρώνα συνάρτηση ενεργοποίησης αρχιτεκτονική Ν.. δίκτυα ενός επιπέδου

3 δίκτυα πολλών επιπέδων αναδροµικά δίκτυα δίκτυα Hopfied Εισαγωγικές Παρατηρήσεις: Όπως έχουµε ήδη αναφέρει τα Νευρωνικά ίκτυα (Ν..) αποτελούν µια προσπάθεια προσέγγισης της λειτουργίας του ανθρώπινου εγκεφάλου από µια µηχανή. Έχουν την ικανότητα να εκτελούν υπολογισµούς µε µαζικό παράλληλο τρόπο. Η αρχιτεκτονική τους βασίζεται στην αρχιτεκτονική των Βιολογικών Νευρωνικών ικτύων. Αυτές οι ιδέες αν και ήταν γνωστές από την αρχή του αιώνα, άρχισαν να υλοποιούνται στα µέσα της δεκαετίας του 1940, όταν πρωτοπαρουσιάστηκε το µαθηµατικό µοντέλο του νευρώνα το οποίο εξοµοίωνε την λειτουργία του βιολογικού νευρώνα. Στη συνέχεια µε την εµφάνιση των πρώτων υπολογιστών έγινε η πρώτη προσπάθεια υλοποίησής τους. Μεγάλη ώθηση της εφαρµογής τους έδωσε η εµφάνιση των ψηφιακών υπολογιστών. Τότε άρχισε η ευρεία υλοποίησή τους, τόσο µε λογισµικό όσο και µε υλικό. Έτσι, τα απλά δίκτυα ενός επιπέδου εξελίχτηκαν σε δίκτυα πολλών επιπέδων. Παράλληλα παρουσιάστηκε στην διεθνή βιβλιογραφία µια µεγάλη ποικιλία αλγορίθµων εκπαίδευσης και εφαρµογών τους στην επίλυση πρακτικών προβληµάτων. 2.1 Ιστορική αναδροµή Η µοντέρνα περίοδος των νευρωνικών δικτύων λέγεται [1] ότι άρχισε µε την πρωτοποριακή δουλειά των McCulloch και Pitts (1943). Ο πρώτος ήταν ψυχίατρος και ο δεύτερος µεγαλοφυής µαθηµατικός. Σύµφωνα µε τον Rall (1990) η κλασσική εργασία των McCulloch και Pitts έγινε µέσα σε µια κοινωνία που ασχολούνταν µε τους νευρώνες στο πανεπιστήµιο του Σικάγο, για πάνω από 5 χρόνια. Αυτή η εργασία περιέγραφε το λογικό λογισµό των νευρωνικών δικτύων. Είναι αξιοσηµείωτο το ότι ο von Neumann χρησιµοποίησε ιδεατά στοιχεία καθυστέρησης τα οποία είχαν υπολογιστεί από τα ιδεατά στοιχεία νευρώνων των McCulloch και Pitts, για την κατασκευή του EDVAC ( Electronic Discrete Variable Automatic Computer), ο οποίος κατάληξε στον ENIAC, τον πρώτο γενικού σκοπού υπολογιστή. Η επόµενη µεγάλη ανάπτυξη πάνω στα νευρωνικά δίκτυα, ήρθε το 1949 µε την

4 έκδοση του βιβλίου του Hebb µε τίτλο The Organization of Behavior, στο οποίο έγινε για πρώτη φορά µια ιδιαίτερη δήλωση ενός φυσιολογικού κανόνα µάθησης για συναπτικές τροποποιήσεις. Πιο συγκεκριµένα ο Hebb πρότεινε ότι η συνδετικότητα του εγκεφάλου συνεχώς αλλάζει καθώς ο οργανισµός µαθαίνει διάφορες εργασίες, και ότι οι νευρωνικοί συγκεντρωτές δηµιουργούνται από τέτοιες αλλαγές. Επίσης πρότεινε το διάσηµο αίτηµα µάθησης σύµφωνα µε το οποίο η αποτελεσµατικότητα µιας σύναψης µεταβλητής ανάµεσα σε δύο νευρώνες αυξάνεται από την επαναλαµβανόµενη ενεργοποίηση του ενός νευρώνα από τον άλλο κατά µήκος της σύναψης. Η αναφορά των Rochester, Holland, Habit και Duda (1956) είναι ίσως η πρώτη προσπάθεια για χρήση υπολογιστή που χρησιµοποιεί την εξοµοίωση, για να ελεγχθεί µια καλά σχηµατισµένη νευρωνική θεωρία βασισµένη στο αίτηµα µάθησης του Hebb. Η εξοµοίωση έδειξε ότι χρειαζόταν να προστεθεί παρεµπόδιση ώστε η θεωρία να δουλέψει πραγµατικά. Τον ίδιο χρόνο ο Uttley παρουσίασε την αποκαλούµενη διαρρέουσα ολοκλήρωση ή νευρώνας φωτιάς που αργότερα αναλύθηκε από τον Caianielo. To 1952 εκδόθηκε το βιβλίο του Ashby µε τίτλο Design for a brain: The Origin of Adaptive Behavior, το οποίο ασχολήθηκε µε την βασική έννοια ότι η προσαρµοζόµενη συµπεριφορά δεν είναι έµφυτη αλλά µαθαίνεται. Το 1954 ο Minsky έγραψε τη διδακτορική του διατριβή µε τίτλο Theory of Neural-Analog Reinforcement Systems and Its Application to the Brain-Model Problem και το 1961 ο ίδιος έγραψε µια εργασία µε τίτλο Steps Toward Artificial Intelligence. Επίσης το 1954 η ιδέα των µη γραµµικών προσαρµοζόµενων φίλτρων προτάθηκε από τον Gabor (πρωτοπόρος της θεωρίας επικοινωνιών και εφευρέτης του ολογραφήµατος), ο οποίος υλοποίησε µια τέτοια µηχανή στην οποία η µάθηση επιτυγχανόταν µε τροφοδότηση δειγµάτων στοχαστικών διαδικασιών στη µηχανή, µαζί µε τη συνάρτηση-στόχο, την οποία ήταν αναµενόµενο να παράγει η µηχανή. Ένα θέµα ιδιαίτερου ενδιαφέροντος για τα νευρωνικά δίκτυα είναι αυτό της σχεδίασης ενός αξιόπιστου δικτύου µε νευρώνες που µπορούν να θεωρηθούν σαν µη αξιόπιστα στοιχεία. Αυτό το σηµαντικό πρόβληµα λύθηκε από τον von Neumann (1956) χρησιµοποιώντας την ιδέα του πλεονασµού. 15 χρόνια µετά την έκδοση της εργασίας των McCulloch και Pitts, µια νέα προσέγγιση πάνω στο πρόβληµα της αναγνώρισης προτύπων έγινε από τον Rosenblatt (1958) στην εργασία του πάνω στο αισθητήριο (perceptron). Το ιδιαίτερο επίτευγµα του ήταν το αποκαλούµενο θεώρηµα

5 σύγκλισης αισθητηρίου (perceptron convergence theorem). Το 1960 οι Widrow και Hoff πρότειναν τον αλγόριθµο ελάχιστου µέσου τετραγώνου (least mean-square-lms) και τον χρησιµοποίησαν για να σχηµατίσουν τo Adaline (adaptive linear element). Η διαφορά ανάµεσα στο αισθητήριο και στο Adaline βρίσκεται στον τρόπο µάθησης. Ένα από τα από τα πρόσφατα εκπαιδεύσιµα νευρωνικά δίκτυα µε πολλαπλά στοιχεία είναι η δοµή Madaline (Widrow). Κατά την διάρκεια της κλασσικής περιόδου του perceptron ( 60) πιστευόταν ότι τα νευρωνικά δίκτυα µπορούσαν να κάνουν τα πάντα. Αλλά τότε εκδόθηκε το βιβλίο των Minsky και Papert που µε τη βοήθεια των µαθηµατικών απέδειξε ότι υπάρχουν όρια πάνω στο τι µπορεί να υπολογιστεί από τα αισθητήρια. Ένα σηµαντικό πρόβληµα πάνω στη σχεδίαση ενός πολυεπίπεδου αισθητηρίου είναι το πρόβληµα της ανάθεσης εµπιστοσύνης (credit assignment problem), το οποίο βρήκε την λύση του µόλις την δεκαετία του Κατά την δεκαετία του 70 λόγω των προβληµάτων εγκαταλείφτηκε το ενδιαφέρον πάνω στα νευρωνικά δίκτυα. Μια σηµαντική ενέργεια την δεκαετία αυτή ήταν οι χάρτες αυτοοργάνωσης µε ανταγωνιστική µάθηση. Το 1980 έγιναν πολλές εργασίες πάνω στην θεωρία αλλά και στον σχεδιασµό των νευρωνικών δικτύων. Ο Grossberg (1980) ανέπτυξε µια καινούργια αρχή αυτοοργάνωσης που συνδυάζει φιλτράρισµα από κάτω προς τα πάνω και αντίθετη αύξηση σε µικρή µνήµη µε από πάνω προς τα κάτω ταίριασµα προτύπων και σταθεροποίηση του κώδικα µάθησης. εδοµένης µιας τέτοιας ικανότητας, και αν το πρότυπο εισόδου ταιριάζει µε την ανάδραση µάθησης, λαµβάνει χώρα µία δυναµική κατάσταση που καλείται adaptive resonance. Αυτό το φαινόµενο δίνει την βάση για µια νέα κατηγορία νευρωνικών δικτύων γνωστά σαν adaptive resonance theory (ART). Το 1982 ο Hopfield χρησιµοποίησε την ιδέα µια συνάρτησης ενέργειας για να φτιάξει ένα νέο τρόπο κατανόησης του υπολογισµού που γίνεται από τα δίκτυα µε συµµετρικές συναπτικές συνδέσεις. Επιπλέον καθιέρωσε τον ισοµορφισµό ανάµεσα σε τέτοια περιοδικά δίκτυα και σε ένα Ising µοντέλο που χρησιµοποιείται στην στατιστική. Αυτή η αναλογία άνοιξε τον δρόµο για ένα κατακλυσµό θεωριών για τα νευρωνικά δίκτυα. Αυτή η συγκεκριµένη τάξη νευρωνικών δικτύων µε ανατροφοδότηση έτυχε ιδιαίτερης προσοχής κατά τη δεκαετία του 80 και µε το χρόνο έγιναν γνωστά σαν δίκτυα Hopfield. Το 1983 οι Cohen και Grossberg έδωσαν µια νέα αρχή για σχεδίαση µιας διευθυνσιοδοτούµενης µνήµης (content-addressable memory) που περιλαµβάνει την

6 έκδοση συνεχούς χρόνου του δικτύου Hopfield σαν µια ιδιαίτερη περίπτωση. Μια ακόµα σηµαντική ανάπτυξη το 1982 ήταν η έκδοση της εργασίας του Kohonen πάνω στους χάρτες αυτοοργάνωσης, χρησιµοποιώντας µιας ή δύο διαστάσεων δικτυωτές δοµές. Το 1983 οι Kirkpatrick, Gallat και Vecchi περιέγραψαν µια νέα διαδικασία που λέγεται εξοµοιωµένη ανόπτηση για λύση προβληµάτων συνδυαστικής βελτιστοποίησης. Η εξοµοιωµένη ανόπτηση χρησιµοποιείται στην στατιστική θερµοδυναµική και βασίζεται σε µια απλή τεχνική. Την ίδια χρονιά εκδόθηκε µια εργασία από τους Burto, Sutton και Anderson πάνω στην ενισχυµένη µάθηση, η οποία δηµιούργησε µεγάλο ενδιαφέρων πάνω στην ενισχυµένη µάθηση και την εφαρµογή της. Το 1984 ο Braitenberg εξέδωσε ένα βιβλίο µε τίτλο Vehicles: Experiments in Synthetic Psychology το οποίο περιγράφει διάφορες µηχανές µε απλή εσωτερική αρχιτεκτονική, και το οποίο ενσωµατώνει µερικές σηµαντικές αρχές της αυτοοργανούµενης απόδοσης. Το 1986 η ανάπτυξη του αλγορίθµου για πίσω διάδοση (back-propagation algorithm) παρουσιάστηκε για πρώτη φορά από τον Rumelhart. Αυτός ο αλγόριθµος έγινε πολύ δηµοφιλής και έδωσε νέα ώθηση στις εφαρµογές των νευρωνικών δικτύων. Το 1988 ο Linsker περιέγραψε µια νέα αρχή για την αυτοοργάνωση σε ένα δίκτυο αισθητηρίων (perceptrons). Η αρχή αυτή σχεδιάστηκε ώστε να διατηρεί µέγιστη πληροφορία σχετικά µε την µε τα πρότυπα ενεργειών, που υπόκεινται σε περιορισµούς όπως συναπτικές συνδέσεις και δυναµικές περιοχές σύναψης. Ο Linsker χρησιµοποίησε αφηρηµένες έννοιες πάνω στη θεωρία πληροφοριών ώστε να σχηµατίσει τη αρχή της διατήρησης µέγιστης πληροφορίας. Επίσης το 1988 οι Broomhead και Lowe περιέγραψαν µία διαδικασία για το σχεδιασµό προς τα εµπρός τροφοδότησης (feedforward) δικτύων χρησιµοποιώντας συναρτήσεις ακτινικής βάσης (Radial Basis Functions - RBF), που είναι µια παραλλαγή των πολυεπίπεδων αισθητηρίων. Το 1989 εκδόθηκε το βιβλίο του Mead µε τίτλο VLSI and Neural Systems. Αυτό το βιβλίο δίνει µια ασυνήθιστη µίξη περιεχοµένων από την νευροβιολογία και την τεχνολογία VLSI. Ίσως περισσότερο από κάθε άλλη έκδοση, η εργασία του Hopfield (1982) και το δίτοµο βιβλίο των Rummelhart και McLelland (1986), να ήταν οι πιο σηµαίνουσες εκδόσεις υπεύθυνες για την αναζωογόνηση του ενδιαφέροντος για τα νευρωνικά δίκτυα στην δεκαετία του 80. Τα νευρωνικά δίκτυα έχουν σίγουρα διανύσει πολύ δρόµο από την εποχή των McCulloch και Pitts. Πραγµατικά έχουν εγκαθιδρυθεί σαν ενδοπειθαρχικό αντικείµενο

7 µε βαθιές ρίζες στην επιστήµη των νευρώνων, στην ψυχολογία, στα µαθηµατικά, στις φυσικές επιστήµες και στην µηχανική. εν είναι αναγκαίο να πούµε ότι είναι εδώ για να µείνουν και θα συνεχίσουν να αναπτύσσονται σε θεωρία, σχεδιασµό και εφαρµογές. ραστηριότητα 2.1 / 1: Ποία ήταν κατά τη γνώµη σας τα ορόσηµα στην εξέλιξη των Τεχνητών Νευρωνικών ικτύων; Να γράψετε µία αναφορά, 2-3 σελίδες. Υπόδειξη: Αφού µελετήσετε καλά την ενότητα 2.1, να ανατρέξετε στη σχετική βιβλιογραφία. 2.2 Το µοντέλο του τεχνητού νευρώνα Ένας νευρώνας είναι µια µονάδα επεξεργασίας πληροφορίας, που είναι θεµελιακή για την λειτουργία ενός νευρωνικού δικτύου. Το σχήµα 1 δείχνει το µοντέλο ενός νευρώνα. Τα τρία βασικά στοιχεία αυτού του µοντέλου είναι : 1. Ένα σύνολο από συνάψεις ή συνδετικούς κρίκους, κάθε µια από τις οποίες χαρακτηρίζεται από ένα βάρος ή δύναµη. Συγκεκριµένα, ένα σήµα x j στην είσοδο της σύναψης j που συνδέεται στον νευρώνα k, πολλαπλασιάζεται µε το συναπτικό βάρος w kj. Το βάρος w kj είναι θετικό αν η σύναψη είναι διεγερτική (δηλαδή ωθεί τον νευρώνα να αποκριθεί στη διέγερση) και αρνητικό αν σύναψη είναι απαγορευτική (δηλαδή αποτρέπει την νευρώνα να παράγει µια απόκριση). 2. Έναν αθροιστή για την πρόσθεση των σηµάτων εισόδου, που παίρνουν βάρος από την αντίστοιχη σύναψη. Αυτές οι λειτουργίες αποτελούν το γραµµικό συνδυαστή. 3. Μια συνάρτηση ενεργοποίησης για τη µείωση του εύρους της εξόδου του νευρώνα.

8 Σχήµα 1: Το µη-γραµµικό µοντέλο ενός τεχνητού νευρώνα. Το µοντέλο επίσης περιλαµβάνει ένα εξωτερικά εφαρµοζόµενο κατώφλι θ κ, που έχει επίδραση στην ελάττωση της εισόδου στην εφαρµοζόµενη συνάρτηση ενεργοποίησης, που ακολουθεί. Στην βιβλιογραφία, το κατώφλι αναφέρεται και σαν πόλωση (bias). Με µαθηµατικούς όρους, ένας νευρώνας k περιγράφεται από τις παρακάτω εξισώσεις: u = p w x k kj j j= 1 (1) y = φ( u ϑ ) (2) k k k όπου x j είναι τα σήµατα εισόδου και τα w kj είναι τα synaptic βάρη του k. Το u k είναι η γραµµική συνδυαστική έξοδος του νευρώνα, θ k είναι το κατώφλι, φ(.) είναι η συνάρτηση ενεργοποίησης και y k είναι το σήµα εξόδου του νευρώνα, που αναφέρεται και σαν πραγµατική έξοδος. Η χρήση του κατωφλίου θ κ έχει σαν αποτέλεσµα την εφαρµογή ενός εγγενούς (affine) µετασχηµατισµού της εξόδου u κ του γραµµικού συνδυαστή του σχήµατος 1, όπως φαίνεται από την παρακάτω σχέση: υ = u ϑ (3) k k k Η έξοδος u κ, ανάλογα µε το θ κ αν είναι θετικό ή αρνητικό µεταβάλλεται όπως φαίνεται στο σχήµα 2.

9 Σχηµα 2: Εγγενής µετασχηµατισµός που παράγεται από την παρουσία κατωφλίου. Το κατώφλι θ κ είναι εξωτερική παράµετρος του νευρώνα k. Έτσι µπορούµε να διαµορφώσουµε το συνδυασµό των εξισώσεων (1), (2) ως εξής: p υ k = wkjx j (4) j = 0 και y k = φ( υ k ) (5) Στην εξίσωση (4) έχουµε προσθέσει µια νέα σύναψη, της οποίας η είσοδος είναι και της οποίας το βάρος είναι: x 0 = 1 (6) w k0 = ϑ k (7) Έτσι µπορούµε να αναδιαµορφώσουµε το µοντέλο του νευρώνα k, όπως φαίνεται στα σχήµατα 3a και 3b που είναι ισοδύναµα µε το σχήµα 1.

10 Σχήµα 3: ύο άλλα µη-γραµµικά µοντέλα ενός νευρώνα. Άσκηση αυτοαξιολόγησης 2.2 /1: Η χρήση κατωφλίου στο µοντέλο του τεχνητού νευρώνα χρησιµοποιείται για: 1. να επιβληθεί µια εξωτερική έξοδος στο νευρώνα, 2. να γραµµικοποιήσει την έξοδο του νευρώνα, 3. να ελαττώσει την είσοδο στη συνάρτηση ενεργοποίησης, 4. να µετασχηµατίσει την γραµµική έξοδο του νευρώνα, 5. τα 2 και 3, 6. τα 3 και 4. Απάντηση: Η σωστή απάντηση είναι η 6.

11 2.2.1 Τύποι συναρτήσεων ενεργοποίησης Η συνάρτηση ενεργοποίησης φ(. ), ορίζει την έξοδο ενός νευρώνα συναρτήσει του επιπέδου ενεργοποίησης της εισόδου. Έχουµε 3 βασικούς τύπους συναρτήσεων ενεργοποίησης. 1.Συνάρτηση Κατωφλιού. Για αυτόν τον τύπο συνάρτησης ενεργοποίησης, που περιγράφεται στο σχήµα 4a, έχουµε: 1, υ 0 φ ( υ) = (8) 0, υ < 0 Εποµένως η έξοδος ενός νευρώνα k, που έχει την παραπάνω συνάρτηση ενεργοποίησης, έχει τη µορφή: y k 1, υ k 0 = (9) 0, υ k < 0 όπου υ κ είναι το εσωτερικό επίπεδο ενεργοποίησης του νευρώνα και δίνεται από τη σχέση: p υ = w x ϑ (10) k j = 0 kj j k 2.Τµηµατικά Γραµµική Συνάρτηση. Για την τµηµατικά γραµµική συνάρτηση, που περιγράφεται στο σχήµα 4b, έχουµε: 1, υ 1 2 φ ( υ) = υ,1 2 > υ > 1 2 (10) 0, υ 1 2 Αυτή η µορφή συνάρτησης ενεργοποίησης µπορεί να θεωρηθεί σαν µια προσέγγιση ενός µη-γραµµικού ενισχυτή. 4. Σιγµοειδής. Είναι η πιο συνηθισµένη µορφή συνάρτησης ενεργοποίησης που χρησιµοποιείται στην κατασκευή τεχνητών νευρωνικών δικτύων Ορίζεται σαν αυστηρά αύξουσα συνάρτηση, η οποία παρουσιάζει εξοµάλυνση και ασυµπτωτικές ιδιότητες. Ένα παράδειγµα είναι η λογιστική συνάρτηση, που ορίζεται από τη σχέση:

12 φυ ( ) = exp( αυ) (11) Μεταβάλλοντας την παράµετρο α παίρνουµε διαφορετικές συναρτήσεις, όπως φαίνεται στο σχήµα 4c. Οι προηγούµενες συναρτήσεις ενεργοποίησης κυµαίνονται από 0 ως +1. Αν θέλουµε συνάρτηση που να κυµαίνεται από -1 ως +1, επαναπροσδιορίζουµε την συνάρτηση κατωφλιού ως: 1, υ > 0 φυ ( ) 0, υ = 0 (12) 1, υ < 0 που ονοµάζεται συνάρτηση προσήµου (signum) και συµβολίζεται σαν sgn(.).

13 Σχήµα 4: (α) Συνάρτηση καωφλίου, (b) Τµηµατικά γραµµική συνάρτηση, (c)σιγµοειδής συνάρτηση. Άσκηση αυτοαξιολόγησης 2.2 /2: Στη λογιστική συνάρτηση, η παράµετρος α χρησιµοποιείται για: 1. να κάνει τη συνάρτηση αυστηρά αύξουσα, 2. να παίρνουµε συναρτήσεις µε διαφορετικές κλίσεις, 3. να εξοµαλύνουµε τη συνάρτηση, 4. να δίνει ασυµπτωτικές ιδιότητες στη συνάρτηση.

14 Απάντηση: Η σωστή απάντηση είναι η 2, όπως φαίνεται και στο σχήµα 4b. Άσκηση αυτοαξιολόγησης 2.2 /3: Μια περιττή (odd) σιγµοειδής συνάρτηση είναι το αλγεβρικό σιγµοειδές, το οποίο δίνεται από τη σχέση: υ ϕ( υ) = 2 1+ υ της οποίας οι οριακές τιµές είναι 1 και +1. Να δείξετε ότι η παράγωγος της φ(υ) ως προς υ, δίνεται από τη σχέση: 3 dϕ ϕ ( υ) = 3 dυ υ Ποία είναι η τιµή αυτής της παραγώγου στην αρχή; Απάντηση: Για τον υπολογισµό της παραγώγου, να χρησιµοποιήσετε τον κανόνα παραγώγισης συνθέτων συναρτήσεων. Επίσης είναι φ (0)=1. Άσκηση αυτοαξιολόγησης 2.2 /4: Ένας νευρώνας j δέχεται εισόδους από τέσσερις άλλους νευρώνες, των οποίων τα επίπεδα ενεργοποίησης είναι 10, -20, 4 και 2. Τα αντίστοιχα συναπτικά βάρη του νευρώνα j είναι 0.8, 0.2, -1.0 και 0.9. Να υπολογίσετε την έξοδο του νευρώνα j, για τις επόµενες δύο καταστάσεις: (α) Ο νευρώνας είναι γραµµικός. (β) Ο νευρώνας παριστάνεται από το µοντέλο McCulloch-Pitts. Να υποθέσετε ότι το κατώφλι που εφαρµόζεται στο νευρώνα είναι µηδενικό. Απάντηση: Από τη σχέση (1), για p=4, υπολογίζεται το επίπεδο ενεργοποίησης υ j =1.8. Άρα είναι: (α) από την (4), y j =1.8 και (β) από την (5), y j = Θεωρώντας τα Ν.. σαν κατευθυνόµενους γράφους την Απλοποιούµε εδώ την εµφάνιση των µοντέλων των νευρώνων, χρησιµοποιώντας ιδέα των γράφων ροής σηµάτων, χωρίς να θυσιάζουµε τίποτα από τις

15 λειτουργικές λεπτοµέρειες του µοντέλου. Ένας γράφος ροής σηµάτων, είναι ένα δίκτυο µε κατευθυνόµενα κλαδιά, που συνδέονται σε συγκεκριµένα σηµεία τους κόµβους. Ένας τυπικός κόµβος j σχετίζεται µε ένα σήµα κόµβου x j Ακολουθούνται 3 βασικοί κανόνες: ΚΑΝΟΝΑΣ 1. Ένα σήµα ρέει κατά µήκος της σύνδεσης µόνο στην κατεύθυνση που ορίζεται από το βέλος. Υπάρχουν 2 τύποι σύνδεσης: 1. Συναπτικές συνδέσεις, όπου το σήµα x j πολλαπλασιάζεται µε το βάρος w κj για να παράγει το σήµα y κ, όπως φαίνεται στο σχήµα 5a. 2. Συνδέσεις ενεργοποίησης, που περιγράφει µια συνάρτηση φ(. ), που δεν είναι γραµµική και φαίνεται στο σχήµα 5b. Σχήµα 5: Βασικοί κανόνες για κατασκευή διαγραµµάτων ροής σήµατος. ΚΑΝΟΝΑΣ 2. Το σήµα κόµβου, ισούται µε το αλγεβρικό άθροισµα όλων των σηµάτων που φτάνουν στον κόµβο, σχήµα 5c.

16 ΚΑΝΟΝΑΣ 3. Το σήµα σε έναν κόµβο µεταβιβάζεται σε κάθε εξερχόµενη σύνδεση που ξεκινά από αυτόν, µε την µεταβίβαση να είναι ανεξάρτητη από τις συναρτήσεις µεταφοράς των εξερχόµενων συνδέσεων, σχήµα 5d. Στο σχήµα 6 περιγράφεται το διάγραµµα του σχήµατος 3a. Σχήµα 6: Γράφος ρόης σήµατος ενός νευρώνα. Μπορούµε τώρα να αναφέρουµε τους παρακάτω µαθηµατικούς ορισµούς ενός νευρωνικού δικτύου : Ένα νευρωνικό δίκτυο είναι ένας κατευθυνόµενος γράφος, που αποτελείται από κόµβους µε συναπτικές διασυνδέσεις και συνδέσεις ενεργοποίησης και χαρακτηρίζονται από τις ακόλουθες ιδιότητες : Κάθε νευρώνας, παριστάνεται από ένα σύνολο γραµµικών συναπτικών συνδέσεων, ένα εξωτερικά εφαρµοζόµενο κατώφλι και µια µη-γραµµική σύνδεση ενεργοποίησης. Το κατώφλι παριστάνεται από συναπτικές συνδέσεις µε σήµα εισόδου σταθερής τιµής -1. Οι συναπτικές συνδέσεις ενός νευρώνα ζυγίζουν τα αντίστοιχα σήµατα εισόδου. Το άθροισµα των βαρών των σηµάτων εισόδου καθορίζει το συνολικό εσωτερικό επίπεδο ενεργοποίησης του νευρώνα που ζητείται. Η σύνδεση ενεργοποίησης συνθλίβει (περιορίζει) το εσωτερικό επίπεδο ενεργοποίησης, για την παραγωγή της εξόδου που παριστάνει την κατάσταση του νευρώνα.

17 Υπάρχουν όµως και µερικώς ολοκληρωµένοι κατευθυνόµενοι γράφοι που είναι γνωστοί σαν αρχιτεκτονικοί γράφοι. Ένας τέτοιος γράφος παριστάνεται στο παρακάτω σχήµα 7. Σχήµα 7: Αρχιτεκτονικός γράφος ενός νευρώνα. Πρέπει να σηµειωθεί ότι, τόσο στους κατευθυνόµενους όσο και τους αρχιτεκτονικούς γράφους, οι κόµβοι που παριστάνονται µε τετράγωνο, δεν πραγµατοποιούν καµία λειτουργία. Χρησιµοποιούνται απλώς για το πέρασµα των εισόδων στο δίκτυο. Άσκηση αυτοαξιολόγησης 2.2 /5: Οι συναπτικές συνδέσεις διαφέρουν από τις συναρτήσεις ενεργοποίησης στο ότι: 1. δεν επιτρέπουν καµία λειτουργία, 2. ζυγίζουν τα αντίστοιχα σήµατα εισόδου, ενώ οι συνδέσεις ενεργοποίησης συνθλίβουν το εσωτερικό επίπεδο ενεργοποίησης, 3. δεν παράγουν έξοδο. Απάντηση: η σωστή απάντηση είναι η Αρχιτεκτονικές των Νευρωνικών ικτύων Ο τρόπος µε τον οποίο οι νευρώνες ενός νευρωνικού δικτύου δοµούνται, είναι στενά συνδεδεµένος µε τον αλγόριθµο εκµάθησης που χρησιµοποιείται για την εκπαίδευση του δικτύου. Σαν εµπρός τροφοδότησης, αναφέρονται τα δίκτυα, στα οποία τα σήµατα κατευθύνονται από την είσοδο στην έξοδο. Όταν οι έξοδοι κάποιων νευρώνων, γίνονται είσοδοι σε νευρώνες προηγούµενων επιπέδων (προς το µέρος της εισόδου του δικτύου), τότε έχουµε ανάδραση.

18 Μπορούµε να διακρίνουµε 4 διαφορετικές κλάσεις αρχιτεκτονικών δοµών: Ενός-επιπέδου Εµπρός-Τροφοδότησης ίκτυα. Σε ένα τέτοιο δίκτυο, οι νευρώνες είναι οργανωµένοι σε µορφή επιπέδων. Οι νευρώνες του πηγαίου επιπέδου δείχνουν στους νευρώνες του επόµενου επιπέδου αλλά όχι αντίστροφα, όπως στο Σχήµα 8. Σχήµα 8: Εµπρός-Τροφοδότησης δίκτυο µε ένα επίπεδο νευρώνων. Πολλαπλών-Επιπέδων Εµπρός-Τροφοδότησης ίκτυα. Εδώ έχουµε περισσότερα του ενός κρυφά επίπεδα, των οποίων οι κόµβοι υπολογισµού ονοµάζονται κρυφοί νευρώνες. Τυπικά, οι νευρώνες σε κάθε επίπεδο έχουν σαν εισόδους τα σήµατα εξόδου του προηγούµενου µόνο επιπέδου. Στο σχήµα 9 έχουµε ένα πλήρως συνδεδεµένο νευρωνικό δίκτυο, µε την έννοια ότι κάθε κόµβος συνδέεται µε όλους τους κόµβους του αµέσως επόµενου επιπέδου.

19 Σχήµα 9: Πλήρως συνδεδεµένο δίκτυο εµπρός-τροφοδότησης µε ένα κρυφό επίπεδο και ένα επίπεδο εξόδου. Ένα τέτοιο δίκτυο περιγράφεται συνοπτικά µε το συµβολισµό Αυτός ο συµβολισµός σηµαίνει ότι το Ν.. έχει δέκα εισόδους, ένα κρυφό επίπεδο µε τέσσερις νευρώνες (κόµβους) και το επίπεδο εξόδου έχει δύο νευρώνες ή κόµβους. Γενικά, ένα πολυεπίπεδο δίκτυο εµπρός τροφοδότησης µε p εισόδους, m κρυφά επίπεδα µε h j, j=1,,m κόµβους ανά επίπεδο και n κόµβους εξόδου, συµβολίζεται σαν: p-h 1,h 2, h m -n. Αντίθετα στο σχήµα 10 έχουµε ένα µερικώς συνδεδεµένο νευρωνικό δίκτυο.

20 Σχήµα 10: Μερικώς συνδεδεµένο δίκτυο εµπρός-τροφοδότησης. Αναδροµικά ίκτυα. Η διαφορά µε τα ίκτυα Επανατροφοδότησης είναι ότι έχει ένα τουλάχιστον βρόχο ανάδρασης. Στα σχήµατα 11 και 12 φαίνονται δύο αναδροµικά δίκτυα το πρώτο χωρίς και το δεύτερο µε κρυφούς νευρώνες.

21 Σχήµα 11: Αναδροµικό δίκτυο χωρίς ανατροφοδότηση και χωρίς κρυφούς νευρώνες. Το δίκτυο του σχήµατος 11 λέγεται και δίκτυο Hopfield. Είναι µια µη-γραµµική συσχετιστική µνήµη ή µνήµη διευθυνσιοδοτούµενη από τα περιεχόµενα. Η κύρια λειτουργία µιας τέτοιας µνήµης είναι η ανάκτηση ενός προτύπου, που έχει αποθηκευθεί σε αυτήν, σαν απόκριση σε µια ελλιπή ή θορυβώδη έκδοση αυτού του προτύπου. Σχήµα 12: Αναδροµικό δίκτυο µε κρυφούς νευρώνες.

22 ικτυωτές οµές. Ένα πλέγµα, αποτελείται από έναν πίνακα µιας, δύο ή µεγαλύτερης διάστασης από νευρώνες, µε ένα αντίστοιχο σύνολο από πηγαίους κόµβους, που παρέχουν τα σήµατα εισόδου στον πίνακα, όπως φαίνεται στο Σχήµα 13. Σχήµα 13: (a) Μονοδιάστατο πλέγµα µε 3 νευρώνες. (b) ισδιάστατο πλέγµα µε 3 x 3 νευρώνες. Άσκηση αυτοαξιολόγησης 2.3 /6: Να κατασκευάσετε τον αρχιτεκτονικό γράφο ενός πλήρως διασυνδεδεµένου νευρωνικού δικτύου εµπρός τροφοδότησης µε p=10, h1=4, h2=3 και n=1.

23 Απάντηση: Θα χρησιµοποιήσετε το γράφο του σχήµατος 6 και θα εργασθείτε όπως στο σχήµα 9. Άσκηση αυτοαξιολόγησης 2.3 /7: Να θεωρήσετε ένα πολυεπίπεδο δίκτυο εµπρός τροφοδότησης, του οποίου όλοι οι νευρώνες λειτουργούν στη γραµµική τους περιοχή. Να αποδείξετε ότι ένα τέτοιο δίκτυο είναι ισοδύναµο µε ένα δίκτυο εµπρός τροφοδότησης ενός επιπέδου. Απάντηση: θεωρείστε για παράδειγµα ένα Ν.. µε ένα κρυφό επίπεδο και ένα νευρώνα εξόδου. Να γράψετε πρώτα την σχέση για τον υπολογισµό της εξόδου του δικτύου και στη συνέχεια την αντίστοιχη σχέση για την έξοδο ενός νευρώνα του κρυφού επίπέδου. Στη συνέχεια συνδυάζοντας τις δύο σχέσεις προκύπτει εύκολα το ζητούµενο. Άσκηση αυτοαξιολόγησης 2.3 /8: Να κατασκευάσετε ένα πλήρως αναδροµικό νευρωνικό δίκτυο µε πέντε νευρώνες, αλλά χωρίς αυτο-ανάδραση. Απάντηση: Μπορείτε να εργασθείτε όπως στο σχήµα 11. ραστηριότητα 2.3 / 2: Να ανατρέξετε στη βιβλιογραφία και να µελετήσετε τα δίκτυα Hopfield. Να ετοιµάσετε µια αναφορά, περίπου πέντε σελίδες, όπου να παρουσιάζετε τον αλγόριθµο εκπαίδευσης αυτών των δικτύων και ένα παράδειγµα. Υπόδειξη: Σχετικό υλικό θα βρείτε στην αναφορά [1] στο κεφάλαιο 8.3 (σελίδα 289). 2.4 Σύνοψη κεφαλαίου Σε αυτό το κεφάλαιο είδαµε ότι τα Τεχνητά Νευρωνικά ίκτυα (Τ.Ν..) αποτελούν µια προσπάθεια προσέγγισης της λειτουργίας του ανθρώπινου εγκεφάλου από µια µηχανή και έχουν την ικανότητα να εκτελούν υπολογισµούς µε µαζικό παράλληλο τρόπο. Η αρχιτεκτονική τους βασίζεται στην αρχιτεκτονική των Βιολογικών Νευρωνικών ικτύων. Αυτές οι ιδέες αν και ήταν γνωστές από την αρχή του αιώνα,

24 άρχισαν να υλοποιούνται στα µέσα της δεκαετίας του 1940, όταν πρωτοπαρουσιάστηκε το µαθηµατικό µοντέλο του νευρώνα το οποίο εξοµοίωνε την λειτουργία του βιολογικού νευρώνα. Στη συνέχεια µε την εµφάνιση των πρώτων υπολογιστών έγινε η πρώτη προσπάθεια υλοποίησής τους. Μεγάλη ώθηση της εφαρµογής τους έδωσε η εµφάνιση των ψηφιακών υπολογιστών. Τότε άρχισε η ευρεία υλοποίησή τους, τόσο µε λογισµικό όσο και µε υλικό. Έτσι, τα απλά δίκτυα ενός επιπέδου εξελίχτηκαν σε δίκτυα πολλών επιπέδων. Παράλληλα παρουσιάστηκε στην διεθνή βιβλιογραφία µια µεγάλη ποικιλία αλγορίθµων εκπαίδευσης και εφαρµογών τους στην επίλυση πρακτικών προβληµάτων. Μετά την ιστορική αναδροµή παρουσιάσαµε το µαθηµατικό µοντέλο του τεχνητού νευρώνα. Αναφερθήκαµε τόσο στο γραµµικό όσο και στο µη-γραµµικό µοντέλο. Εκεί είχαµε την ευκαιρία να δούµε διάφορες συναρτήσεις που χρησιµοποιούνται σαν συναρτήσεις ενεργοποίησης του νευρώνα. Η συνέχεια και η παραγωγισιµότητα είναι οι δύο βασικές ιδιότητες, που πρέπει να έχει µια συνάρτηση για να µπορεί να χρησιµοποιηθεί σαν συνάρτηση ενεργοποίησης. Επίσης, όπως θα δούµε στο επόµενο κεφάλαιο, είναι επιθυµητό το να υπολογίζεται εύκολα η παράγωγός τους. Επίσης, παρουσιάστηκαν οι έννοιες του κατευθυνόµενου και του αρχιτεκτονικού γράφου, οι οποίοι βοηθούν στην απλοποίηση της αναπαράστασης των Τ.Ν... Τέλος, παρουσιάσαµε τις βασικές γνωστές αρχιτεκτονικές των Νευρωνικών ικτύων. Στην αρχή ορίσαµε την έννοια της εµπρός τροφοδότησης, όπου τα σήµατα κατευθύνονται από την είσοδο στην έξοδο. Στη συνέχεια ορίσαµε τα δίκτυα εµπρός τροφοδότησης ενός και πολλών επιπέδων, που είναι πλήρως ή µερικά διασυνδεδεµένα. Η παρουσίαση τελείωσε µε τα αναδροµικά δίκτυα, µε ή χωρίς αυτο-ανάδραση και τις δικτυωτές δοµές. Για περισσότερες λεπτοµέρειες, ο αναγνώστης παραπέµπεται στην αναφορά [1], από όπου προέρχεται και το βασικό υλικό αυτού του κεφαλαίου. 2.5 Βιβλιογραφία 1. NEURAL NETWORKS: A Comprehensive Foundation, S. Haykin, Macmillan Publishing Company, N.Y., 1994 (ISBN ) 2. NEURAL NETWORK DESIGN, M. T. Hagan, H. B. Demuth and m. Beal, PWS Publishing Company, Boston, 1996 (ISBN )

25

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΠΡΟΒΛΕΨΗ ΚΑΤΑΝΑΛΩΣΗΣ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΠΡΟΒΛΕΨΗ ΚΑΤΑΝΑΛΩΣΗΣ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΠΡΟΒΛΕΨΗ ΚΑΤΑΝΑΛΩΣΗΣ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ Η διπλωματική εργασία υπεβλήθη

Διαβάστε περισσότερα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα Νευρωνικά ίκτυα Σηµερινό Μάθηµα Ιστορική Αναδροµή ΑπόταΒιολογικάΝευρωνικά ίκτυαστα Τεχνητά Το µοντέλο του τεχνητού νευρώνα Νευρωνικά ίκτυα Εκπαίδευση Συναρτήσεις ενεργοποίησης TαΝ.. σαν κατευθυνόµενoιγράφοι

Διαβάστε περισσότερα

ΜΕΛΗ ΕΞΕΤΑΣΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ

ΜΕΛΗ ΕΞΕΤΑΣΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΧΑΡΑΛΑΜΠΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Διαβάστε περισσότερα

Κεφάλαιο 2. Ιστορική αναδροµή

Κεφάλαιο 2. Ιστορική αναδροµή Κεφάλαιο 2. Ιστορική αναδροµή Σκοπός: Στο κεφάλαιο αυτό γίνεται µία σύντοµη ιστορική ανασκόπηση της περιοχής των νευρωνικών δικτύων. Παρουσιάζονται επιγραµµατικά τα έργα που σηµάδευσαν την περιοχή αυτή,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Οκτωβρίου 23 ιάρκεια: 2 ώρες Έστω το παρακάτω γραµµικώς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών κεφάλαιο 1 Βασικές Έννοιες Επιστήμη 9 1Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ Στόχοι Στόχος του κεφαλαίου είναι οι μαθητές: να γνωρίσουν βασικές έννοιες και τομείς της Επιστήμης. Λέξεις κλειδιά Επιστήμη

Διαβάστε περισσότερα

οµή δικτύου ΣΧΗΜΑ 8.1

οµή δικτύου ΣΧΗΜΑ 8.1 8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει

Διαβάστε περισσότερα

Συσχετιστικές Μνήμες Δίκτυο Hopfield. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Συσχετιστικές Μνήμες Δίκτυο Hopfield. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Συσχετιστικές Μνήμες Δίκτυο Hopfield Συσχετιστική Μνήμη Η ανάκληση ενός γεγονότος σε μία χρονική στιγμή προκαλείται από τη συσχέτιση αυτού του γεγονότος με κάποιο ερέθισμα. Πολλές φορές επίσης καλούμαστε

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

4. Ο αισθητήρας (perceptron)

4. Ο αισθητήρας (perceptron) 4. Ο αισθητήρας (perceptron) Σκοπός: Προσδοκώµενα αποτελέσµατα: Λέξεις Κλειδιά: To µοντέλο του αισθητήρα (perceptron) είναι από τα πρώτα µοντέλα νευρωνικών δικτύων που αναπτύχθηκαν, και έδωσαν µεγάλη ώθηση

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τσαλαβούτης Α. Βασίλειος Φοιτητής 10 ου εξαμήνου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τσαλαβούτης Α. Βασίλειος Φοιτητής 10 ου εξαμήνου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πειραματική διερεύνηση αλγορίθμων για βελτιστοποίηση της απόδοσης της

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Βιολογικά Νευρωνικά Δίκτυα Η έννοια των Τεχνητών Νευρωνικών Δικτύων Η δομή ενός νευρώνα Διαδικασία εκπαίδευσης Παραδείγματα απλών

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ ηµήτρης Ψούνης ΠΛΗ3, Απαντήσεις Quiz σε ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ Μάθηµα 3. ΕΡΩΤΗΜΑ Ένας αισθητήρας µπορεί να µάθει: a. εδοµένα που ανήκουν σε 5 διαφορετικές κλάσεις. b. εδοµένα που ανήκουν

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα.

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. 1 ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Χαρακτηριστικά Είδη εκπαίδευσης Δίκτυα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 4: Νευρωνικά Δίκτυα στην Ταξιμόμηση Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Εκπαίδευση Τεχνητών Νευρωνικών ικτύων ανά Πρότυπο Εισόδου

Εκπαίδευση Τεχνητών Νευρωνικών ικτύων ανά Πρότυπο Εισόδου Εκπαίδευση Τεχνητών Νευρωνικών ικτύων ανά Πρότυπο Εισόδου ΑΜΑΛΙΑ ΠΑΠΑΝΙΚΟΛΑΟΥ Υπεύθυνος Πλαγιανάκος Βασίλειος Επίκουρος Καθηγητής Λαµία, 2008 Ευχαριστίες Θα ήθελα καταρχήν να ευχαριστήσω τον καθηγητή

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΤΟΥ ΑΝΘΡΩΠΙΝΟΥ ΕΓΚΕΦΑΛΟΥ ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ. Πλέρου Αντωνία

ΠΡΟΣΟΜΟΙΩΣΗ ΤΟΥ ΑΝΘΡΩΠΙΝΟΥ ΕΓΚΕΦΑΛΟΥ ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ. Πλέρου Αντωνία ΠΡΟΣΟΜΟΙΩΣΗ ΤΟΥ ΑΝΘΡΩΠΙΝΟΥ ΕΓΚΕΦΑΛΟΥ ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Πλέρου Αντωνία Email:tplerou@gmail.com ΠΕΡΙΛΗΨΗ Ή παρούσα εργασία πραγματεύεται τον κλάδο της επιστήμης που

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Τεχνητά Νευρωνικά Δίκτυα

Τεχνητά Νευρωνικά Δίκτυα Τεχνητά Νευρωνικά Δίκτυα & εφαρμογή τους στην πρόγνωση καιρού Πτυχιακή Εργασία Όνομα: Ανδρέας Φωτέας ΑΜ: 200600226 Επιβλέπων: Εμμανουήλ Τσίλης 2 Περιεχόμενα 1. Αρχές Λειτουργίας...7 1.1 Η δομή ενός νευρωνικού

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΤΝ)

Τεχνητή Νοημοσύνη (ΤΝ) Τεχνητή Νοημοσύνη (ΤΝ) (Artificial Intelligence (AI)) Η ΤΝ είναι ένα από τα πιο νέα ερευνητικά πεδία. Τυπικά ξεκίνησε το 1956 στη συνάντηση μερικών επιφανών επιστημόνων, όπως ο John McCarthy, ο Marvin

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές

Τελεστικοί Ενισχυτές Τελεστικοί Ενισχυτές Ενισχυτές-Γενικά: Οι ενισχυτές είναι δίθυρα δίκτυα στα οποία η τάση ή το ρεύμα εξόδου είναι ευθέως ανάλογη της τάσεως ή του ρεύματος εισόδου. Υπάρχουν τέσσερα διαφορετικά είδη ενισχυτών:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής

Διαβάστε περισσότερα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ 2 5 +32 17 2= 1156 Μαθηματικά Β μέρος 8 9 15 Δ=2 δ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Εισαγωγή στα Προσαρµοστικά Συστήµατα

Εισαγωγή στα Προσαρµοστικά Συστήµατα ΒΕΣ 06 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Εισαγωγή στα Προσαρµοστικά Συστήµατα Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου

Διαβάστε περισσότερα

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας 215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας Το Τμήμα ασχολείται με τη διδασκαλία και την έρευνα στην επιστήμη και τεχνολογία των υπολογιστών και τη μελέτη των εφαρμογών τους. Το Τμήμα ιδρύθηκε το 1980 (ως

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

Πολυτεχνείο Κρήτης. Μοντελοποίηση της επιτυχίας νέων υπηρεσιών σε ξενοδοχεία με νεύροασαφείς

Πολυτεχνείο Κρήτης. Μοντελοποίηση της επιτυχίας νέων υπηρεσιών σε ξενοδοχεία με νεύροασαφείς Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Μοντελοποίηση της επιτυχίας νέων υπηρεσιών σε ξενοδοχεία με νεύροασαφείς τεχνικές Διατριβή που υπεβλήθη στα πλαίσια απόκτησης μεταπτυχιακού διπλώματος

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.

Διαβάστε περισσότερα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ. Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδηµαϊκό Έτος 2003-2004, Εαρινό Εξάµηνο ιδάσκων

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΕΡΓΟ: «ΑΝΑΠΤΥΞΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΕΠΙΜΟΡΦΩΤΕΣ ΤΕΧΝΟΛΟΓΙΩΝ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ (ΤΠΕ) ΣΤΗΝ ΤΕΧΝΙΚΗ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙ

ΕΡΓΟ: «ΑΝΑΠΤΥΞΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΕΠΙΜΟΡΦΩΤΕΣ ΤΕΧΝΟΛΟΓΙΩΝ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ (ΤΠΕ) ΣΤΗΝ ΤΕΧΝΙΚΗ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙ Το παρόν εκπονήθηκε στο πλαίσιο του Υποέργου 6 «Εκπαίδευση επιµορφωτών και βοηθών επιµορφωτών» της Πράξης «Επαγγελµατικό λογισµικό στην ΤΕΕ: επιµόρφωση και εφαρµογή» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.3, Ενέργεια

Διαβάστε περισσότερα

Το άθροισµα των εισερχόµενων σηµάτων είναι:

Το άθροισµα των εισερχόµενων σηµάτων είναι: 7. ίκτυα Hopfeld Σε µία πολύ γνωστή εργασία το 982 ο Hopfeld παρουσίασε µια νέα κατηγορία δικτύων, τα οποία έχουν µεγάλες υπολογιστικές ικανότητες και είναι χρήσιµα σε δύο κατηγορίες προβληµάτων. Πρώτα,

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

Μάθημα 1: Εισαγωγή στην. Υπολογιστική Νοημοσύνη

Μάθημα 1: Εισαγωγή στην. Υπολογιστική Νοημοσύνη Υπολογιστική Νοημοσύνη Μάθημα 1: Εισαγωγή στην Υπολογιστική Νοημοσύνη Εισαγωγή Ένας δυναμικά αναπτυσσόμενος κλάδος της Πληροφορικής είναι η Υπολογιστική Νοημοσύνη. Η Υπολογιστική Νοημοσύνη αποτελεί ένα

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)...... 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Τεχνητά νευρωνικά δίκτυα προσομοίωσης του ανθρωπίνου εγκεφάλου. Artificial neural networks simulating human brain

Τεχνητά νευρωνικά δίκτυα προσομοίωσης του ανθρωπίνου εγκεφάλου. Artificial neural networks simulating human brain Τεχνητά νευρωνικά δίκτυα προσομοίωσης του ανθρωπίνου εγκεφάλου Artificial neural networks simulating human brain Αντωνία Πλέρου Ελληνικό Ανοικτό Πανεπιστήμιο Σχολή Θετικών Επιστημών και Τεχνολογίας Υποψήφια

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Πολυτεχνείο Κρήτης. Διπλωματική Εργασία ΠΡΟΒΛΕΨΗ AUTOMOTIVE INDUSTRY ΜΕ ΤΗ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΓΕΝΝΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ.

Πολυτεχνείο Κρήτης. Διπλωματική Εργασία ΠΡΟΒΛΕΨΗ AUTOMOTIVE INDUSTRY ΜΕ ΤΗ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΓΕΝΝΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ. Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Διπλωματική Εργασία ΠΡΟΒΛΕΨΗ AUTOMOTIVE INDUSTRY ΜΕ ΤΗ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΓΕΝΝΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Βιόπουλος Γιώργος Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Τσουχνικά Μαρία ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Επιβλέπων: Dr Γ. Βουγιατζής 1 Νευρωνικά ίκτυα και εφαρµογές 1. Εισαγωγή 2. Γενικές έννοιες 2.1 Η έννοια του τεχνητού νευρωνικού δικτύου 2.2 Η δοµή του νευρώνα

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

Μετρήσεις και Σφάλματα/Measurements and Uncertainties

Μετρήσεις και Σφάλματα/Measurements and Uncertainties Μετρήσεις και Σφάλματα/Measurements and Uncertainties Κατά την καταγραφή δεδοµένων, σε κάθε εγγραφή δεδοµένου θα πρέπει να δίδεται µαζί και το αντίστοιχο εκτιµώµενο σφάλµα ή αβεβαιότητα. Ο όρος σφάλµα

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 7.1. Ανάπτυξη Προγράµµατος Τι είναι το Πρόγραµµα; Το Πρόγραµµα: Είναι ένα σύνολο εντολών για την εκτέλεση ορισµένων λειτουργιών από τον υπολογιστή.

Διαβάστε περισσότερα

Υλοποιήσεις Ψηφιακών Φίλτρων

Υλοποιήσεις Ψηφιακών Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 10 Υλοποιήσεις Ψηφιακών Φίλτρων Α. Εισαγωγή Οποιοδήποτε γραµµικό χρονικά αµετάβλητο σύστηµα διακριτού χρόνου χαρακτηρίζεται πλήρως από τη συνάρτηση µεταφοράς του η οποία έχει

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 8: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Α ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Κυκλώµατα οδηγούµενα από

Διαβάστε περισσότερα

Tεχνητή Νοημοσύνη Εφαρμογές

Tεχνητή Νοημοσύνη Εφαρμογές ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Tεχνητή Νοημοσύνη Εφαρμογές ΠΛΗ31 ΠΑΤΡΑ 2003 Πριν αρχίσετε τη μελέτη του έντυπου αυτού, είναι απαραίτητο να διαβάσετε προσεκτικά τον

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

ιπλωµατική εργασία ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΣΤΟΝ ΠΑΡΑΜΕΤΡΙΚΟ ΣΧΕ ΙΑΣΜΟ TAGUCHI

ιπλωµατική εργασία ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΣΤΟΝ ΠΑΡΑΜΕΤΡΙΚΟ ΣΧΕ ΙΑΣΜΟ TAGUCHI ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Εφαρµοσµένων Μαθηµατικών Και Φυσικών Επιστηµών ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών «Μαθηµατική προτυποποίηση στις Σύγχρονες Τεχνολογίες και την Οικονοµία» ιπλωµατική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ P-INF-003 : ΠΛΗΡΟΦΟΡΙΚΗ : ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΤΡΙΤΟ ΚΕΦΑΛΑΙΟ ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ HOPFIELD ΚΑΙ KOHONEN

ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ HOPFIELD ΚΑΙ KOHONEN ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΓΝΩΡΙΣΗΣ ΠΡΟΤΥΠΩΝ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ατομική Διπλωματική Εργασία. Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων. Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Ατομική Διπλωματική Εργασία. Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων. Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Ατομική Διπλωματική Εργασία Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μάιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Αλγόριθµοι, στοιχεία

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ ο ΕΞΑΜΗΝΟ. Θεωρ. - Εργ.

7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ ο ΕΞΑΜΗΝΟ. Θεωρ. - Εργ. 7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ 7.1. 1ο ΕΞΑΜΗΝΟ Υποχρεωτικά 9.2.32.1 Μαθηματική Ανάλυση (Συναρτήσεις μιας μεταβλητής) 5 0 9.2.04.1 Γραμμική Άλγεβρα 4 0 9.4.31.1 Φυσική Ι (Μηχανική) 5 0 3.4.01.1 Προγραμματισμός Ηλεκτρονικών

Διαβάστε περισσότερα

Ορισμός και Ιδιότητες

Ορισμός και Ιδιότητες ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

ΤΟΜΕΑΣ HΛΕΚΤΡΟΝΙΚΗΣ. Επαγγελματικό λογισμικό στην ΤΕΕ: Επιμόρφωση και Εφαρμογή ΣΕΜΙΝΑΡΙΟ 1

ΤΟΜΕΑΣ HΛΕΚΤΡΟΝΙΚΗΣ. Επαγγελματικό λογισμικό στην ΤΕΕ: Επιμόρφωση και Εφαρμογή ΣΕΜΙΝΑΡΙΟ 1 ΤΟΜΕΑΣ HΛΕΚΤΡΟΝΙΚΗΣ Επαγγελματικό λογισμικό στην ΤΕΕ: Επιμόρφωση και Εφαρμογή ΣΕΜΙΝΑΡΙΟ 1 Εργαστηριακές ασκήσεις σε Εικονικό Περιβάλλον με τα Λογισμικά LabVIEW, Eagle και ΝΙ Circuit Design Suite 10 ΕΓΧΕΙΡΙΔΙΟ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΝΕΥΡΩΝΙΚΟΥ ΡΥΘΜΙΣΤΗ ΓΙΑ ΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΑΣΤΑΘΩΝ ΜΗ ΓΡΑΜΜΙΚΩΝ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΝΑΠΤΥΞΗ ΝΕΥΡΩΝΙΚΟΥ ΡΥΘΜΙΣΤΗ ΓΙΑ ΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΑΣΤΑΘΩΝ ΜΗ ΓΡΑΜΜΙΚΩΝ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: ΑΝΑΛΥΣΗΣ, ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΟΝΑΔΑ ΑΥΤΟΜΑΤΗΣ ΡΥΘΜΙΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΝΕΥΡΩΝΙΚΟΥ ΡΥΘΜΙΣΤΗ ΓΙΑ ΤΟΝ

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Πολυτεχνείο Κρήτης. Τμήμα Μηχανικών Παραγωγής και Διοίκησης Τομέας Συστημάτων Παραγωγής Επιβλέπων καθηγητής: Γεώργιος Σταυρουλάκης

Πολυτεχνείο Κρήτης. Τμήμα Μηχανικών Παραγωγής και Διοίκησης Τομέας Συστημάτων Παραγωγής Επιβλέπων καθηγητής: Γεώργιος Σταυρουλάκης Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Τομέας Συστημάτων Παραγωγής Επιβλέπων καθηγητής: Γεώργιος Σταυρουλάκης Αναγνώριση και έλεγχος ανάστροφου εκκρεμούς με χρήση τεχνητών νευρωνικών

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΓΙΑ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΠΡΟΒΛΕΨΗ ΤΟΥ ΕΙΚΤΗ ΙΑΘΛΑΣΗΣ ΥΛΙΚΩΝ

ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΓΙΑ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΠΡΟΒΛΕΨΗ ΤΟΥ ΕΙΚΤΗ ΙΑΘΛΑΣΗΣ ΥΛΙΚΩΝ ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΟΛΟΓΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΓΙΑ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΠΡΟΒΛΕΨΗ ΤΟΥ ΕΙΚΤΗ ΙΑΘΛΑΣΗΣ ΥΛΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΧΟΝ ΡΟ ΗΜΑ ΕΥΑΓΓΕΛΙΑ Επιβλέπων: Αλεξανδρίδης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 6 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο απαντητικό φύλλο τον αριθµό της πρότασης

Διαβάστε περισσότερα