ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας Τηλ:

2 Σε αρκετές εφαρμογές παρουσιάζεται η ανάγκη λήψης αποφάσεων σχετικών με την κατανομή ενός πληθυσμού Πιο συγκεκριμένα, σε πολλές περιπτώσεις πρέπει, βάσει ενός τ.δ. Χ, Χ,..., Χ από έναν πληθυσμό με κατανομή F(x;θ), να αποφασίσουμε αν ευσταθεί ή όχι μία πληροφορία (υπόθεση) σχετική με την κατανομή F ή τις παραμέτρους θ

3 Παράδειγμα : Έστω ότι ένα εργοστάσιο παράγει κάποιες ηλεκτρονικές συσκευές (π.χ. μικροεπεξεργαστές). Κατά τακτά χρονικά διαστήματα (π.χ. ανά ώρα) γίνεται έλεγχος της ποιότητας και των συσκευών της ωριαίας παραγωγής. Κατά τον έλεγχο αυτό απομακρύνονται όλες οι τυχόν ελαττωματικές συσκευές. Η παραγωγική διαδικασία θεωρείται ότι βρίσκεται μέσα στις προδιαγραφές της αν η πιθανότητα παραγωγής ελαττωματικής συσκευής είναι ίση (ή το πολύ) 5%. Σε περίπτωση που αυξηθεί αυτή η πιθανότητα θεωρείται ότι υπάρχει κάποιο πρόβλημα, σταματά η παραγωγή, και αναζητείται ο λόγος της ανωμαλίας.

4 Στο παράδειγμα αυτό θα πρέπει να κατασκευάσουμε έναν έλεγχο με βάση τον οποίο θα κρίνουμε αν για την τελευταία ώρα ισχύει για την (άγνωστη) πιθανότητα p παραγωγής ελαττωματικής μονάδας η υπόθεση ότι p = 5% (ή 5%), ή p > 5%, οπότε συνεχίζεται η παραγωγή, όποτε διακόπτεται η παραγωγή Είναι λογικό ο έλεγχος αυτός να βασίζεται στον αριθμό των ελαττωματικών μονάδων που βρέθηκαν ανάμεσα στις της ωριαίας παραγωγής Αν θέσουμε Χ i = ή ανάλογα με το αν η i-μονάδα βρέθηκε ελαττωματική ή όχι, i=,,..., τότε το δειγματικό ποσοστό αποτελεί κατά τα γνωστά μία εκτιμήτρια της πιθανότητας p παραγωγής ελαττωματικής μονάδας

5 Σύμφωνα με τα όσα γνωρίζουμε, αν το p είναι ίσο του 5% τότε αναμένουμε το δειγματικό ποσοστό να παίρνει τιμές «κοντά» και «γύρω» από το 5%. Συνεπώς, δεδομένου ότι p = 5%, είναι «απίθανο» να βρεθεί ένα μεγαλύτερο του 5% (π.χ. να βρεθεί > % ή γενικότερα > c) «σημαντικά»

6 Στην περίπτωση λοιπόν που συμβεί κάτι τέτοιο ( > c) είναι λογικό να θεωρήσουμε ότι το βρέθηκε τόσο μεγάλο διότι στην πραγματικότητα δεν ισχύει ότι p = 5% αλλά p > 5% Άρα σε αυτή την περίπτωση θα πρέπει να διακόψουμε την παραγωγή (απορρίπτουμε ότι p = 5%) Επομένως, κατά κάποιον τρόπο κατασκευάσαμε έναν έλεγχο της υπόθεσης p = 5% έναντι της p > 5% σύμφωνα με τον οποίον: - αν > c απορρίπτουμε ότι p = 5% - αν c δεχόμαστε ότι p = 5%

7 Το ερώτημα που τίθεται τώρα είναι: ποια θα πρέπει να είναι αυτή η τιμή c για από την οποία, δεδομένου ότι p = 5%, θεωρείται «απίθανο» να συμβεί > c??? Είναι φανερό ότι όσο μεγαλύτερο είναι το c, τόσο πιο απίθανο γίνεται το ενδεχόμενο > c Από την άλλη όμως, αν πάρουμε c υπερβολικά μεγάλο (π.χ. c = %) τότε εμφανίζεται ο κίνδυνος να ισχύει π.χ. ότι p = % > 5% και εμείς να βρούμε ότι να δεχτούμε την αρχική υπόθεση ότι p = 5%!!!!!!!!! % και επομένως Συνεπώς θα πρέπει να βρεθεί το βέλτιστο c κάτω από κάποιες συγκεκριμένες προϋποθέσεις. Ο καθορισμός αυτών των προϋποθέσεων καθώς και η εύρεση κατάλληλου ελέγχου αποτελεί αντικείμενο της θεωρίας των στατιστικών ελέγχων υποθέσεων που θα περιγράψουμε στη συνέχεια

8 Ας δούμε το παραπάνω πρόβλημα στη γενικότερή του μορφή. Έστω Χ,Χ,...,Χ ένα τ.δ. από έναν πληθυσμό με κατανομή F(x;θ). Επιθυμούμε να ελέγξουμε την υπόθεση θ Θ έναντι της θ Θ όπου Θ, Θ είναι υποσύνολα του παραμετρικού χώρου Θ (σύνολο επιτρεπτών τιμών της παραμέτρου θ) ενώ φυσικά Θ Θ = (τα Θ, Θ είναι ξένα). Η βασική υπόθεση θ Θ θα καλείται μηδενική υπόθεση και θα συμβολίζεται με Η ενώ η ενάντια θ Θ θα καλείται εναλλακτική υπόθεση και θα συμβολίζεται με H. Συνοπτικά θα έχουμε: H : θ Θ, H : θ Θ, μηδενική (ή βασική) υπόθεση, εναλλακτική υπόθεση

9 Κρίσιμη περιοχή ΣΗΜΕΙΩΣΗ: Μία υπόθεση θα καλείται μονόπλευρη αν είναι της μορφής H :θ>θ ή H :θ<θ ενώ θα καλείται δίπλευρη αν είναι της μορφής H : θ θ Στη συνέχεια, βάσει του τ.δ. Χ, Χ,..., Χ, κατασκευάζουμε μία διαδικασία ελέγχου της παραπάνω υπόθεσης Συγκεκριμένα, χωρίζουμε το δειγματοληπτικό χώρο Ω (το σύνολο των δυνατών τιμών του δείγματος) σε δύο ξένα υποσύνολα Α και R (Α R=Ω) έτσι ώστε, - αν (Χ, Χ,..., Χ ) R, απορρίπτουμε την H : θ Θ - αν (Χ, Χ,..., Χ ) Α, δεχόμαστε την H : θ Θ Η περιοχή R καλείται κρίσιμη περιοχή ή περιοχή απόρριψης της Η ενώ η περιοχή Α καλείται περιοχή αποδοχής της μηδενικής υπόθεσης Η

10 Στατιστική συνάρτηση ελέγχου Στην ουσία επιλέγεται μια κατάλληλη στατιστική συνάρτηση του τ.δ. Χ, Χ,..., Χ : Τ(Χ)=Τ(Χ, Χ,..., Χ ) η οποία ζητάμε να έχει χαρακτηριστικά: όταν ισχύει η Η να λαμβάνει τιμές σε μια περιοχή (σύμφωνα με μια γνωστή κατανομή F T χωρίς άγνωστες παραμέτρους) ενώ όταν ισχύει η Η να παίρνει τιμές εκτός αυτής της περιοχής Δηλαδή - αν Τ(Χ, Χ,..., Χ )> c, απορρίπτουμε την H : θ Θ - αν T(Χ, Χ,..., Χ ) c, δεχόμαστε την H : θ Θ

11 Σφάλματα Ανάλογα με την απόφαση που θα πάρουμε ενδέχεται να κάνουμε κάποιο σφάλμα Μας ενδιαφέρει περισσότερο να μην απορρίπτουμε την Η ενώ αυτή είναι αληθής, και επομένως πρέπει να επιλέγουμε το κρίσιμο σημείο c έτσι ώστε: Pr σφάλμα Ι PrT ( ) c H a ΓΕΝΙΚΑ α = Pr(σφάλμα τύπου Ι) = Pr(απορρίπτεται η Η Η αληθής) β = Pr(σφάλμα τύπου ΙΙ) = Pr(αποδεκτή η Η Η λανθασμένη) Μέγεθος της κρίσιμης περιοχής ή επίπεδο σημαντικότητας του ελέγχου γ = -β ισχύς του ελέγχου

12 γ Τέλος, αξίζει να παρατηρήσουμε ότι, με βάση την παραπάνω διαδικασία, αυτό που μας ενδιαφέρει περισσότερο είναι να διατηρηθεί μικρή η Pr(I) και για αυτό απαιτούμε Pr(I) α (μικρή πιθανότητα εσφαλμένης απόρριψης της Η ). H Pr(IΙ) μπορεί να είναι και αυτή μικρή, μπορεί όμως να είναι και αρκετά μεγάλη, ανάλογα την περίπτωση. Για το λόγο αυτό αν (Χ, Χ,..., Χ ) R τότε λέμε ότι «απορρίπτουμε την Η» με πιθανότητα να κάνουμε λάθος μικρότερη του α, ενώ αν (Χ, Χ,..., Χ ) Α, τότε συνήθως λέμε ότι «δεν έχουμε αρκετά στοιχεία ώστε να απορρίψουμε την Η»

13 Εύρεση κρίσιμης περιοχής Η διεξαγωγή ενός στατιστικού ελέγχου προϋποθέτει να ορίζουμε κάποιον κανόνα για την λήψη αποφάσεων Ας υποθέσουμε ότι θέλουμε να ελέγξουμε για έναν πληθυσμό που ακολουθεί Ν(μ,σ ): Η : μ = μ έναντι Η : μ > μ Για να κάνουμε τον παραπάνω έλεγχο για την μέση τιμή, θεωρούμε σαν κατάλληλη σ.σ. την T( ) και επομένως απορρίπτουμε την Η αν c Για να υπολογίσουμε το σημείο c πρέπει να ορίσουμε ένα επίπεδο στατιστικής σημαντικότητας α. Για το σφάλμα τύπου Ι γνωρίζουμε ότι: ΠΡΟΣΟΧΗ!!!!!! To -α λέγεται βαθμός εμπιστοσύνης

14 Εύρεση κρίσιμης περιοχής z c c z c a c z Pr a c Z Pr a c Z Pr a H c Pr a H c Pr a a a Φ : :

15 Εύρεση κρίσιμης περιοχής Για κάθε στατιστικό έλεγχο Η με επίπεδο σημαντικότητας α το κρίσιμο σημείο c δίνεται από την σχέση c z a Επομένως απορρίπτουμε την Η αν x c ή z a Με βάση την παραπάνω σχέση μπορούμε ισοδύναμα να πούμε ότι απορρίπτουμε την Η σε επίπεδο στατιστικής σημαντικότητας α, αν Z x z a / Άρα για δοθέν επίπεδο στατιστικής σημαντικότητας α, συγκρίνω την σ.σ. ελέγχου Ζ με το σημείο z -α

16 Μεθοδολογία. Ορίζουμε την μηδενική υπόθεση. Ορίζουμε την εναλλακτική υπόθεση 3. Υπολογίζω την κατάλληλη στατιστική συνάρτηση ελέγχου, π.χ. Ζ, Τ κλπ 4. Συγκρίνω με την κατανομή που ισχύει κάτω από την μηδενική υπόθεση 5. Συμπερασματολογία

17 Στατιστικές συναρτήσεις ελέγχου z-test χρήση κανονικής κατανομής στατιστική συνάρτηση ελέγχου Z / t-test χρήση t-κατανομής στατιστική συνάρτηση ελέγχου T S /

18 Παράδειγμα : Παίρνουμε 5 τιμές από έναν κανονικό πληθυσμό Ν(μ,4). Θέλουμε να ελέγξουμε αν μ = 5 έναντι της υπόθεσης ότι η μέση τιμή του πληθυσμού μπορεί να είναι και μεγαλύτερη από 5. Βρέθηκε ότι η μέση τιμή του δείγματος είναι 5.45 (= ) x Η : μ =5 Η : μ > 5 Γνωρίζουμε ότι Στατιστική συνάρτηση ελέγχου ( <3 και σ γνωστή) z-test Σύγκριση: α = % α = 5% 4 ~ N(, ) N(5, ) 5 Z a Z. Z.9.8 Z.5 Z Z.645 Z. 5 Z a.5.95 x Συμπερασματολογία: Ζ < Ζ -α ΑΠΟΔΕΧΟΜΑΙ Η ( δεν μπορώ να απορρίψω) Z /.5

19 p-τιμή Στον έλεγχο μπορεί να χρησιμοποιηθεί η p-τιμή Εκφράζει το πόσο σημαντική είναι η τιμή της στατιστικής συνάρτησης ελέγχου που δίνει το δείγμα: «Είναι η ελάχιστη τιμή του επιπέδου σημαντικότητας για την οποία απορρίπτεται η Η» Μπορούμε να πούμε ότι είναι ένα μέτρο που εκφράζει το πόσο ισχυρές είναι οι αποδείξεις που προκύπτουν εναντίον της Η - αν p-τιμή α απορρίπτεται η Η - αν p-τιμή >α αποδοχή Η

20 p-τιμή H Η απορρίπτεται αν η στατιστική συνάρτηση ελέγχου Τ(x) > c Έστω η τ.μ. Τ(Χ). Η πιθανότητα να εμφανιστεί ένα τόσο ή ακόμη και πιο «ακραίο» δείγμα από αυτό που εμφανίστηκε (το Τ(x) δηλαδή), δεδομένου ότι ισχύει η Η είναι το p-value Pr T ( ) T( x) H p value (συνήθως η Τ(Χ) είναι συνεχής οπότε μπορεί να θεωρηθεί ότι έχουμε μέσα στην παραπάνω πιθανότητα). Όταν η εναλλακτική υπόθεση είναι δίπλευρη, το p-value βρίσκεται συνήθως με τον διπλασιασμό του αντίστοιχου p-value που αντιστοιχεί στη μονόπλευρη εναλλακτική υπόθεση: T ( ) T( ) H p value x Pr

21 p-τιμή Παράδειγμα συνέχεια: p value Pr Pr / x H Pr 5.45 H : H / Pr / / 5 p.3 value : 5 Pr Z.5 PrZ p-τιμή > α =.5 (5%) ή p-τιμή > α =. (%) αποδέχομαι την Η (δεν μπορώ να την απορρίψω)

22 p-τιμή Παράδειγμα 3: Επιθυμούμε να ελέγξουμε αν ο μέσος μ ενός κανονικού πληθυσμού (με γνωστή διασπορά σ ) είναι ίσος με μ ή μεγαλύτερος Δηλαδή: Η : μ =μ έναντι Η : μ > μ Παίρνουμε ένα τ.δ. Χ, Χ,, Χ από τον πληθυσμό και χρησιμοποιούμε την στατιστική συνάρτηση ελέγχου Z ήt / η οποία όταν ισχύει η Η ακολουθεί τυπική κανονική κατανομή Ν(,) ενώ όταν ισχύει η εναλλακτική Η παίρνει «μεγάλες» τιμές. Επομένως απορρίπτουμε την Η αν x c / z a

23 p-τιμή Σημειώνεται ότι πήραμε c = z -α για να εξασφαλίσουμε Pr(σφάλμα Ι)=α Η p-τιμή ενός τ.δ. x, x,., x εδώ θα είναι: x p value Pr / T t H PrT t H ( t) ( ) Στο σχήμα φαίνεται η p-τιμή και το επίπεδο σημαντικότητας α στο συγκεκριμένο παράδειγμα. Από το σχήμα φαίνεται ότι αν t < c τότε και p-τιμή >α και αντίστροφα

24 p-τιμή Αριθμητική Εφαρμογή έστω ότι για ένα δείγμα μεγέθους = 5 πήραμε x ελέγξουμε αν ισχύει Η : μ = έναντι Η : μ > σε επίπεδο στατιστικής σημαντικότητας α =5% με σ = 5 και θέλουμε να Περιοχή απόρριψης της Η : x 5 / 5 R : t z a z. 95 /. 645 το οποίο δεν ισχύει και άρα δεν μπορώ να απορρίψω την Η p-τιμή: T t H PrT H () p value Pr και άρα δεν μπορώ να απορρίψω την Η

25 Μέση τιμή μ του πληθυσμού Έστω ένα τ.δ. Χ, Χ,, Χ από έναν κανονικό πληθυσμό Ν(μ,σ ) Γνωρίζουμε ότι Ο καλύτερος εκτιμητής του μέσου μ είναι ο σφάλμα ˆ S / Από το γεγονός ότι i S i ~ S / t με βαθμό εμπιστοσύνης -α για το μέσο μ είναι το: i i ˆ με εκτιμώμενο τυπικό προκύπτει ότι το διάστημα εμπιστοσύνης t S, t,, S

26 Μέση τιμή μ του πληθυσμού Για να ελέγξουμε τις υποθέσεις: a) Η : μ μ έναντι Η : μ > μ b) Η : μ μ έναντι Η : μ < μ c) Η : μ = μ έναντι Η : μ μ με επίπεδο σημαντικότητας α, χρησιμοποιούμε ~ / N(,) ~ N(,) / ~ S / t

27 Μέση τιμή μ του πληθυσμού Γενικεύοντας: Αν η διασπορά είναι γνωστή Σε επίπεδο σημαντικότητας α, απορρίπτουμε την Η : μ = μ έναντι της εναλλακτικής Η : μ > μ όταν έναντι της εναλλακτικής Η : μ < μ όταν έναντι της εναλλακτικής Η : μ μ όταν ή z x z x ή z x z x ή ισοδύναμα ή a a a a z x z x z z x

28 Μέση τιμή μ του πληθυσμού Και οι αντίστοιχες περιοχές απόρριψης είναι a) R z a, b) R, z a c) R z a z, a, Σημείωση: Λόγω συμμετρίας της κανονικής κατανομής z α =- z -α

29 Μέση τιμή μ του πληθυσμού Γενικεύοντας: Αν η διασπορά είναι άγνωστη Σε επίπεδο σημαντικότητας α, απορρίπτουμε την Η : μ = μ έναντι της εναλλακτικής Η : μ > μ όταν x T t, s έναντι της εναλλακτικής Η : μ < μ όταν T x t, a s έναντι της εναλλακτικής Η : μ μ όταν T x s t a,

30 Μέση τιμή μ του πληθυσμού Και οι αντίστοιχες περιοχές απόρριψης είναι a) R t, a, b) R, t, a c) R, t a, t a,, Σημείωση: Λόγω συμμετρίας της κατανομής t t -,-α = - t -,α

31 Μέση τιμή μ του πληθυσμού Παράδειγμα 4: Ένας υγειονομικός σταθμός θέλει να ελέγξει αν ο μέσος αριθμός βακτηριδίων ανά μονάδα όγκου θαλασσινού νερού σε μια παραλία υπερβαίνει το επίπεδο ασφαλείας. Δώδεκα δείγματα νερού συλλέγονται και βρίσκονται οι ακόλουθοι αριθμοί βακτηριδίων ανά μονάδα όγκου Υπάρχει λόγος ανησυχίας σε επίπεδο σημαντικότητας α=%;

32 Μέση τιμή μ του πληθυσμού Παράδειγμα 5: Σε μια προσπάθεια να προσδιοριστεί αν η ειδική εκπαίδευση αυξάνει ή όχι τον δείκτη ευφυΐας, 5 παιδιά εξετάζονται με ένα βασικό τυποποιημένο τεστ ευφυΐας. Κατόπιν τα παιδιά αυτά παρακολουθούν ένα ειδικό μάθημα, σκοπός του οποίου είναι η αύξηση του συγκεκριμένου δείκτη. Στο τέλος του μαθήματος εξετάζονται για δεύτερη φορά. Η διαφορά μεταξύ των βαθμών της δεύτερης και της πρώτης εξέτασης καταγράφεται για κάθε παιδί. Έστω ότι η μέση τιμή των διαφορών είναι 6 μονάδες και η διακύμανση 64 (ΠΡΟΣΟΧΗ!!! Η μέση τιμή και η διακύμανση είναι του δείγματος). Έχει η ειδική εκπαίδευση αυξήσει τον δείκτη ευφυΐας σε επίπεδο σημαντικότητας 5%;

33 Μέση τιμή μ του πληθυσμού ενός μη κανονικού πληθυσμού Μεγάλο δείγμα & η διασπορά είναι γνωστή Σε επίπεδο σημαντικότητας α, απορρίπτουμε την Η : μ = μ έναντι της εναλλακτικής Η : μ > μ όταν έναντι της εναλλακτικής Η : μ < μ όταν έναντι της εναλλακτικής Η : μ μ όταν z x x z x x ή a x a x z x z x Z

34 Διωνυμικό p Ένας ακόμα σημαντικός έλεγχος είναι αυτός για το διωνυμικό p Έστω ότι γίνονται ανεξάρτητες δοκιμές Berouli με πιθανότητα επιτυχίας p και έστω Χ ο αριθμός των επιτυχιών. Δηλαδή η τ.μ. Χ~Β(,p) Ο καλύτερος εκτιμητής για το p είναι ο ο οποίος είναι αμερόληπτος αφού έχει τυπικό σφάλμα το οποίο εκτιμάται με pˆ ˆ pˆ p E pˆ p/ pˆ pˆ pˆ / E / p/ p / Από το ΚΟΘ η Χ~Ν(p,p(-p)) γεγονός που οδηγεί στην χρήση της στατιστικής συνάρτησης για ελέγχους που αφορούν το διωνυμικό p pˆ p p Z p p / p p

35 Διωνυμικό p a) Η : p p έναντι Η : p > p κρίσιμη περιοχή R z, δηλαδή p p p z b) Η : p p έναντι Η : p < p p κρίσιμη περιοχή R, z δηλαδή a p p z c) Η : p = μ έναντι Η : p p κρίσιμη περιοχή, z z R / a / a, δηλαδή p p p z /

36 Διωνυμικό p Παράδειγμα 6: Πριν από τις δημοτικές εκλογές ο Α υποψήφιος σε μια μεγάλη πόλη, παρήγγειλε μια δημοσκόπηση η οποία έδειξε ότι από τους ερωτηθέντες οι 6 θα τον ψηφίσουν. Να ελεγχθεί σε επίπεδο σημαντικότητας α =.5 η υπόθεση να μην να εκλεγεί ο Α. Για να εκλεγεί θα πρέπει το ποσοστό του p να είναι πάνω από 5%. Έστω ότι αν ο Χ i ψηφοφόρος ψήφισε τον Α τότε Χ i = διαφορετικά Χ i =, ακολουθεί δηλαδή την διωνυμική κατανομή. Έλεγχος Η : p p =.5 έναντι Η : p > p =.5

37 Διωνυμικό p Στατιστική συνάρτηση ελέγχου Z p pˆ p 6. 5 / p / Κρίσιμη περιοχή z, z,. C. a 5 645, Συμπερασματολογία : z,. Z a 645, και άρα απορρίπτω την Η Άρα είμαστε κατά τουλάχιστον 95% βέβαιοι ότι θα εκλεγεί

38 Διαφορά μέσων μ -μ Έχουμε δύο πληθυσμούς με μέσες τιμές μ και μ και τυπικές αποκλίσεις σ και σ και θέλουμε να ελέγξουμε υποθέσεις σχετικές με τις μέσες τιμές τους π.χ. αν είναι ίσες ή αν κάποια είναι μεγαλύτερη και ποια Βασιζόμαστε λοιπόν σε ένα δείγμα από τον κάθε πληθυσμό Σημαντικό ρόλο παίζουν οι διασπορές των πληθυσμών Για τα δείγματα μπορούμε να γνωρίζουμε τους δειγματικούς μέσους, Αν δεν γνωρίζουμε τις διασπορές των δύο πληθυσμών τις εκτιμούμε με S, S Αν οι διασπορές είναι άγνωστες αλλά ίσες: η κοινή τους διασπορά είναι S p S S

39 Διαφορά μέσων μ -μ Α. Κανονικοί πληθυσμοί, γνωστές διασπορές Στατιστική συνάρτηση ελέγχου (i) Η : μ - μ = μ έναντι Η : μ - μ μ Απόρριψη Η (ii) z z a z x x ~ N(), Η : μ - μ = μ έναντι Η : μ - μ < μ Απόρριψη Η z z (iii) Η : μ - μ = μ έναντι Η : μ - μ > μ Απόρριψη Η z z

40 Διαφορά μέσων μ -μ Β. Κανονικοί πληθυσμοί, άγνωστες διασπορές και ίσες Στατιστική συνάρτηση ελέγχου (i) Η : μ - μ = μ έναντι Η : μ - μ μ Απόρριψη Η t t t (ii) Η : μ - μ = μ έναντι Η : μ - μ < μ x S p x a, ~ t Απόρριψη Η t t, a (iii) Η : μ - μ = μ έναντι Η : μ - μ > μ Απόρριψη Η t t, a

41 Διαφορά μέσων μ -μ Γ. Κανονικοί πληθυσμοί, άγνωστες διασπορές και άνισες Στατιστική συνάρτηση ελέγχου (i) Απόρριψη Η (ii) Απόρριψη Η (iii) Απόρριψη Η ~ t S S x x t, a t t Η : μ - μ = μ έναντι Η : μ - μ μ Η : μ - μ = μ έναντι Η : μ - μ < μ Η : μ - μ = μ έναντι Η : μ - μ > μ a, t t a, t t S S S S

42 Διαφορά μέσων μ -μ Γ. Μεγάλα Δείγματα ( > 3) Στατιστική συνάρτηση ελέγχου (i) Η : μ - μ = μ έναντι Η : μ - μ μ Απόρριψη Η z z z a x x x x ii) Η : μ - μ = μ έναντι Η : μ - μ < μ z s s Απόρριψη Η z z iii) Η : μ - μ = μ έναντι Η : μ - μ > μ Απόρριψη Η z z

43 Διαφορά μέσων μ -μ Δ. Ζευγάρια Υπάρχουν περιπτώσεις στις οποίες τα δυο δείγματα που θέλουμε να συγκρίνουμε δεν είναι ανεξάρτητα μεταξύ τους, αλλά είτε εξαρτώνται οι οι τιμές του ενός από τις τιμές του άλλου, είτε πρόκειται για επαναλαμβανόμενη μέτρηση.. Έστω λοιπόν δύο σειρές μετρήσεων: Χ, Χ,, Χ και Υ, Υ,, Υ. Εφόσον τα δείγματα δεν είναι ανεξάρτητα, στην ουσία έχουμε ζευγάρια παρατηρήσεων ( i,y i ), i =,,,. Στην συνέχεια φτιάχνουμε τις διαφορές τους D i = i Y i, i =,,,, οπότε πλέον δουλεύουμε με αυτές, και αντιμετωπίζουμε το πρόβλημα σαν περίπτωση ενός δείγματος. Η σ.σ. ελέγχου είναι η T D i D i D ~ t

44 Διαφορά μέσων μ -μ (i) Η : μ D = μ - μ = μ έναντι Η : μ D = μ - μ μ Απόρριψη Η (ii) T t a, Η : μ D = μ - μ = μ έναντι Η : μ D = μ - μ < μ Απόρριψη Η T t, a (iii) Η : μ D = μ - μ = μ έναντι Η : μ D = μ - μ > μ Απόρριψη Η T t, a

45 Διαφορά μέσων μ -μ Παράδειγμα 7: Δύο ανεξάρτητες ομάδες παιδιών και αποτελούνται από παιδιά η κάθε μια. Τα παιδιά της ομάδας προέρχονται από υπερτασικούς γονείς ενώ της από γονείς με κανονική πίεση. Η συστολική πίεση του αίματος μετριέται για κάθε παιδί των δύο ομάδων και έχουμε τα ακόλουθα αποτελέσματα: Ομάδα Ομάδα Με επίπεδο σημαντικότητας α = 5% να ελεγχθεί αν υπάρχει διαφορά μεταξύ της μέσης πίεσης μ παιδιών από υπερτασικούς γονείς και της μέσης πίεσης μ παιδιών από γονείς με κανονική συστολική πίεση.

46 Διαφορά μέσων μ -μ Άγνωστες διασπορές i i i i S. S S S i i i i

47 Διαφορά μέσων μ -μ Έλεγχος: Η : μ - μ = έναντι Η : μ - μ Στατιστική συνάρτηση ελέγχου: t x x S ~ t t Απόρριψη Η αν: t,..,, t t, t t a t 8,. 975,.,., Συμπερασματολογία:,7 απορρίπτω Η 8 975

48 Διασπορά σ Η στατιστική υπόθεση για τη διασπορά σ είναι όπως και για τη μέση τιμή, δηλαδή Η : σ = σ με κατάλληλη εναλλακτική υπόθεση Η ανάλογα αν ο έλεγχος είναι δίπλευρος ή μονόπλευρος Η στατιστική q του ελέγχου είναι q ή (i) Η : σ = σ έναντι Η : σ σ χ s ~ Απόρριψη Η q, / ή q, / (ii) Η : σ = σ έναντι Η : σ < σ Απόρριψη Η q, (iii) Η : σ = σ έναντι Η : σ > σ Απόρριψη Η q,

49 Διασπορά σ Παράδειγμα 8: Ο κατασκευαστής ενός οργάνου ακριβείας ισχυρίζεται ότι η τυπική απόκλιση των μετρήσεων που γίνονται με το όργανο είναι σ =. Αν σε ένα πείραμα πάρουμε τις μετρήσεις αληθεύει ο ισχυρισμός του κατασκευαστή σε επίπεδο σημαντικότητας 5%; i i S i i Έλεγχος: Η : σ = έναντι Η : σ

50 Διασπορά σ Στατιστική συνάρτηση ελέγχου: s. 57 q ~ Απόρριψη Η αν: q.,. 5 ή q, 975 q ή q. 56 Συμπερασματολογία: 5.85 < απορρίπτω Η

51

52

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80. ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΤ ΧΟΛΗ ΕΠΙΣΗΜΩΝ ΣΗ ΔΙΟΙΚΗΗ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΔΙΟΙΚΗΗ ΣΑΣΙΣΙΚΗ Ακαδ. Έτος -3 Διδάσκων: Βασίλης ΚΟΤΣΡΑ Διδάσκων επί Συμβάσει Π.Δ 47/8 v.kouras@fμe.aegea.gr Σηλ: 735457 Διωνυμικό

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΜΥΛΩΝΑ ΔΙΟΝΥΣΙΑ ΕΠΟΠΤΕΥΩΝ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΒΑΣΙΛΙΚΗ ΚΑΡΙΩΤΗ ΕΙΣΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing) Μέρος IV. Ελεγχοι Υποθέσεων (ypothesis Testig) Βασικές έννοιες Γενική μεθοδολογία Σφάλμα τύπου Ι και -vlue Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις Εφαρμοσμένη Στατιστική Μέρος 4 ο - Κ. Μπλέκας

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2 Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Έλεγχοι υποθέσεων Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγοι Υποθέσεων Υποθέσεις Η : μηδενική υπόθεση Η (ή ΗΑ): εναλλακτική υπόθεση Σφάλματα εόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγος

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΙΜΟΣ ΜΕΙΝΤΑΝΗΣ, Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών, ΕΚΠΑ ΓΙΑΝΝΗΣ Κ. ΜΠΑΣΙΑΚΟΣ, Επίκουρος Καθηγητής Τμήμα Οικονομικών

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Έλεγχος υποθέσεων Ι z-test & t-test

Έλεγχος υποθέσεων Ι z-test & t-test Έλεγχος υποθέσεων Ι z-test & t-test Μοντέλα στην Επιστήμη Τροφίμων 53Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής ΕΚΤΙΜΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ Δ.Ε. της παραμέτρου θ: ˆ θ cv σ < θ < ˆ θ + cv σ ˆ θ ˆ θ θ = η παράμετρος που θέλουμε να εκτιμήσουμε, ˆ θ = η εκτίμηση της θ που προκύπτει από το τ.δ. cv = κατάλληλη κριτική (κρίσιμη)

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i)

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i) Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Γραπτή Εξέταση Περιόδου Ιανουαρίου 8 στο Μάθημα Στατιστική 7..8. [] Ο ανθρώπινος οργανισμός χρειάζεται καθημερινά από έως 6 mg (mllgrams) καλίου. Η ποσότητα καλίου που περιέχεται στα τρόφιμα

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Στατιστική ΙΙ- Ελεγχος Υποθέσεων ΙΙ (εκδ. 1.1)

Στατιστική ΙΙ- Ελεγχος Υποθέσεων ΙΙ (εκδ. 1.1) Στατιστική ΙΙ- Ελεγχος Υποθέσεων ΙΙ (εκδ. 1.1) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 17 Ιουλίου 2013 Περιγραφή 1 2 Δίπλευρος και μονόπλευρος Ε.Υ.

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα