FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI"

Transcript

1 1/11/013 FUNDIRANJE TEEJI SACI 1. CENTRIČNO OPTEREĆEN TEEJ SAAC. EKSCENTRIČNO OPTEREĆEN TEEJ SAAC 1 Temelj samac ekscentrično oterećen rostor 1

2 1/11/013 Dimenzionisanje A temelja samca 3 Određivaje visine temelja i kontrola ritisaka na tlo isod temelja Visina temelja se određje na iz slova nosivosti materijala od koa je temelj naravljen, najčešće s to ravila dimenzionisanja etonskih elemenata. Naoni kontaktnoj ovršini temelja i tla otič od dejstva oterećenja sa konstrkcije (centrično ili ekscentrično), težine temelja i težine nasto tla (centrično). Odstanje stvarnih naona tl odnos na dozvoljene vrednosti ne i trealo da relazi ±5%. 4

3 1/11/013 Temelji montažnih stova 5 Temelji čeličnih stova 6 3

4 1/11/013 Određivanje naležće ovršine temelja Centrično oterećen temelj samac Ukno oterećenje nivo temeljne sojnice je: P+G de je: P kno oterećenje st G F D f P F do Df Težina temelja i tla iznad Za kvadratn osnov temelja Df F d ht P do Df Za ravoaon osnov dim. / k=/ F==k P k( do Df ) 7 Ekscentrično oterećen temelj jednoj ravni Redkcija sila na težište temeljne sojnice P, G-vertikalno oterećenje H-horizontalno oterećenje -momenat savijanja Df ht -kni momenat težišt temeljne sojnice d H h t Naon nivo temeljne sojnice V PG F W F W Df ht 4

5 1/11/013 P G F W GF D f F k k W 6 6 k 3 W 6 P Df 6 do do Df P 6 3 k / 0 D Pk6 0 do Jednačina iz koje se doija širina temelja f 9 I. Centrično ritisnt temelj samac od armirano etona ZADATAK I-1 Izvršiti dimenzionisanje temelja samca isod A sta. Vertikalna sila st N=500 kn N=100 kn Dimenzije sta /d=40/50 cm Došteno oterećenje tla σ z,do =10 kn/m Zareminska težina tla =1 kn/m 3 Dina fndiranja D f =1,0 m arka etona 30 Vrsta armatre GA 40/

6 1/11/ Df d ht Određivanje osnove temelja / D N F f do 3,1m 0,5 1, F Usvojeno /=1,60/,0m d k 1,59m 1,5 3,1 3,1m k F 1,99m 1.5*1.59 k

7 1/11/ Određivanje statičkih ticaja (etoda ezera) N 1,6 N 1, N T T II II II IIII N d 90,0 0,5 II N N d N 90 1,6 0,4 90,0 0,5,0 90 1,6 0,4 1,6 5001, kN 1,6 13,75kNm 147,0kNm 367,50kN 36,67kN 14 7

8 1/11/ Određivanje visine temelja h t T 367,50 h 3,0cm 0,9 0,9 1600,11 r Usvojena visina temelja h t =50cm h=45cm 1.4 Dimenzionisanje temelja Presek I-I k h II f 45 13,75 10,05160 Iz talica Za k=5,997 čitamo: a / 10 / 0,50 0,973 1,5 o 6, određivanje otrene ovršine armatre ili f,5,05 Aa 1 h ,57cm v A a 0,5 ht Presek II-II A a 0,5 h -svajanje armatre Presek I-I t 13,75 10 v 0, v 147, , ,01cm 14,41cm -svojeno 1 sa A a1 =1.13 cm r.šiki n=17,57/1.13=15,54 Usvojeno

9 1/11/013 -rasored armatre resek Srednja četvrtina- Krajevi temelja - Presek II-II 0,51,60=0,40 m 1 0, =0,60 m x41 -svojeno 1 sa A a1 =1.13 cm r.šiki n=14,41/1.13=1,75 Usvojeno 131 -rasored armatre resek Srednja četvrtina- 0,5,0=0,50 m 71 Krajevi temelja - 0,375,0=0,75 m x ,375 0,5 0,375 0,375 0,5 0,

10 1/11/ Kontrola naona nivo temeljne sojnice Analiza oterećenja: Vertikalna sila = kn Oterećenje od tla iznad stoe 1,6,00,51,0 =,0 kn Sostvena težina stoe 1,6,00.55,0 = 40,00 kn Ukno oterećenje ΣV = 66,0 kn Stvarni naon tl na nivo temeljne sojnice iznosi V 66,0 09,0kN / m 10kN / m 1,6, Kontrola temelja na rooj P r Fs P r P P sr F F r F r N F F F N 1 F Gde s: naon roijanja P r sila roijanja F s ovršina omotača zarljene ke N Ukna sila st F ovršina aze zarljene ke sr ritisak na tlo od kne sile st

11 1/11/ dc rečnik ornje aze zarljene ke čija je ovršina jednaka orečnom resek sta -za kvadratni st dc=1,13a -za ravoaoni st dim. /d d c 1,13 d -za okrli st dc=r 1 -za ravoaoni st dim. /d=40/50 d c d d F F s s 1,13 d c d d d ,5cm h 50, ,5cm c s h 50, ,5cm / 4 140,5 / cm h 95, cm F cm F P N 1 r ,3kN F 3000 P 309,3 r 0,03kN / cm 0,3Pa Fs

12 1/11/ , 3 a GA d h 140, ,3 a 1,3 1,0 0, 0,69 0 a,7 1 0,7 0,69 0, 0,36Pa 0,7 1 a 50 *1,13 0,00 0,% 195,6 0,36 0,3Pa Nije otreno ojačanje 4 1

13 1/11/013 II. Ekscentrično ritisnt temelj samac od armirano etona ZADATAK II-1 Izvršiti dimenzionisanje temelja samca isod A sta. Vertikalna sila st N=500 kn N=100 kn H=0 kn =160 knm =10 knm Dimenzije sta /d=50/50 cm Došteno oterećenje tla σ z,do =300 kn/m Zareminska težina tla =1 kn/m 3 Dina fndiranja D f =1,10 m arka etona 30 Vrsta armatre RA 400/500 k=/=1,5 5 Df ht d 6 13

14 1/11/ Određivanje osnove temelja / k 1.5 Oterećenje je jednoosno a se može zeti manja širina od džine temelja 3 k D Pk6 0 do f P N N N kN H ht ,6 3kNm 3 1, ,551, , , ,45 3,16 0 Kna jednačina 7 Rešavanje kne jednačine 3 1,453, ,45 3,16 Rešenja kne jednačina ovom olik (nema člana ) s tačke kojima se sek dve krive linije: -Kne jednačine y= 3 -Prave y=1,45+3,16 Postak rešavanja: Nacrtamo dijaram za kn jednačin y= 3 Na istom dijaram nacrtamo rav y=1,45+3,16 Pozitivna resečna tačka je rešenje kne jednačine, odnosno širina temelja 14

15 1/11/ ,453,16 0 Vrednost je izmeđ 1.7 i 1. Zamenimo vrednost kn jednačin ,7 3 1,451,7 3, , 3 1,451, 3,16 0,06 Vidimo da za =1,7 doijamo neativan Rezltat, a za 1, ozitivan. Znači tačan rezltat je izmeđ ta dva roja Proverimo sada za 1,75 3 1,75 1,451,753,16 0,33 1,751,0 Usvojeno =1,0m 9 k 1.5*1.0,70m Usvojeno /=1,0/,7m

16 1/11/ Određivanje naona nivo temeljne sojnice 0kNm 0, h H t 95,11 10,,7 1, 0 6,7 1, N,1,,1 m 19,0kN/ 95,11, 10, m 7,77kN/ 95,11, 10 54,6 0,5,7 1, 10 6,7 1, 100 N,1,,1 m 75,44kN/ 54,6,5 0, m 34,kN/ 54,6,

17 1/11/ Određivanje statičkih ticaja II II II II N d 500,7 0,5 d 100,7 0,5 0 41,5kNm N 10 7,50kNm II N 500 1, 0,5 1,5kNm II N 1001, 0,5 16,5kNm T III III 1910,5 1,101,0 315,3kN IVIV 19 7,77 T,7 0,65 10,56kN 34 17

18 1/11/ T III III 75,44 30,74 IVIV 75,44 34, T,7 0,65 36,1kN 1,101,0 105,1kN Određivanje visine temelja h t T 1,6 T T h 0,9 1, T r 1,6 315,3 1, 105,1 693,73kN 693,73 3,93cm 55cm 0,910 0,11 Usvojena visina temelja h t =60cm h=55cm 1.5 Dimenzionisanje temelja Presek I-I 1,6 41,5 1, 7,5 543,9kNm A a 0,5 ht 543, ,00cm v 0,

19 1/11/013 Presek II-II 1,6 1,5 1, 16,5 159,5kNm A a 0,5 h t v 159,5 10 0, ,5cm -svajanje armatre Presek I-I r.šiki Aa 34,00cm Polovin armatre smeštamo srednj četvrtin temelja širine 10/4=45cm, a to je: 17 cm -svojeno R19 sa A a1 =,4 cm n=17,0/,4=5,9 -svojeno 6R19 sa razmakom šiki 45/5=9cm 37 Polovin armatre smeštamo na krajeve i to širini (10-45)/=67,5cm, a to je: 17/=,5 cm -svojeno R1 sa A a1 =1.13 cm r.šiki n=,5/1,13=7,5 -svojeno R1 sa razmakom šiki 67,5/7=9,6cm Presek II-II Aa,5cm Polovin armatre smeštamo srednj četvrtin temelja širine 70/4=67,5cm, a to je: 4,6 cm -svojeno R1 sa A a1 =1,13 cm r.šiki n=4,6/1,13=3,7 -svojeno 4R1 sa razmakom šiki 67,5/3=,5cm Polovin armatre smeštamo na krajeve i to širini (70-67,5)/=101,5cm, a to je: 4,6/=,13 cm -svojeno R1 sa A a1 =1.13 cm r.šiki n=,13/1,13=1, -svojeno 5R1 sa razmakom šiki riližno 0cm 3 19

20 1/11/ ,375 0,5 0, ,375 0,5 0, Kontrola temelja na rooj P r Fs P r sr F F Gde s: naon roijanja P r sila roijanja F s ovršina omotača zarljene ke N Ukna sila st F ovršina aze zarljene ke sr ritisak na tlo od kne sile st

21 1/11/ d c d d F s 1, ,5cm d c d d h 56, ,5cm c h 56, ,5cm / 4 166,5 / 4 176cm 41 F s d s h 111, cm F 10 70, cm Naon tl sled stalno i ovremeno oterećenja, sr 19 75,44 73,44kN/ m 7,77 34, 6,5kN/ m ( 73,44 6,5)/ 13,46kN/ m P r sr F F 13,464,6,1 330,7kN F Pr s 330,7 0,017kN / cm ,17Pa 4 1

22 1/11/ , 3 a RA 4R1 6R19 d h 166, ,3 a 1,3 1,3 0,5 0,45 0 a,7 1 0,7 0,45 0, 0,47Pa 0,7 1 a 4 1,13 6,4 0,005 0,5% 754 0,47 0,17Pa Nije otreno ojačanje 44

23 1/11/ Kontrola naona nivo temeljne sojnice Da i doili kan naon nivo temeljne sojnice otreno je da na već izračnati naon od stalno i ovremeno oterećenja Dodamo naon od težine stoe i tla iznad stoe Analiza oterećenja: Oterećenje od tla iznad stoe 1,,70,51,0 = 43,74 kn Sostvena težina stoe 1,,70,65,0 = 7,90 kn Ukno oterećenje ΣV = 116,64 kn V 116,64 Dodatni naon je centričan i iznosi 4kN /m 1,,7 Ukan naon je: 1 73, ,44kN/ m 6,5 4,5kN/ m 45 3

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

REŠENI ZADACI. m 1200 h. 3) Potro{nju vode za hladjenje kod ciklusa sa izotermskim sabijanjem ako se ista zagreje za t = 10 o C

REŠENI ZADACI. m 1200 h. 3) Potro{nju vode za hladjenje kod ciklusa sa izotermskim sabijanjem ako se ista zagreje za t = 10 o C REŠENI ZADACI I PNEUMAIKA.KLIPNI KOMPRESOR.. Klini komresor usisava vazduh (R= 87 J /kgk) ritiska = bar i temerature t = 0 o C i sabija ga do =6 bar. Ako je kaacitet komresora ) Masu usisanog vazduha u

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

1 RАVANSKE REŠETKE (1.2)

1 RАVANSKE REŠETKE (1.2) 1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά Τρώγοντας έξω : Στην είσοδο Θα ήθελα να κρατήσω ένα τραπέζι για _[αριθμός ατόμων]_ στις _[ώρα]_. (Tha íthela na kratíso éna trapézi ya _[arithmós atómon]_ στις _[óra]_.) Θα ήθελα να κρατήσω ένα τραπέζι

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti-

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- Prenos toplote preko poda (temelja) koji je u kontaktu

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

Παρουσιαστές: ??ast?s??? Τσάκας. ?/?t?? t???/?s????p???af???? t??????? ?a??a Se???t?

Παρουσιαστές: ??ast?s??? Τσάκας. ?/?t?? t???/?s????p???af???? t??????? ?a??a Se???t? Παρουσιαστές:??ast?s??? Τσάκας?/?t?? t???/?s????p???af???? t????????a??a Se???t???p????f?????a???????? Master of Applied Science (M.App.Sci)? a?ep?s t?µ?? G?a s?? ί???/?s????p???af???? t??????? Τα κυριότερα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch)

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch) A B C D E F G STOLICE Naziv Visina (inch) Širina (inch) Dubina (inch) AQ1000002 SKIPPER SKLOPIVA STOLICA BIJELA SA BIJELIM JASTUKOM 18 20 17 A AQ1000025 SKIPPER SKLOPIVA STOLICA,BIJELA SA BIJELO PLAVIM

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Solar 3000 TF / Solar 4000 TF

Solar 3000 TF / Solar 4000 TF 6720616592.00-1.SD Ορθοστάτης για επίπεδους συλλέκτες Solar 3000 TF / Solar 4000 TF GR Οδηγίες συναρμολόγησης για τον ειδικό 2 Περιεχόμενα GR Περιεχόμενα 1 Επεξήγηση συμβόλων και υποδείξεις ασφαλείας 3

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE 10/2013 Mod: 02D-EK/BT Production code: CTT920BE GR ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΚΑΙ ΣΥΝΤΗΡΗΣΗΣ σελ. 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΕΦ 1 ΕΙΣΑΓΩΓΗ... 3 ΚΕΦ 2 ΕΓΚΑΤΑΣΤΑΣΗ... 3 2.1 ΜΕΤΑΚΙΝΗΣΗ ΚΑΙ ΑΠΟΣΥΣΚΕΥΑΣΙΑ...3 2.2 ΗΛΕΚΤΡΙΚΗ

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 14 ΕΚΤΙΜΗΣΗ ΤΩΝ ΔΡΑΣΕΩΝ ΕΠΙ ΤΗΣ ΣΙΔΗΡΟΔΡΟΜΙΚΗΣ ΓΡΑΜΜΗΣ ΩΣ ΦΟΡΤΙΩΝ ΣΧΕΔΙΑΣΜΟΥ

Κ Ε Φ Α Λ Α Ι Ο 14 ΕΚΤΙΜΗΣΗ ΤΩΝ ΔΡΑΣΕΩΝ ΕΠΙ ΤΗΣ ΣΙΔΗΡΟΔΡΟΜΙΚΗΣ ΓΡΑΜΜΗΣ ΩΣ ΦΟΡΤΙΩΝ ΣΧΕΔΙΑΣΜΟΥ Κ Ε Φ Α Λ Α Ι Ο 14 ΕΚΤΙΜΗΣΗ ΤΩΝ ΔΡΑΣΕΩΝ ΕΠΙ ΤΗΣ ΣΙΔΗΡΟΔΡΟΜΙΚΗΣ ΓΡΑΜΜΗΣ ΩΣ ΦΟΡΤΙΩΝ ΣΧΕΔΙΑΣΜΟΥ 8 ο εξάμηνο 526 ΕΚΤΙΜΗΣΗ ΤΩΝ ΔΡΑΣΕΩΝ ΕΠΙ ΤΗΣ ΣΙΔΗΡΟΔΡΟΜΙΚΗΣ ΓΡΑΜΜΗΣ ΩΣ ΦΟΡΤΙΩΝ ΣΧΕΔΙΑΣΜΟΥ 1. ΦΟΡΤΙΣΗ ΓΡΑΜΜΗΣ

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1 ΣΕΙΡΑ ΚΩΔΙΚΟΣ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ ΠΟΙΚΙΛΙΑ ΧΡΩΜΑΤΩΝ ΤΙΜΗ ΡΟΛΟΥ /m2 LZ 5 Abstract Hard Abstract Soft RT 2 PG 10 SE 5 FA PT ΠΛΑΤΟΣ : 1,22 m ΜΗΚΟΣ : 50m 20 6 PX 6 TX 1 2.684 44 2.684 44 Chic PA 21 3.020 50 CA

Διαβάστε περισσότερα

Τοίχος αντιστήριξης. Ευρωκώδικες. Εγχειρίδιο αναφοράς. Αθήνα, Μάρτιος 2012. Version 1.0.26

Τοίχος αντιστήριξης. Ευρωκώδικες. Εγχειρίδιο αναφοράς. Αθήνα, Μάρτιος 2012. Version 1.0.26 Τοίχος αντιστήριξης Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 2012 Version 1.0.26 Περιεχόμενα 1 Γενικά στοιχεία για το πρόγραμμα...3 2 Εισαγωγή δεδομένων...4 2.1 Διατομή... 4 2.2 Επίχωση... 6 2.3

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA KONOP ZA ŠKOTE RACE - materijal jezgra dyneema na 16 struka, izvana poliester na 32 struka - za dizanje i spuštanje jedara, otporan na habanje, mala rastezljivost CRVENO/ PlAVO/ TF30 05000 TF33 05000 5

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

2. Αρμονική ιέγερση στην Βάση Μονοβάθμιου Ταλαντωτή (1-DOF) & Ελαστικά Φάσματα Απόκρισης

2. Αρμονική ιέγερση στην Βάση Μονοβάθμιου Ταλαντωτή (1-DOF) & Ελαστικά Φάσματα Απόκρισης . Αρμονική ιέγερση στην Βάση Μονοβάθμιου Ταλαντωτή (1-DF) & Ελαστικά Φάσματα Απόκρισης ΠΕΡΙΕΧΟΜΕΝΑ.1 Υπολογισμός σχετικής μετατόπισης Χ. Υπολογισμός ολικής μετατόπισης Υ.3. Ελαστικό φάσμα απόκρισης.4 Κάτι

Διαβάστε περισσότερα

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1.

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1. Παράδειγμα εκτύπωσης FEDRA... Παραδοχές - Φορτία Ονομασία Εργου-Μελέτης Διεύθυνση έργου Μηχανικός Μελετητής Παράδειγμα εκτύπωσης FEDRA ΙΩΑΝΝΙΝΑ Μηχανικός Α... Γενικά Χαρακτηριστικά Κτιρίου Οροφοι Οροφοι

Διαβάστε περισσότερα

Αναλογικά Συστήματα Ενδοεπικοινωνίας. Τιμή σε ΕΥΡΩ τύπος περιγραφή χωρίς ΦΠΑ με ΦΠΑ 23% Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF

Αναλογικά Συστήματα Ενδοεπικοινωνίας. Τιμή σε ΕΥΡΩ τύπος περιγραφή χωρίς ΦΠΑ με ΦΠΑ 23% Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF Συσκευές επιτραπέζιες ή επίτοιχες LEM-1 Κέντρο 1 γραμμής. 73,00 89,79 LEM-1DL Το ίδιο αλλά με button για αυτόματο άνοιγμα πόρτας. 100,00 123,00 LEM-3

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

ΟΦΘΑΛΜΟΣΚΟΠΙΟ ΕΥΡΕΙΑΣ ΓΩΝΙΑΣ

ΟΦΘΑΛΜΟΣΚΟΠΙΟ ΕΥΡΕΙΑΣ ΓΩΝΙΑΣ ΟΦΘΑΛΜΟΣΚΟΠΙΟ ΕΥΡΕΙΑΣ ΓΩΝΙΑΣ ΟΔΗΓΙΕΣ ΠΑΡΑΚΑΛΟΥΜΕ ΔΙΑΒΑΣΤΕ ΚΑΙ ΤΗΡΗΣΤΕ ΠΡΟΣΕΚΤΙΚΑ ΑΥΤΕΣ ΤΙΣ ΟΔΗΓΙΕΣ ΠΕΡΙΕΧΟΜΕΝΑ 1. Σύμβολα 2. Προειδοποιήσεις & επισημάνσεις 3. Περιγραφή προϊόντος 4. Ξεκινώντας 5. Ανοίγματα&

Διαβάστε περισσότερα

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Υ.ΠΕ.ΧΩ..Ε. ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΕΤΕΠ 08-01-03-02 08 Υδραυλικά Έργα 01 Χωµατουργικά Υδραυλικών Έργων 03 Εκσκαφές και Επανεπιχώσεις Ορυγµάτων Υπογείων ικτύων 02 Επανεπίχωση

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Proračun toplotne zaštite

Proračun toplotne zaštite Proračun toplotne zaštite za objekat Stambeni objekat urađen prema JUS U.J5.600 iz 1998 i JUS U.J5.510 iz 1987 godine. Sadržaj - analiza konstrukcija - analiza linijskih gubitaka - proračun toplotnih transmisionih

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

SB MB 59638780 08/15

SB MB 59638780 08/15 SB MB 59638780 08/15 2 Πριν χρησιμοποιήσετε τη συσκευή σας για πρώτη φορά, διαβάστε αυτές τις πρωτότυπες οδηγίες χρήσης, ενεργήστε σύμφωνα με αυτές και κρατήστε τις για μελλοντική χρήση ή για τον επόμενο

Διαβάστε περισσότερα

A/A Επώνυμο Όνομα 1 ΑΒΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ 2 ΑΓΓΕΛΕΡΟΥ ΑΙΚΑΤΕΡΙΝΗ 3 ΑΓΡΙΤΕΛΛΗΣ ΕΜΜΑΝΟΥΗΛ 4 ΑΘΑΝΑΣΙΑΔΟΥ ΕΥΤΕΡΠΗ - ΑΙΚΑΤΕΡΙΝΗ 5 ΑΘΑΝΑΣΙΑΔΟΥ ΜΑΡΙΑ 6 ΑΘΑΝΑΣΙΟΥ ΙΩΑΝΝΗΣ 7 ΑΘΑΝΑΣΙΟΥ ΜΙΧΑΗΛ 8 ΑΘΑΝΑΣΙΟΥ ΧΡΗΣΤΟΣ 9

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

Λύση: Ισολογισµός ισχύος στο Λέβητα Καυσαερίων: (1)

Λύση: Ισολογισµός ισχύος στο Λέβητα Καυσαερίων: (1) 6 η Οµάδα Ασκήσεων Άσκηση 6.1 Η πρόωση πλοίου επιτυγχάνεται µε Βραδύστροφο, -Χ κινητήρα Dieel µέγιστης συνεχούς ισχύος στον άξονα 6100 PS. Η ειδική κατανάλωση του κινητήρα είναι 15 gr/psh σε φορτίο 100

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

MERE DISPERZIJE ( VARIJABILNOSTI )

MERE DISPERZIJE ( VARIJABILNOSTI ) MERE DISPERZIJE ( VARIJABILNOSTI ) 1. RASPON VARIJACIJE 2.KVARTILNO ODSTUPANJE 3.PROSEČNO ODSTUPANJE 4.STANDARDNA DEVIJACIJA 5.KORELACIJA 6.STATISTIČKI POSTUPCI PRI BAŽDARENJU MERE DISPERZIJE Pokazatelji

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

3-2 ΥΓΡΑ ΣΕ ΙΣΟΡΡΟΠΙΑ

3-2 ΥΓΡΑ ΣΕ ΙΣΟΡΡΟΠΙΑ EΞΩΦΥΛΛΟ 89 3- ΕΙΣΑΓΩΓΗ Οι φυσικοί και οι μηχανικοί αποδίδουν το χαρακτηρισμό «ρευστά» στα υγρά και τα αέρια σώματα, τα οποία - αντίθετα με τα στερεά - δεν έχουν δικό τους σχήμα αλλά παίρνουν το σχήμα

Διαβάστε περισσότερα

5.1 Njutnov zakon univerzalne gravitacije

5.1 Njutnov zakon univerzalne gravitacije Glava 5 Gravitacija Orbitiranje prirodnih i veštačkih satelita oko Zemlje, planeta oko Sunca, fenomen plime i oseke, prenos toplote strujanjem fluida, visoka temperatura unutrašnjosti planeta, padanje

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

Παλάγκα- Μπετονιέρες Παλετοφόρα - Σκάλες

Παλάγκα- Μπετονιέρες Παλετοφόρα - Σκάλες Παλάγκα- Μπετονιέρες Παλετοφόρα - Σκάλες ΗΛΕΚΤΡΙΚΑ ΠΑΛΑΓΚΑ EXPRESS ΠΡΟΑΙΡΕΤΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ (ΟPTIONAL) ΦΟΡΕΙΟ ΠΑΛΑΓΚΩΝ Συνοδεύονται με την τροχαλία ÊÙÄÉÊOÓ: 63017 ÔÉÌÇ: 150 ÉÊÁÍÏÔÇÔÁ ÉÊÁÍÏÔÇÔÁ ÔÁ ÕÔÇÔÁ

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

Εποξειδικό υδατοδιαλυτό αστάρι 2 συστατικών

Εποξειδικό υδατοδιαλυτό αστάρι 2 συστατικών Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 12/03/20122 Κωδικός: 2012.11.04.010 Sikafloor -155 WN Εποξειδικό υδατοδιαλυτό αστάρι 2 συστατικών Περιγραφή Προϊόντος Εφαρμογές Χαρακτηριστικά / Πλεονεκτήματα Υδατικής

Διαβάστε περισσότερα

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Τβριδιςμόσ Υβριδικά τροχιακά και γεωμετρίεσ Γηαίξεζε

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα