Primer 3.1 Ugaona brzina i ugaono ubrzanje prenosnog elementa:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Primer 3.1 Ugaona brzina i ugaono ubrzanje prenosnog elementa:"

Transcript

1 Pie 3.1 Mehnički ite, ikzn n lici, keće e u vni ctež. Ketnje enonog eleent definiše njegov ugo otcije ϕ ( t) eltivno ketnje definiše koodint ( ) t. Podci u: ϕ( t ) t, ( t) 3t t, b 1, ( t[ ], [ ], ϕ[ d ]). Z dte odtke nctti oložj ite u tenutku t 1 i u to tenutku odediti olutnu bzinu i olutno ubznje tčke M koj vši loženo ketnje. U ovo zdtku ketnje enonog eleent je obtnje oko neoične oe eltivno ketnje je volinijko. U zdto tenutku veen tojnje AM (eltivn koodint) iznoi AM 1 ( ). Ugon bzin i ugono ubznje enonog eleent: ϕ& t t ϕ& 1 ω, ϕ&& t ϕ&& 1 1 ( ) ( ) ( ) ( ) ε. Seovi ω i ε e oklju eo ot ugl ϕ je je ϕ & ( 1 ) > 0 i ϕ& ( 1) > 0.

2 Reltivn bzin i eltivno ubznje: & ( t) 3 t & ( 1) 1 V 1, && ( t) & ( 1). Se vekto V okl e oo oto koodinte zbog & ( 1 ) > 0, e vekto je uotn od e ot koodinte zbog & & ( 1 ) < 0. Rtojnje OM, vžno z odeđivnje bzine i ubznj tčke M enonog eleent (to jet, enone bzine i enonog ubznj), dobijeno iz Pitgoine teoee z tougo OAM, iznoi OM Uvedio ugo α u touglu OAM, odkle inu i koinu tog ugl, koji će n knije tebti, iznoe OA 1 MA in α, co α. OM 5 OM 5 Intenziteti enone bzine i koonent enonog ubznj (Sl.1) u: V VM OM ω 5, N M N OM ω 4 5, 5 M T OM ε.

3 Seovi vekto V i u u kldu eovi ω i ε. Koioliovo ubznje: co ω V Intenzitet je co ω V 4 zbog θ Pošto e v ketnj odvijju u vni ctež, vc i e Koioliovog ubznj odeđeni u zketnje vekto V 0 z 90 u eu ugone bzine ω (Sl.). Aolutn bzin: V V + V x : V x V co α y : V V in α + V 3 y V Vx + Vy 5 Aolutno ubznje: N co N in α + co α co y N co α + in α + x : x 1 y : 0 8 x + y 4 13

4 Pie 3. Mehnički ite, ikzn n lici, keće e u vni ctež. Ketnje enonog eleent definiše njegov ugo otcije ϕ( t) eltivno kužno ketnje definiše ugon koodint ψ( t) gde je R 1 3. Podci u: ϕ( t) t t, π ψ( t) t t +, b 0, ( t[ ], ψ[ d], ϕ[ d] ). Z zdte odtke nctti oložj ite tenutku t 1 i u to tenutku odediti olutnu bzinu i olutno ubznje tčke M koj vši loženo ketnje? U ovo zdtku ketnje enonog eleent je obtnje oko neoične oe eltivno ketnje je kužno. Položj tčke M u odnou n enoni eleent odeđuje koodint ψ( t) koj z t 1 iznoi π 0 ψ( 1) 90. U zdto tenutku veen tojnje OM (vžno z odeđivnje enone bzine i enonog ubznj), iz jednkokkog vouglog tougl OCM, iznoi OM, ugo 0 izeđu duži OM i x oe iznoi 45 (Sl.1-ledeći ljd).

5 Ugon bzin i ugono ubznje enonog eleent: ϕ& ϕ&& 1 ( t) 4t 3t ϕ& ( 1) 1 ω 1 ( t) 4 6t ϕ&& ( 1) ε Se ω e okl eo ϕ& 1 > 0 ot ugl ϕ je je ( ). Se ε je uotn od e ϕ& & 1 < 0 ot ugl ϕ je je ( ). Reltivn bzin i eltivno ubznje: Uvođenje eltivne kužne koodinte dobij e ( t) t t + π ( t) R ψ( t) & ( t) t 1 & ( 1) 1 V 1 V N 1 R && ( t ) & ( 1 ) T Seovi vekto V T i T oklju e oo oto koodinte je je i & ( 1 ) > 0 i & & ( 1 ) > 0. Koioliovo ubznje: co ω V 0 θ 90 co ω V Odeđivnje vc i e Koioliovog ubznj ikzno je n lici.

6 Intenziteti enone bzine i koonent enonog ubznj (Sl.1) u: V VM OM ω N M N OM ω M T OM ε,,. Odeđivnje olutne bzine: V V + V o x : V V co 45 + V x o y : V y V in V Vx + Vy 5 Odeđivnje olutnog ubznj: N N T co x : x N T y : y N + N co 0 x + y 1

7 Pie 3.3 Žic AB, koj leži u yz vni obće e oko vetiklne oe z. Ketnje enonog eleent (žice) definiše njegov ugo otcije eltivno ketnje definiše koodint ( t). 3 Podci u: ( t) t + t, ϕ( t ) t 3, α 30 0, ( t, ϕ d, ). [ ] [ ] [ ] ϕ( t) Z zdte odtke nctti oložj ite tenutku t 1 i u to tenutku odediti olutnu bzinu i olutno ubznje tčke M koj vši loženo ketnje. U ovo zdtku ketnje enonog eleent je obtnje oko neoične oe eltivno ketnje je volinijko.u tenutku t 1 tojnje AM (eltivn koodint) iznoi AM ( 1), njkće tojnje izeđu tčke M i oe obtnj OM (vžno z odeđivnje enone bzine i enonog ubznj), iz jednkokkog vouglog tougl OAM (nedni ljd), iznoi OM AM in

8 Potoni ikz oložj ite u tenutku t 1, z zdte odtke, ikzn je n voj lici. N dugoj lici, ože e videti tj iti oložj li u ojekcij (gonj lik deno je ogled ed-ikz zay u voj veličini donj lik deno je ogled odozgo-ikz xay u voj veličini).

9 Reltivn bzin i eltivno ubznje: ( t) 1 + t, && ( t) & ( 1) 1, & ( 1) & V Seovi vekto V i oklju e oo oto koodinte je je i & 1 > i & & ( 1 ) > 0. ( ) 0 Ugon bzin i ugono ubznje enonog eleent: ϕ & ( t) t, ϕ&& ( t) t ϕ& ( 1) 1, ϕ& ( 1) ω 1, ε Se ω e okl eo ot ugl ϕ je je ϕ& ( 1 ) > 0. Se ε e okl eo ot ugl ϕ je je ϕ& & ( 1 ) > 0. Intenziteti enone Koioliovo ubznje: co ω V 0 bzine i koonent co ω V in30 1 enonog ubznj: Vektoi koji e vektoki V VM OM ω 1, nože ω i V obzuju vn zay. Vekto co, ošto o OM 1, biti uvn n tu vn, i N M N ω vc oe x. Se vekto co, OM. odeđen vilo dene uke, M T ε uotn je od e oe x. 1 1,..

10 Odeđivnje olutne bzine: V V + V x : V x V o 1 y : V y 0 + V in 30 o 3 z : V z 0 + V co30 olutne bzine je V V + V. V Vx + Vy + Vz Odeđivnje olutnog ubznj: N co x : x co o y : in y N Do itog ezultt e oglo doći i n ledeći nčin. Pošto u V i V eđuobno uvne koonente olutne bzine, intenzitet o z : z co x + y + z 3

11 Pie 3.4 Kužn žic, koj leži u yz vni, obće e oko vetiklne oe z. Ketnje enonog eleent (žice) definiše njegov ugo otcije ϕ ( t) eltivno kužno ketnje definiše ugon koodint ψ( t) gde je R 1. Podci u: 3π ϕ ( t) t 3t, ψ( t) t t +, b 1, ( t[ ], ψ[ d], ϕ[ d] ). Z zdte odtke nctti oložj ite tenutku t 1 i u to tenutku odediti olutnu bzinu i olutno ubznje tčke M koj vši loženo ketnje? U ovo zdtku ketnje enonog eleent je obtnje oko neoične oe eltivno ketnje je kužno. Položj tčke M u odnou n enoni eleent odeđuje koodint ψ( t) koj z t 1 iznoi 3π 0 ψ( 1) 70.

12 Potoni ikz Pikz u ojekcij

13 U zdto tenutku veen tojnje OM (vžno z odeđivnje enone bzine i enonog ubznj), iznoi OM b + R. Reltivn bzin i eltivno ubznje: Uvođenje eltivne kužne koodinte ( t) R ψ( t) dobij e d je 3π ( t) t t +. & ( t) t 1 & ( 1) 1 V 1 V N 1 R && ( t) & ( 1) T Seovi vekto V i oklju e T oo oto koodinte je je i & ( 1 ) > 0 i & & ( 1 ) > 0.

14 Ugon bzin i ugono ubznje enonog eleent: ϕ& ϕ&& ( t) t 3 ϕ& ( 1) 1 ( t) ϕ&& ( 1) ε ω 1 Se ω je uotn od e ϕ& 1 < 0 ot ugl ϕ je je ( ). Se ε e okl eo ϕ& & 1 > 0 ot ugl ϕ je je ( ). Intenziteti enone bzine i koonent enonog ubznj u: 1 V V OM M ω, OM N M N ω OM M T ε 4.,

15 Koioliovo ubznje: co ω V 0 θ 90 co ω V Vektoi koji e vektoki nože ω i V obzuju vn zay. Vekto co, ošto o biti uvn n tu vn, i vc oe x. Se vekto co, odeđen vilo dene uke, uotn je od e oe x. Odeđivnje olutne bzine (kći nčin): Pošto u V i V eđuobno uvne koonente olutne bzine, intenzitet olutne bzine je V V + V 5. Odeđivnje olutnog ubznj: N N T co y N T N co x : x 6 y : z : z 1 x + y + z 53

16 Pie 3.5 Mehnički ite, ikzn n lici, keće e u vni ctež. Tnltono ketnje enonog eleent definiše koodint x( t) eltivno ketnje definiše koodint ( t). Podci u: 3 x( t) t t +, ( t) t 3t + 3, 0 α 60, ( t[ ], x[ ], [ ] ). Z zdte odtke odediti olutnu bzinu i olutno ubznje tčke M tenutku t 1. U ovo zdtku, u ko je eltivno ketnje volinijko, tojnje AM (eltivn koodint) iznoi AM ( 1) 1, d, ovo tojnje, ko i vednot x koodinte, neće iti nikkv uticj n bzine i ubznj. Pvi i dugi izvod koodinte x, koj definiše enono tnltono ketnje, u tenu- oo oto koodinte x Se vekto okl e tku t 1 u: x &( t) 3t 4t, & x ( t) 6t 4 zbog & x& ( 1 ) > 0, e vekto V je uotn od e ot x &( 1 ) 1, & x ( 1) V 1, koodinte x zbog x& ( 1 ) < 0.

17 Reltivn bzin i eltivno ubznje: V &( t) t 3, && ( t) & ( 1) 1, & ( 1) 1,. Se vekto okl e oo oto koodinte zbog & & ( 1 ) > 0, e vekto V je uotn od e ot koodinte zbog & ( 1 ) < 0. Pietio d Koioliovog ubznj, i tnltono enono ketnju, ne, zbog tog što je ω0. Odeđivnje olutne bzine: V V + V o 3 x : Vx V V co 60 o 3 y : V y 0 V in 60 V Vx + Vy 3 Odeđivnje olutnog ubznj: o x : x + co o y : y 0 + in 60 3 x y 3

18 Pie 3.6 Mehnički ite, ikzn n lici, keće e u vni ctež. Tnltono ketnje enonog eleent definiše koodint x( t) eltivno kužno ketnje definiše koodint ψ( t), gde je R 1. Podci u: 3 x( t) 4t 7t + 4t, ψ t 3t 3t + π 6, ( t, x, ψ d ). ( ) [ ] [ ] [ ] Z zdte odtke nctti oložj ite u tenutku t 1 i u to & ( t) 6 t 3 & ( 1) 3 V 3 tenutku odediti olutnu bzinu i olutno ubznje tčke M koj vši V N 9 loženo ketnje? R Reltivn bzin i eltivno ubznje: && ( t) 6 & ( 1) 6 Uvođenje eltivne kužne Seovi vekto i oklju e koodinte ( t) R ψ( t) dobij V T 6 T oo oto koodinte je je i & 1 > e d je ( t) 3t 3t + π 6. i & & ( 1 ) > 0. ( ) 0

19 Ovde Koioliovo ubznje ne otoji je je enono ketnje tnltono. x & Penon bzin i enono ubznje: ( t) 1t 14t + 4, & x ( t) 4t 14 x &( 1 ), & x ( 1) 10 V, 10. Seovi vekto V i oklju e oo ot koodinte x zbog x& ( 1 ) > 0 i & x& ( 1 ) > 0. Odeđivnje olutne bzine: Odeđivnje olutnog ubznj: V V + V + N + T o x : V x V co o x : co o y : V V in30 + V 4 V y Vx + Vy 19 x N o y : in y T x + y ( ) ,8

20 Pie 3.7 Mehnički ite, ikzn n lici, keće e u vni ctež. Štovi 1 i obću e oko zglobov O 1 i O, eektivno. Kjnj tčk št (zvćeo je tčko M), uz ooć klizč, keće e duž št Podci u: ϕ( t) t t, b, α 45, ( t[ ], ϕ[ d] ). Nctti oložj ite tenutku t 1 i u to tenutku odediti ugonu bzinu i ugono ubznje št 1, koji je bš td vetikln i odediti olutnu bzinu i olutno ubznje tčke M, koj vši loženo ketnje, ko i ugonu bzinu i ugono ubznje št? U ovo zdtku kjnj tčk M št vši loženo ketnje. Zn e d je eltivn utnj volinijk je je enoni eleent, u odnou n koji e tčk M eltivno keće, št 1, koji je, u zdto oložju, vetikln. Činjenic je d u ovo zdtku u neoznte veličine ulze i intenziteti i eovi vekto eltivne bzine i eltivnog ubznj, to jet ne, ko u ethodni iei, zdte eltivne koodinte koj bi njih odedil. Z zliku od ethodnih ie, ovde e zn d je olutn utnj tčke M kužn, je tčke M id štu. T činjenic će n dti neke od vžnih odtk o vektoi olutne bzine i olutnog ubznj.

21 Položj ite u tenutku t 1 z zdte odtke ikzn je n lici 1. Ugon bzin i ugono ubznje št 1: ϕ& ( t) 3t 4t, ϕ&& ( t) 6 ϕ& ( 1) 1, ϕ&& ( 1) ω 1 1 1, ε1 t 4 Se ω 1 je uotn od e ϕ& 1 < 0 ot ugl ϕ je je ( ). Se ε 1 e okl eo ϕ& & 1 > 0 ot ugl ϕ je je ( ). N lici ikzn je vekto enone bzine, ko i vektoi koonent enonog ubznj. Z odeđivnje njihovih intenzitet dovoljno je, oi i ε1, d e zn d tojnje O 1 M iznoi O 1M b in α 1. Zbog obtnog ketnj enonog eleent (št 1) ti intenziteti u: V O1M ω1 1, N O1M ω1 1, O1M ε1. ω 1

22 Anliz bzin: N onovu vektoke foule oći će d e odede neoznte veličine, ošto će u njoj biti neoznt o dv vžn odtk (to u intenziteti olutne i eltivne bzine). Pvci vekto olutne i eltivne bzine u oznti eovi u i etotvljeni. V V + V V 1 x : V 1+ 0 V, ω 1 OM y : V 0 + V V 1 Zbog činjenice d u ešenj z V i V ozitivnih edznk, etotvke o eovi z V i V (i ti i z ω) u tčne. Koioliovo ubznje: co ω V 0 θ 90 co ω1 V Pošto e v ketnj odvijju u vni ctež, vc i e Koioliovog ubznj odeđeni u zketnje vekto V 0 z 90 u eu ugone bzine ω 1 (Sl.-nedni ljd).

23 Anliz ubznj: Ovde olutno ubznje o d e zloži n njegovu nolnu koonentu N i tngencijlnu T, zbog idnoti tčke M štu, koji e obće oko zglob O (Sl.1). Koonent N je u otunoti oznt njen intenzitet je N OM ω. Koonenti T intenzitet je neoznt je g odeđuje foul T O M ε ε, dok joj je vc oznt e etotvljen. N + T N co : ε T x ε 1, : N + T y

24 Pie 3.8 Mehnički ite, ikzn n lici, keće e u vni ctež. Štovi 1 i obću e oko zglobov O 1 i O, eektivno. Kjnj tčk št (zvćeo je tčko M), uz ooć klizč, keće e duž št 1. Podci u: 3 0 ϕ t t t, b 3, α 60, ( t, ϕ d ). ( ) [ ] [ ] Nctti oložj ite tenutku t 1 i u to tenutku odediti ugonu bzinu i ugono ubznje št i odediti eltivnu bzinu i eltivno ubznje tčke M u odnou n št 1 ko i ugonu bzinu i ugono ubznje št 1. U ovo zdtku kjnj tčk M št vši loženo ketnje. Zn e d je eltivn utnj volinijk je je enoni eleent, u odnou n koji e tčk M eltivno keće, št 1, koji je, u zdto oložju, vetikln. Činjenic je d u ovo z- dtku u neoznte veličine ulze i intenziteti i eovi vekto enone bzine i enonog tngencijlnog ubznj, to jet ne, ko u većini ethodnih ie, zdte koodinte koj definiše enono ketnje. Z zliku od tkvih ie, ovde e zn u otunoti olutno ketnje. Oi olutne utnje tčke M, znće e i vektoi, kko njene bzine tko i koonent njenog ubznj, je on id štu, čije ketnje je definino koodinto ϕ t. ( )

25 Položj ite u tenutku t 1 z zdte odtke ikzn je n lici deno. Ugon bzin i ugono ubznje št : ϕ & ( t) 3t t, ϕ&& ( t) 6t ϕ& ( 1) 1, ϕ& ( 1) 4 ω 1 1, ε 4. Aolutn bzin i koonent olutnog ubznj: V VM OM ω, N MN OM ω, T MT OM ε 8 Anliz bzin: V V + V o x : in 60 V + 0 V 3, o y : co V V 1 ω V 1 1 O1M 1

26 Anliz ubznj: Ovde enono ubznje o d e zloži n njegovu nolnu koonentu N i tngencijlnu, zbog idnoti tčke M štu 1, koji e obće oko zglob O 1. Koonent N je u otunoti oznt njen intenzitet je N O1M ω1 3. Koonenti intenzitet je neoznt je g odeđuje foul M ' T O1M ε1 3 ε1 dok joj je vc oznt e etotvljen. Koioliovo ubznje: co ω V 0 θ 90 co ω1 V Pošto e v ketnj odvijju u vni ctež, vc i e Koioliovog ubznj odeđeni u zketnje vekto V 0 z 90 u eu ugone bzine ω 1 (Sl.-nedni ljd).

27 N + T N co 1 3 x : y : , ε 1 O M , 4 Zbog činjenice d u ešenj z i ozitivnih edznk, obe etotvke o eovi u tčne. Pi ojektovnju vekto n 0 koodintne oe z co60 in je vednot 1 dok je 0 z in 60 in vednot 3.

Trenutni pol brzine. Načini njegovog određivanja.

Trenutni pol brzine. Načini njegovog određivanja. Tenutni ol bzine. Nčini njegovog odeđivnj. Svko kuto telo koje vši vno ketnje, u oštem slučju, u svkom tenutku, n svom mteijlnom ili nemteijlnom delu, im smo jednu tčku, čij je bzin jednk nuli V = 0. T

Διαβάστε περισσότερα

sektorska brzina tačke

sektorska brzina tačke šinski fkultet eogd - ehnik Pedvnje Sektosk bin tčke Nek je ketnje tčke dto vektoom oložj Pi ketnju tčke vekto oložj = O oisuje konusnu ovšinu s vhom u tčki O o i i definisnju bine tčke u ethodnim mtnjim

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni

Διαβάστε περισσότερα

Gravitacija ZADACI ZA SAMOSTALNI RAD STUDENATA OSNOVE FIZIKE 1

Gravitacija ZADACI ZA SAMOSTALNI RAD STUDENATA OSNOVE FIZIKE 1 Oje z fiziku eučiište Joi Juj toye itcij ADACI A AOALNI AD UDENAA ONOVE IIKE. Oeite eio obik jeec oko eje ko zno je enji ouje eje 670 k, je enj ujenot izeñu eje i jeec,8 0 8 i oć (uniezn) gitcijk kontnt

Διαβάστε περισσότερα

Kinetička energija: E

Kinetička energija: E Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M

Διαβάστε περισσότερα

REDUKCIJA SISTEMA NA TAČKU KOORDINATNOG POČETKA Glavni vektor Glavni moment. = xi. F r. r = j. M i. M r

REDUKCIJA SISTEMA NA TAČKU KOORDINATNOG POČETKA Glavni vektor Glavni moment. = xi. F r. r = j. M i. M r REUKCIJA ITEA NA TAČKU KOORINATNO POČETKA lvn vekto lvn moment O ) ( j ) ( j O k j k j j j j θ cos cosθ Pme. dt povoljn poston sstem sl speov (l.) sle su defnsne vektom: j k j k 4 j k j j j k k Pojekcje

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

SLOŽENO KRETANJE TAČKE

SLOŽENO KRETANJE TAČKE SLOŽENO KRETANJE TAČKE DEFINISANJE SLOŽENOG KRETANJA TAČKE BRZINA TAČKE PRI SLOŽENOM KRETANJU a) Relativna bzina b) Penosna bzina c) Apsolutna bzina d) Odeđivanje zavisnosti apsolutne od elativne i penosne

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1) TEKSTOV ZADATAKA (2. kolokvijum) iz Elektomgnetike (stuijski pogm EEN, 22/). Oeiti silu koj eluje n tčksto opteećenje Q smešteno izn polusfeične povone izočine nultog potencijl. 2. Oeiti elimične kpcitivnosti

Διαβάστε περισσότερα

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću Reltivno irovnje tečnosti Trnsltorno kretnje sud s tečnošću Zdtk Cistern čiji je orečni resek elis oluos i b nunjen je tečnošću ustine i kreće se rvolinijski jednklo ubrzno ubrznje w o orizontlnoj rvni

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

MEHANIKA MATERIJALNE ČESTICE

MEHANIKA MATERIJALNE ČESTICE ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA I -- pednj -- MEHANIKA MATERIJALNE ČESTICE.1 Kinemik meijlne čeice Mehnik je dio fizike koj pouč zkone kenj/gibnj ijel, j. emenku pomjenu položj ijel

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

Mašinski fakultet, Beograd - Mehanika 3 Predavanje 5 1

Mašinski fakultet, Beograd - Mehanika 3 Predavanje 5 1 ški fkultt Bogd - hnik 3 Pdvnj 5 Ktnj tčk od djtvom cntln il Zkon ovš Nk omt ktnj tčk m m n koju dluj mo cntln il F i čmu j cnt il u noktnoj tčki O omnt il F u odnou n tčku O j z v vm ktnj tčk jdnk nuli

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Teorija mašina i mehanizama

Teorija mašina i mehanizama Teoj mšn mehnzm S A D R Ž A J. FUNKCIJA, VRSTE I STRUKTURA MEHANIZAMA... 3.. Funkcj mehnzm... 3.. Vste mehnzm... 5.3. Stuktu mehnzm... 6. ANALIZA POLUŽNIH MEHANIZAMA..... Polužn četvoougo..... Tenutn pol.

Διαβάστε περισσότερα

PRIMENA INTEGRALA

PRIMENA INTEGRALA www.mtmtinj.com PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nđmo

Διαβάστε περισσότερα

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine.

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine. KONSRUKIVNI ZI (ROUGO) Rešvje kotruktivih zdtk je jed od jtežih olti koj v ček ove godie. Zhtev doro predzje, pozvje odgovrjuće teorije. Zto vm mi preporučujemo d e jpre podetite teorije veze z trougo

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

Postavljamo uvjet ravnoteže na osnovu dijagrama slobodnog tijela i dijagrama masa-ubrzanje.

Postavljamo uvjet ravnoteže na osnovu dijagrama slobodnog tijela i dijagrama masa-ubrzanje. . & d / GZ.75 k i 5 G 5 C 5 JEŠEJE ZDK 7 (9.8) G G D C Kinik:.5().75 / j odij ( ) /(.5.5).75 /..5d /. D Ukupno ubznj n G j p o jdnko:.5(.5).5 /. oljo uj nož n onou dij lobodno ijl i dij -ubznj. M C. 7(.5)

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Univerzitet u Nišu Fakultet zaštite na radu. Dejan M. Petković. Elektromagnetna zračenja Sveska III ELEKTROMAGNETIZAM. Niš, 2016.

Univerzitet u Nišu Fakultet zaštite na radu. Dejan M. Petković. Elektromagnetna zračenja Sveska III ELEKTROMAGNETIZAM. Niš, 2016. Univezitet u Nišu Fkultet zštite n du Dejn M. Petković Elektomgnetn zčenj Svesk ELEKTROMAGNETZAM Niš, 6. godine Auto D Dejn (Miln) Petković, edovni pofeso Fkultet zštite n du, Niš Nslov Elektomgnetn zčenj,

Διαβάστε περισσότερα

KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA.

KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA. KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA. Jednačine ketanja x(t) i y(t) u potpunosti odeđuju sve pojmove vezane

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Neodreeni integrali. Glava Teorijski uvod

Neodreeni integrali. Glava Teorijski uvod Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a . ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a a ΑΘΡΟΙΣΜΑ ΔΙΑΔΟΧΙΚΩΝ ΔΙΑΝΥΣΜΑΤΩΝ:, ( ) 3 4 3 4 a a a a a 3 aaa3a4 a 3 a 4,,,,...,,,.,. .,,,, : () a ( ) () ( ) ( ) ( ) (3) 0 (4) (

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW (Ισχύει από 02/03/2015)

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW (Ισχύει από 02/03/2015) ΛΙΑΝΙΚΗ F21 - Νέα Σειρά 1 3θυρη 2P71 116i 1.499 109 116-126 22.650 21.220 116i Έκδοση Advantage 24.150 22.720 116i Έκδοση Sport Line 26.000 24.570 116i Έκδοση Urban Line 26.000 24.570 116i Έκδοση M Sport

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2 Zdtk (Romn, gimnzij) Sdnji jdnkokčnog tpz im duljinu 5 ko su dijgonl mđusono okomit, kolik j njgo pošin? Rjšnj udući d j u jdnkokčnom pokutnom tokutu isin osnoi jdnk poloini osnoi, ijdi: x = + = x + y

Διαβάστε περισσότερα

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371, E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Zbirka rešenih ispitnih zadataka iz Osnova elektrotehnike

Zbirka rešenih ispitnih zadataka iz Osnova elektrotehnike Snj Mvić Mikloš Pot Zik ešenih ispitnih zdtk iz Osnov elektotehnike Suotic,. PDGOO Ov zik zdtk pisn je z studente iše tehničke škole elektotehničkog sme u Suotici, li može poslužiti i studentim dugih pofil

Διαβάστε περισσότερα

Elementi analitičke geometrije u prostoru R 3

Elementi analitičke geometrije u prostoru R 3 UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Vldm Tutć Element nltčke geometje u postou R 3 Mste d Nov Sd 00. godn. Sdžj ELEMENTI ANALITIČKE GEOMETRIJE U

Διαβάστε περισσότερα

OBRASCI ELEMENTARNE MATEMATIKE SY jun 2008.

OBRASCI ELEMENTARNE MATEMATIKE SY jun 2008. OBRASCI ELEMENTARNE MATEMATIKE SY347 9. ju 008. Priroi rojevi u kup vih pozitivih elih rojev, N {,, 3,...}. Celi rojevi u kup vih pozitivih i etivih elih rojev i ule, Z {...,, 3, 0,,, 3,...}. Rioli rojevi

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα