SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET"

Transcript

1 SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature u presjeku. Materijal: Beton: MB 40 rmatura: R 400/500 Zaštitni sloj betona:,0 cm Poprečna armatura (vilice): Φ8 mm Opterećenje N g = kn N p = kn Zadatak Materijal: Beton: C 30/37 rmatura: B 500B Zaštitni sloj betona: 3,0 cm Poprečna armatura (vilice): Φ10 mm Statička uzdužna armatura: Ф16mm Konstruktivna uzdužna armatura: Ф1mm Opterećenje M G = -110 knm M Q = -80 knm N G = -50 kn N Q = -180 kn Za presjek sa slike: a) Dimenzionirati presjek (u proračun ući sa pretpostavljenom udaljenošću težišta vlačne armature od zategnutog ruba 7 cm). b) Nacrtati raspored usvojene armature u presjeku. Napomena: M + zategnut donji rub presjeka M - zategnut gornji rub presjeka N + vlačna sila N - tlačna sila 8. pismeni (dodatni) ispit

2 Osnove betonskih konstrukcija k. 013/014 Zadatak 3 Dimenzionirati i uraditi nacrt armature ab grede. Uzduzni presjek Poprecni presjek eff Staticki sustav i opterecenje 300 kn 150 kn 00 kn Beton MB 30 rmatura R 400/500 Poprečna armature (vilice) ϕ 8mm (po potrebi ϕ 10mm) Opterećenje na gredi ultimno Vlastitu težinu grede zanemariti. Zaštitni sloj betona,5 cm 8. pismeni (dodatni) ispit

3 Osnove betonskih konstrukcija k. 013/014 Zadatak 1 1, 9 ;,1 a 0 g p Nu g Ng p Np 1,9 1500, kn - ultimna tlačna sila Nbu b fb 35 45, ,5 kn - tlačna sila koju može preuzeti betonski N u N bu presjek u stanju granične nosivosti Nau Nu Nbu ,5 933,75 kn - tlačna sila koju u stanju granične N 933,75 nosivosti treba preuzima uzdužna armatura au a,pot 3,34 cm - potrebna površina uzdužne armature 40 Usvojena armature 1 16 a 4,1cm Geometrijski stupanj armiranja presjeka 4, ,53 % 0,6 % a 0 min b bu f b Raspored armature u poprečnom presjeku 3R16 R16 R16 R16 R8/0 3R16 MB 40 R 400/500 a =,0 cm Zadatak Računska vrijednost presječnih sila sd G G Q Q sd G G Q Q M M M 1, , ,5 knm N N N 1, , ,5 kn s1 s1 T b T b M sd N sd 8. pismeni (dodatni) ispit 3

4 Osnove betonskih konstrukcija k. 013/014 Msds Msd Nsd zs1 68,5 607,5 0,18 377,85 knm - računski moment u težištu vlačne armature h 50 zs1 d1,pret 7 18cm - udaljenost težišta vlačne armature od težišta presjeka d 1,pret = 7 cm pretpostavljena udaljenost težišta vlačne armature od vlačnog ruba M 377,85 sd 0,341lim 0,5 C30 / 37 bd f 0,343,0 sds cd dhd1,pret cm - pretpostavljena statička visina presjeka - -struko armiranje f f 30 ck cd c 1, 5 0,0MPa - računska čvrstoća betona (C30/37) M b d f 0,5 0,30 43,0 79,6 knm - Računski moment Rd,lim sd,lim cd nosivosti 1-struko armiranog presjeka Msd Msds MRd,lim 377,85 79,6 98,5 knm Potrebna površina vlačne armature MRd,lim Nsd Msd 79,6 607,5 98,5 s1,req d f f d d f 0,813 0,43 43,48 43,48 0,43 0,05 43,48 lim yd yd yd 18,40 13,97 5,95 10,37 cm Potrebna površina tlačne armature M 98,5 sd s,req ddfyd 0,430,0543,48 5,95 cm d = 5 cm - pretpostavljena udaljenost tlačne armature od pritisnutog ruba f yd fyk ,8 MPa 1,15 s - računska čvrstoća armature (B 500B) Usvojena armatura Vlačna Tlačna s1 1,06cm s 6,03cm 8. pismeni (dodatni) ispit 4

5 Osnove betonskih konstrukcija k. 013/014 Raspored armature u poprečnom presjeku 6R16 R1 R10 3R16 C 30/37 B 500B c = 3,0 cm d c 13,0 1,0 1,6 16,6 cm d 1 vil 1,pret 1, 6 d c 3,01,0 4,8cmd vil,pret Zadatak 3 Dijagrami presječnih sila 1 B 3 ''M '' u ,8 341,6 ''Q '' u 00,0 19, 79, DIMENZIONIRNJE N SVIJNJE MB 30 f b 0,5MPa R 400/ MPa Presjek u polju grede Mu,max 341,6 knm Pretpostavka d,pret = 7 cm 8. pismeni (dodatni) ispit 5

6 Osnove betonskih konstrukcija k. 013/014 h dd cm - pretpostavljena statička visina presjeka pret,pret Pretpostavka: x < d pl b = b s = 150 cm. M 341,6 10 mau 0,060 mau 0,338 b h f ,05 u,max b Ma 0,063 mau 0,060 kx 0,119 x k h 0, ,1cm d 15 cm - kontrola položaja neutralne osi x b a,pot Ma b h 0, ,83 cm 40 pl f,05 - potrebna površina vlačne Usvojena armatura - 6 a,81cm - Poz 1 armature 6R d c 1, 0, 5 1, 0, 1, 0 6, 7 cm d vil,pret,pret h dd 50 6,7 43,3 cm h pret Oslonački presjek (oslonac B) Mu,max 400,0 knm c 0, 4 - reducirani moment 8 8 osl Mu,red Mu,max RB,u 400,0 479, 376,1kNm Pretpostavka d,pret = 7 cm h dd cm - pretpostavljena statička visina presjeka pret,pret M 376,110 mau 0,331mau 0,338 bh f 3043,05 u,red b Ma 0,43 f,05 - potrebna površina vlačne b a,pot Ma b h 0, ,97 cm 40 Usvojena armatura a 9,45cm 6R5 - Poz armature d c 1, 0, 5 1, 0, 5 1, 0 7, 0 cm d vil,pret,pret hdd ,0cmh pret 8. pismeni (dodatni) ispit 6

7 Osnove betonskih konstrukcija k. 013/014 DIMENZIONIRNJE N POPREČNE SILE Minimalna poprečna armatura 1 r 1 1,1 1) n r vil,min 0, ,1375% f 400 av 0, b 100 0, ,15 cm m' ' a,vil,min vil,min b 0 Usvojene -rezne vilice 8 / 0cm m 0,5 5,0cm m' ' 1 a,vil a tvil 0 ) n r vil,min 0,% ' 0, a,vil,min vil,min b b , ,0 cm m' 100 Usvojeno: -rezne vilice 8 / 15cm m 0,5 6,67cm m' ' 1 a,vil a tvil 15 ' a,vil u( 8/15) av min 6,67 Q f z 4036,55 97,5kN - nosivost vilica 8 / 15cm z 0,85 h 0, ,55 cm min min Proračun poprečne armature Uporedni posmični naponi r 1,10 MPa MB 30 3r 3,30 MPa 5 r 5,50MPa R 400/500 Dio grede MPa 170,8 kn 170,8 kn n 0,155 1,55 MPa b z 30 36,8 cm - posmično naprezanje 0 z 0,85 h 0,85 43,3 36,8 cm - krak unutrašnjih sila r 1,10MPa n 1,55MPa 3r 3,30MPa 1 1 Qbu 3r n bo z 0,33 0, ,8 96,6 kn,red Qbu 170,8 96,6 74, kn - dio sile koju preuzima poprećna armatura Q 74,kNQ 97,5kN - usvojene -rezne vilice 8 / 15cm u,red u( 8/15) 8. pismeni (dodatni) ispit 7

8 Osnove betonskih konstrukcija k. 013/014 Dio grede 1-19, kn 19, kn n 0,117 1,17 MPa b z 30 36,8 cm - posmično naprezanje 0 z 0,85 h 0,85 43,3 36,8 cm - krak unutrašnjih sila r 1,10 MPa n 1,17 MPa 3r 3,30 MPa 1 1 Qbu 3r n bo z 0,33 0, ,8 117,6 kn,red Qbu 19, 117,6 11,6 kn - dio sile koju preuzima poprećna armatura Q 11,6kNQ 97,5kN - usvojene -rezne vilice 8 / 15cm u,red u( 8/15) Dio grede - B 79, kn 79, kn n 0,55,55 MPa b z 30 36,55 cm - posmično naprezanje 0 z 0,85 h 0,85 43,0 36,55 cm - krak unutrašnjih sila r 1,10MPa n,55mpa 3r 3,30MPa 1 1 Qbu 3r n bo z 0,33 0, ,55 41,1kN,red Qbu 79, 41,1 38,1kN - dio sile koju preuzima poprećna armatura a,vil,pot,red f mz cossinctg av t vil - potrebna posmična armatura Za Q u,red 90 i 45 a,vil,pot tvil mz Usvojena vilica ϕ8mm t vil,pot 1 a mz 0, ,55 6,1cm - preguste vilice Q 38,1 u,red Usvojena vilica ϕ10mm t vil,pot 1 a mz 0, ,55 Q 38,1 u,red 9,7cm Usvojene -rezne vilice 10 / 7,5cm 8. pismeni (dodatni) ispit 8

9 Osnove betonskih konstrukcija k. 013/014 Dio grede B ,0 kn 00,0 kn n 0,18 1,8 MPa b z 30 36,55 cm - posmično naprezanje 0 z 0,85 h 0,85 43,0 36,55 cm - krak unutrašnjih sila r 1,10 MPa n 1,8 MPa 3r 3,30 MPa 1 1 Qbu 3r n bo z 0,33 0, ,55 81,1kN,red Qbu 00,0 81,1 118,9 kn - dio sile koju preuzima poprećna armatura Usvojena vilica ϕ8mm t vil,pot 1 a mz 0, ,55 Q 118,9 u,red 1,3cm Usvojene -rezne vilice 8 / 10cm Maksimalno rastojanje vilica u području n r d505cm tvil,max b0 30cm 5 cm - zadovoljava Poz 1-6 SIDRENJE RMTURE Sidrenje u osloncu B ls,eff 1010, cm - Usvojeno ls,eff 5cm Sidrenje u osloncu a,pot 3,1 ls,eff s lso 1,070,4 6,6cm - potrebna duljina sidrenja 3 3,81 a,stv I lso K 3, 70,4cm - osnovna duljina sidrenja - bolji uvjeti sidrenja MB30 I K 3 R 400 / bolji uvjeti sidrenja s 1 - koeficijent sidrenja sidrenje pravim krajem a,pot Z 18,1 f 40 au 3,1cm - potrebna usidrena armatura u osloncu av v 0,75 h Zau Qau 170,8 18,1kN - sila koju treba usidriti u osloncu h h a,stv,81cm 6 - sve šipke iz polja grede sidrene u oslonac 8. pismeni (dodatni) ispit 9

10 Osnove betonskih konstrukcija k. 013/014 Minimalna duljina sidrenja u osloncu I 0,5 lso 0,5 70, 4 3,5 cm 3 3 ls,min 10 10,14,7cm cm 10 cm 3 Usvojena duljina sidrenja u osloncu l s 5cm Duljina šipke Poz 1 L cm Poz II lso K 48,5 10,0 cm - osnovna duljina sidrenja - lošiji uvjeti sidrenja MB30 II K 48 R 400 / lošiji uvjeti sidrenja a,pot a,pot ls,eff s lso s lso 1, cm 1 a,stv - potrebna duljina sidrenja a,stv s 1 - koeficijent sidrenja sidrenje pravim krajem Duljina šipke Poz usvojene šipke iste duljine L 180 0,5 197,5 cm - duljina šipke desno od osi oslonca B L 0, L v l 0, 600 0,75 43,3 10 7,5 cm - Usvojeno 30,5 cm p s,eff duljina šipke lijevo od osi oslonca B L 197,5 30,5 500 cm ukupna duljina šipke Poz NCRT RMTURE Uzdužni presjek Poz 4 - R1 kom. L = 300 cm Poz 4 - R1 Poz - R5 kom. 6 L = 500 cm Poz - 4R5 Poz - R5 Poz 1-4R Poz 1 - R Poz 3 - R1 Poz 1 - R kom. 6 L = 60 cm Poz 3 - R1 kom. L = 00 cm 8. pismeni (dodatni) ispit 10

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ Διάμετρος διατομής υλικά: f (N/mm 2 ) 6 Χάλυβας 2 235 Σκυρόδεμα 2 2 Διατομή Χάλυβα: 12 Χάλυβας Ο/Σ 3 section 355,6x5, συντελεστές ασφαλείας: D (mm) 355,6 γ a = 1, t (mm) 5, γ c = 1,5 A a (cm 2 ) 55,1 γ

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από Τ.Ε.Ι. Τμήμα Κατασκευές ΣΕΡΡΩΝ Πολιτικών Οπλισμένου Δομικών Σκυροδέματος Έργων ΥΠΟΛΟΓΙΣΜΟΣ Ι Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.(σχήμα 4.1) και από Β προκύπτει d1cnom+øw+øl/

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΙΑ (Ι) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΜΗΧΑΝΙΚΗ ΚΑΙ ΚΑΤΑΣΚΕΥΕΣ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE I. Predavanja

BETONSKE KONSTRUKCIJE I. Predavanja BETONSKE KONSTRUKCIJE I Predavanja Zagreb, 010. Igor Gukov SADRŽAJ 1. UVOD...3. FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA...6.1. Beton...7.1.1 Računska čvrstoća betona...11.1. Višeosno stanje naprezanja...11.1.3

Διαβάστε περισσότερα

PREDNAPETI BETON. Predavanja. Zagreb, 2007.

PREDNAPETI BETON. Predavanja. Zagreb, 2007. PREDNAPETI BETON Predavanja Zagreb, 2007. SADRŽAJ 1. UVOD...3 2. SVOJSTVA MATERIJALA...7 2.1. Čelik za prednapinjanje...7 2.2. Beton...9 2.3. Mort za injektiranje...10 3. SUSTAVI ZA PREDNAPINJANJE...13

Διαβάστε περισσότερα

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1 (1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΚΑΙ ΛΕΠΤΟΜΕΡΕΙΕΣ ΟΠΛΙΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΠΟ ΣΚΥΡΟΔΕΜΑ ΙΓΝΑΤΑΚΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ

ΔΙΑΜΟΡΦΩΣΗ ΚΑΙ ΛΕΠΤΟΜΕΡΕΙΕΣ ΟΠΛΙΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΠΟ ΣΚΥΡΟΔΕΜΑ ΙΓΝΑΤΑΚΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΔΙΑΜΟΡΦΩΣΗ ΚΑΙ ΛΕΠΤΟΜΕΡΕΙΕΣ ΟΠΛΙΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΠΟ ΣΚΥΡΟΔΕΜΑ ΚΩΔΙΚΟΠΟΙΗΣΗ - ΕΦΑΡΜΟΓΕΣ ΙΓΝΑΤΑΚΗΣ ΧΡΗΣΤΟΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ Α.Π.Θ. ΕΠΙΜΕΛΕΙΑ ΠΑΝΑΓΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ MSc Επικοινωνία:

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

b w = 200 mm h = 600 mm d = 550 mm

b w = 200 mm h = 600 mm d = 550 mm εδοέν : ΠΑΡΑ ΕΙΓΜΑ Μονώροφος πλισικός φορές ε τετρπλή συετρί Μόνον νωδοή Υλικά : σκυρόδε C0/5 f ck 0 MPa γ c,50 χάλυβς B500C f yk 500 MPa γ,5 εδοέν νωδοής : Κάτοψη Ύψος ορόφου h 4,0 m Υποστυλώτ 50/50 mm

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

Solar 3000 TF / Solar 4000 TF

Solar 3000 TF / Solar 4000 TF 6720616592.00-1.SD Ορθοστάτης για επίπεδους συλλέκτες Solar 3000 TF / Solar 4000 TF GR Οδηγίες συναρμολόγησης για τον ειδικό 2 Περιεχόμενα GR Περιεχόμενα 1 Επεξήγηση συμβόλων και υποδείξεις ασφαλείας 3

Διαβάστε περισσότερα

2ο Mέρος: Αριθμητικά παραδείγματα

2ο Mέρος: Αριθμητικά παραδείγματα 5.5m 0.4m Y T1Y 300/25 X BY1 25/50 BY2 25/50 BY3 25/50 1.2m BX9 25/50 0.4m Τ3Χ 375/25 0.4m BX10 25/50 C7 40/40 C8 40/40 BY4 25/50 Π1Υ 25/270 BY5 25/50 BY6 25/50 BX6 25/50 BX7 25/50 BX8 25/50 BX4 25/50

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

Προφανώς, λόγω των ίσων προβόλων, ο ανά μέτρο μήκους. 4 Ηδη από αυτό καταλαβαίνουμε ότι δεν έχει νόημα ο έλεγχος. σε διάτρηση.

Προφανώς, λόγω των ίσων προβόλων, ο ανά μέτρο μήκους. 4 Ηδη από αυτό καταλαβαίνουμε ότι δεν έχει νόημα ο έλεγχος. σε διάτρηση. ΠΕΡΙΕΧΟΜΕΝΑ 1. Δύσκαμπτο πέδιλο χωρίς ροπή. Δύσκαμπτο πέδιλο με ροπή 3. Εύκαμπτο πέδιλο χωρίς ροπή 3.Α Με οπλισμό διάτρησης 3.Β Χωρίς οπλισμό διάτρησης 1. Δύσκαμπτο κεντρικό πέδιλο (χωρίς ροπή) Ζητείται:

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

Τεχνικά Χαρακτηριστικά

Τεχνικά Χαρακτηριστικά Έκδοση 2, 02/2002 Εποξική ρητίνη χαμηλού ιξώδους υδροφιλική Γενικά Εφαρμογές Προδιαγραφές προϊόντος Ιδιότητες προϊόντος Διαδικασία ανάμιξης Εποξικό συγκολλητικό σκυροδέματος δύο συστατικών για επισκευές

Διαβάστε περισσότερα

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1.

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1. Παράδειγμα εκτύπωσης FEDRA... Παραδοχές - Φορτία Ονομασία Εργου-Μελέτης Διεύθυνση έργου Μηχανικός Μελετητής Παράδειγμα εκτύπωσης FEDRA ΙΩΑΝΝΙΝΑ Μηχανικός Α... Γενικά Χαρακτηριστικά Κτιρίου Οροφοι Οροφοι

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

09. 4M -VK ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ

09. 4M -VK ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ ΕΙΣΑΓΩΓΗ ΕΚΚΙΝΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Έχοντας βεβαιωθεί ότι η εγκατάσταση του προγράµµατος

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 3

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 3 Τεχνογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχή Τεχνογικών Εφαρµογών Τµήµα Πιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 3 Επιφανειακές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 010 1 Μάθηµα:

Διαβάστε περισσότερα

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ Δημοκρίτειο Πανεπιστήμιο Θράκης_ Τμήμα Πολιτικών Μηχανικών_ Τομέας Δομικών Έργων Κατασκευές Ωπλισμένου Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ ΣΤΟΙΧΕΙΑ ΣΕ ΚΑΘΑΡΟ ΕΦΕΛΚΥΣΜΟ Εφελκυσμός από εξωτερική φόρτιση: 0.60

Διαβάστε περισσότερα

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση Αλληλεπιδράσεις νετρονίων Το νετρόνιο ως αφόρτιστο νουκλεόνιο παίζει σημαντικό ρόλο στην πυρηνική φυσική και στην κατανόηση των πυρηνικών αλληλεπιδράσεων.

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez

Διαβάστε περισσότερα

PREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE. Zahtjevi na beton u prednapetim konstrukcijama:

PREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE. Zahtjevi na beton u prednapetim konstrukcijama: PREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE BETON Zahtjevi na beton u prednapetim konstrukcijama: Visoka tlačna čvrstoća (s niskim v/c odnosom) Mali iznos skupljanja

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM STROPNI PROGRAM TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi Proizvodi Tehničke

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

unutrašnja opterećenja

unutrašnja opterećenja * Ravnoteža u deformabilnom tijelu Koncentrisana sila (idealizacija) Površinska sila Spoljašnja opterećenja: površinske i zapreminske sile Reakcije oslonaca Jednačine ravnoteže Linearna raspodjela opterećenja

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Βαθιές Θεµελιώσεις Εισαγωγή

Βαθιές Θεµελιώσεις Εισαγωγή Φέρουσα Ικανότητα Απόκριση Πασσαλοθεµελιώσεων Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

MOSTOVI SA KOSIM ZATEGAMA

MOSTOVI SA KOSIM ZATEGAMA MOSTOVI SA KOSIM ZATEGAMA U toku posljednjih tridesetak godina mostovi sa kosim zategama doživljavaju spektakularan razvoj u cijelom svijetu. Ekonomičnost ovih mostova ne leži samo u odličnom iskorištenju

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch)

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch) A B C D E F G STOLICE Naziv Visina (inch) Širina (inch) Dubina (inch) AQ1000002 SKIPPER SKLOPIVA STOLICA BIJELA SA BIJELIM JASTUKOM 18 20 17 A AQ1000025 SKIPPER SKLOPIVA STOLICA,BIJELA SA BIJELO PLAVIM

Διαβάστε περισσότερα

09. VK.TOIXOS 4M -VK ΠΡΟΓΡΑΜΜΑ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΤΟΙΧΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ

09. VK.TOIXOS 4M -VK ΠΡΟΓΡΑΜΜΑ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΤΟΙΧΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ VK.TOIXOS ΠΡΟΓΡΑΜΜΑ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΤΟΙΧΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ 2 ΠΡΟΫΠΟΘΕΣΕΙΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Απαιτήσεις συστήµατος. Επεξεργαστής κεντρικής µονάδας: Intel Pentium στα 120MHz ή µεγαλύτερος. Μνήµη RAM

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος... 9. Κεφάλαιο 1 Εισαγωγή... 13. Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος... 9. Κεφάλαιο 1 Εισαγωγή... 13. Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

PRILOG 1 PRAVILNIK BAB 87

PRILOG 1 PRAVILNIK BAB 87 PRILOG 1 PRAVILNIK BAB 87 PRILOG 1.1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON I OPŠTE ODREDBE 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Construction Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 04/02/2014 (v1) Κωδικός: 10.01.010 Αριθμός Ταυτοποίησης: 010204030010000144 EN 1504-4:2004 13 0099 2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Περιγραφή

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

ΔΡΓΑΣΗΡΙΟ ΟΠΣΙΚΗ ΠΔΙΡΑΜΑ1:ΜΔΣΡΗΗ ΣΟΤ Μ.Κ. ΑΚΣΙΝΟΒΟΛΙΑ LASER ΜΔ ΚΑΣΟΠΣΡΟ LOYD

ΔΡΓΑΣΗΡΙΟ ΟΠΣΙΚΗ ΠΔΙΡΑΜΑ1:ΜΔΣΡΗΗ ΣΟΤ Μ.Κ. ΑΚΣΙΝΟΒΟΛΙΑ LASER ΜΔ ΚΑΣΟΠΣΡΟ LOYD ΔΡΓΑΣΗΡΙΟ ΟΠΣΙΚΗ ΟΝΟΜΑΣΔΠΩΝΤΜΟ: ΑΚΗΗ: ΤΜΒΟΛΗ ΣΟΤ ΦΩΣΟ ΠΔΙΡΑΜΑ1:ΜΔΣΡΗΗ ΣΟΤ Μ.Κ. ΑΚΣΙΝΟΒΟΛΙΑ LASER ΜΔ ΚΑΣΟΠΣΡΟ LOYD ΠΔΙΡΑΜΑΣΙΚΗ ΓΙΑΓΙΚΑΙΑ Η πεηξακαηηθή δηάηαμε θαίλεηαη ζην ζρήκα 1. Απνηειείηαη από κηα πεγή

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ. Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Τοίχος αντιστήριξης. Ευρωκώδικες. Εγχειρίδιο αναφοράς. Αθήνα, Μάρτιος 2012. Version 1.0.26

Τοίχος αντιστήριξης. Ευρωκώδικες. Εγχειρίδιο αναφοράς. Αθήνα, Μάρτιος 2012. Version 1.0.26 Τοίχος αντιστήριξης Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 2012 Version 1.0.26 Περιεχόμενα 1 Γενικά στοιχεία για το πρόγραμμα...3 2 Εισαγωγή δεδομένων...4 2.1 Διατομή... 4 2.2 Επίχωση... 6 2.3

Διαβάστε περισσότερα

16.8 Υλικά Κεντρική θλίψη κεντρικός εφελκυσμός. Τριαξονική θλίψη

16.8 Υλικά Κεντρική θλίψη κεντρικός εφελκυσμός. Τριαξονική θλίψη 36 16.8 Υλικά Κεντρική θλίψη κεντρικός εφελκυσμός. Τριαξονική θλίψη Μονοαξονική θλίψη: Υπενθυμίζονται τα διαγράμματα τάσεων παραμορφώσεων των δύο υλικών: (συγκρίνατε τα διαγράμματα αυτά με τα συμβατικά

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA KONOP ZA ŠKOTE RACE - materijal jezgra dyneema na 16 struka, izvana poliester na 32 struka - za dizanje i spuštanje jedara, otporan na habanje, mala rastezljivost CRVENO/ PlAVO/ TF30 05000 TF33 05000 5

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2003

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2003 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο Θέµα Α. α) Έστω η συνάρτηση στο κάθε f δ) R τις τιµές του γ) Αν η συνάρτηση παραγωγίσιµη σε αυτό. Τότε ισχύει

Διαβάστε περισσότερα

Δύνονται το μϋτρο ελαςτικότητασ Ε=70GPa, η διατομό των ρϊβδων Α=2cm 2 και ο ςυντελεςτόσ θερμικόσ διαςτολόσ α=23*10-6 / ο C.

Δύνονται το μϋτρο ελαςτικότητασ Ε=70GPa, η διατομό των ρϊβδων Α=2cm 2 και ο ςυντελεςτόσ θερμικόσ διαςτολόσ α=23*10-6 / ο C. 1 E.M.Π. - ΣΜΗΜΑ ΠΟΛΙΣΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΙΙ - 17/06/2013 ΘΕΜΑ 1 ο Ο ςυμμετρικόσ επύπεδοσ φορϋασ ΑΒ ςτηρύζεται με κυλύςεισ ςτα ςημεύα Α και Β και με τισ δύο ελαςτικϋσ ρϊβδουσ (1) και (2) ςτιβαρότητασ

Διαβάστε περισσότερα

Katalog proizvoda s tehničkim podacima

Katalog proizvoda s tehničkim podacima Ytong sustav gradnje Katalog s tehničkim podacima λ 10 DRY = 0,09 Najbolja toplinska izolacija kompletan sustav za energetski učinkovitu gradnju Tehnički podaci Stranice od 16-21 vanjski zidovi Stranice

Διαβάστε περισσότερα

Σχεδιασμός Κατασκευών από Σκυρόδεμα

Σχεδιασμός Κατασκευών από Σκυρόδεμα 3/3 ΕΝ 1992 (Ευρωκώδικας 2) Σχεδιασμός Κατασκευών από Σκυρόδεμα Ε. Μπούσιας Τμήμα Πολιτικών Μηχ., Πανεπιστήμιο Πατρών Μέρος 1 1.2 Σχεδιασμός έναντι πυργκαγιάς Γενικά Οδηγία Δομικών Προϊόντων (Construction

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Συµπεριφορά τοίχων πληρώσεως µε διάζωµα Ω.Σ. ή µε οπλισµό οριζόντιων αρµών

Συµπεριφορά τοίχων πληρώσεως µε διάζωµα Ω.Σ. ή µε οπλισµό οριζόντιων αρµών Συµπεριφορά τοίχων πληρώσεως µε διάζωµα Ω.Σ. ή µε οπλισµό οριζόντιων αρµών E. N. Βιντζηλαίου Αναπληρώτρια Καθηγήτρια. Εργαστήριο Ωπλισµένου Σκυροδέµατος ΕΜΠ. Β. Α. Παλιεράκη Υποψήφια ιδάκτορας. Εργαστήριο

Διαβάστε περισσότερα

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η Πλάκες ο εργαστήριο 1 Άσκηση 3 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα: Η εκλογή

Διαβάστε περισσότερα

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260 ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑ ΣΤΗΡΙΞΗΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΠΑΝΕΛ ΣΕ ΒΙΟΜΗΧΑΝΙΚΗ ΣΤΕΓΗ

ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑ ΣΤΗΡΙΞΗΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΠΑΝΕΛ ΣΕ ΒΙΟΜΗΧΑΝΙΚΗ ΣΤΕΓΗ 2012-AF30 ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑ ΣΤΗΡΙΞΗΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΠΑΝΕΛ ΣΕ ΒΙΟΜΗΧΑΝΙΚΗ ΣΤΕΓΗ ΔΕΛΑΒΑΡΙΔΗΣ Ο.Ε. ΠΕΡΙΕΧΟΜΕΝΑ 1. ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ. 2. ΦΟΡΤΙΣΕΙΣ (ΔΡΑΣΕΙΣ ΚΑΙ ΣΥΝΔΥΑΣΜΟΙ). 3. ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ

Διαβάστε περισσότερα

Κούκλες & Δ Ι Α Κ Ο Σ Μ Η Σ Η Β Ι Τ Ρ Ι Ν Α Σ Ε Ξ Ο Π Λ Ι Σ Μ Ο Σ Κ Α Τ Α Σ Τ Η Μ Α Τ Ω Ν : : 83 : :

Κούκλες & Δ Ι Α Κ Ο Σ Μ Η Σ Η Β Ι Τ Ρ Ι Ν Α Σ Ε Ξ Ο Π Λ Ι Σ Μ Ο Σ Κ Α Τ Α Σ Τ Η Μ Α Τ Ω Ν : : 83 : : Κούκλες & Δ Ι Α Κ Ο Σ Μ Η Σ Η Β Ι Τ Ρ Ι Ν Α Σ Ε Ξ Ο Π Λ Ι Σ Μ Ο Σ Κ Α Τ Α Σ Τ Η Μ Α Τ Ω Ν : : 83 : : Vision : : 84 : : Κούκλες Ανδρικές & Γυναικείες με βάση στρόγγυλη μεταλλική χρωμίου MΟ 0100W2 Γυναικεία

Διαβάστε περισσότερα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα Version 1.0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΥΔΡΑΥΛΙΚΩΝ ΑΝΕΛΚΥΣΤΗΡΩΝ Ε Γ ΧΕΙΡΙΔΙΟ Σ ΧΕΔΙΑΣΗΣ

ΣΧΕΔΙΑΣΜΟΣ ΥΔΡΑΥΛΙΚΩΝ ΑΝΕΛΚΥΣΤΗΡΩΝ Ε Γ ΧΕΙΡΙΔΙΟ Σ ΧΕΔΙΑΣΗΣ Ε Γ ΧΕΙΡΙΔΙΟ Σ ΧΕΔΙΑΣΗΣ ΑΝΕΛΚ Υ Σ Τ Η ΡΩΝ ΜΟΝΑΔΑ ΙΣΧΥΟΣ ΣΧΕΔΙΑΣΜΟΣ ΜΗΧΑΝΟΣΤΑΣΙΩΝ ΦΡΕΑΤΙΟ ΥΔΡΑΥΛΙΚΩΝ ΑΝΕΛΚΥΣΤΗΡΩΝ min. 700 Απευθύνεται σε μελετητές: ΑΡΧΙΤΕΚΤΟΝΕΣ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΗΧΑΝΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Δράσεις

Βασικές Αρχές Σχεδιασμού Δράσεις Βασικές Αρχές Σχεδιασμού Δράσεις Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Εξέλιξη των Κανονισμών 1959 Κανονισμός Έργων από Σκυρόδεμα και Αντισεισμικός Κανονισμός (ΒΔ 59) Επιτρεπόμενες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΤΟΥ ΜΕΤΑΛΛΙΚΟΥ ΣΤΕΓΑΣΤΡΟΥ ΕΙΣΟΔΩΝ ΣΤΟ Ο.Α.Κ.Α.

ΣΧΕΔΙΑΣΜΟΣ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΤΟΥ ΜΕΤΑΛΛΙΚΟΥ ΣΤΕΓΑΣΤΡΟΥ ΕΙΣΟΔΩΝ ΣΤΟ Ο.Α.Κ.Α. ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΤΟΥ ΜΕΤΑΛΛΙΚΟΥ ΣΤΕΓΑΣΤΡΟΥ ΕΙΣΟΔΩΝ ΣΤΟ Ο.Α.Κ.Α. Ισαβέλλα Βασιλοπούλου Πολ. Μηχανικός, Υποψήφια διδάκτορας - Εργαστήριο Μεταλλικών Κατασκευών Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Σειρά Ασκήσεων στην Αντοχή των Υλικών

Σειρά Ασκήσεων στην Αντοχή των Υλικών Σιρά Ακήων ην Ανοχή ων Υλικών Άκηη η Σο ημίο Α μιας πίπδης μαλλικής πιφάνιας μ μέρο λαικόηας 00 GP και λόγο Pissn 0.5 μρήθηκαν οι πιμηκύνις ις καυθύνις, και μ η διάαξη ων πιμηκυνιομέρων ου χήμαος, ως 900,

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΠΑΝΕΚΦΕ. Πρόταση διδασκαλίας του μαθήματος «Φυσική Α Γυμνασίου»

ΠΑΝΕΚΦΕ. Πρόταση διδασκαλίας του μαθήματος «Φυσική Α Γυμνασίου» Πρόταση διδασκαλίας του μαθήματος «Φυσική Α Γυμνασίου» Στόχοι και μέσα Η βασική επιδίωξη της παρούσας πρότασης διδασκαλίας της φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν βασικές έννοιες

Διαβάστε περισσότερα

στάθμη εφαρμόζεται πλάκα με πλαστικότυπους, όπου οι massif περιοχές εμφανίζονται στο χωρικό STATIK ως δοκοί για την πλαισιακή λειτουργία.

στάθμη εφαρμόζεται πλάκα με πλαστικότυπους, όπου οι massif περιοχές εμφανίζονται στο χωρικό STATIK ως δοκοί για την πλαισιακή λειτουργία. 1. Σκοπός Ο σχεδιασμός πλακών από οπλισμένο σκυρόδεμα, η προσομοίωση, ο υπολογισμός, η διαστασιολόγηση και η όπλιση έχουν στόχο τη λειτουργικότητα, ασφάλεια και οικονομικότητα. Η λειτουργικότητα σχετίζεται

Διαβάστε περισσότερα

Στοιχεία τεχνολογίας σκυροδέματος Τα επί μέρους υλικά

Στοιχεία τεχνολογίας σκυροδέματος Τα επί μέρους υλικά Στοιχεία τεχνολογίας σκυροδέματος Τα επί μέρους υλικά Τσιμέντο - Πρόσμικτα Αδρανή Νερό Χημικά Πρόσθετα Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων από σκυρόδεμα, και Συσχέτιση μεταξύ Εθνικών διατάξεων,

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης H B. Υποστυλώματα A

Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης H B. Υποστυλώματα A F=2x(6/7)εW 6 F=2x(5/7)εW 5 F=2x(4/7)εW 4 1 Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης F=2x(3/7)εW 3 F=2x(2/7)εW 2 W W W W W H H B B 1.5m A A 0.1m M A A 1.5m B B 3.0m F=(2/7)εW 1

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΔΟΚΩΝ ΚΑΙ ΥΠΟΣΤΥΛΩΜΑΤΩΝ. Ενότητα κ

ΣΧΕΔΙΑΣΜΟΣ ΔΟΚΩΝ ΚΑΙ ΥΠΟΣΤΥΛΩΜΑΤΩΝ. Ενότητα κ ΣΧΕΔΙΑΣΜΟΣ ΔΟΚΩΝ ΚΑΙ ΥΠΟΣΤΥΛΩΜΑΤΩΝ Ενότητα κ 1. ΜΟΡΦΕΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΣΧΕΔΙΑΣΜΟΥ 1.1 Μορφές Σχεδιασμού Οι βασικές παράμετροι του σχεδιασμού είναι: οι διαστάσεις της διατομής, η ποσότητα του οπλισμού και

Διαβάστε περισσότερα