(dx i ) 2. i=1. i=1. ds 2 = ds 2 (1.2.1)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(dx i ) 2. i=1. i=1. ds 2 = ds 2 (1.2.1)"

Transcript

1 1.2 REVIEW OF SPECIAL RELATIVITY Einstein s theory of special relativity requires every physical law to be the same in all inertial systems (the form of the law is covariant) and that the speed of light in vacuum is a universal constant independent of the motion of the source. Thus if two frames S and S are moving at constant velocity relative to each other the relativistic intervals in each frame are equal and given by: ds 2 = c 2 dt 2 ds 2 = c 2 dt 2 3 (dx i ) 2 i=1 3 (dx i ) 2 i=1 ds 2 = ds 2 (1.2.1) The most general linear transformations which leave this interval invariant are the Lorentz transformations. These can be most simply expressed by introducing four vector notation. Let the space-time coordinates in the frame S be given by x µ =(x 0,x 1,x 2,x 3 )=(ct, x, y, z) and in S, x µ =(ct,x,y,z ). Then the general linear transformation between S and S is x µ =Λ µ νx ν where Λ µ ν is a four-by-four matrix. The invariance of the space-time interval, ds 2 = ds 2, implies that ds 2 = dx µ g µν dx ν = dx α g αβ dx β = ds 2 where g µν µν (1.2.2) is the metric tensor. However, dx µ =Λ µ α dxα so the equality of the intervals implies a restriction on Λ µ ν, dx α Λ µ αg µν Λ ν βdx β = dx α g αβ dx β. Thus, Λ µ ν must satisfy or in matrix notation g αβ =Λ µ α g µνλ ν β, (1.2.3) g =Λ T gλ. (1.2.4) 24

2 If Λ 1 and Λ 2 satisfy (1.2.3) then so do Λ 1 Λ 2 and Λ 1 1. For example, if Λ µ α(λ 1 ) α γ = δ µ γ then (Λ 1 ) α γg αβ (Λ 1 ) β δ =Λµ α(λ 1 ) α γg µν Λ ν β(λ 1 ) β δ Thus, relabeling the dummy indices, = δ µ γ g µνδ ν δ = g γδ. g µν =(Λ 1 ) α µg αβ (Λ 1 ) β ν. (1.2.5) Hence, the Lorentz transformations form a group, the Lorentz group, denoted L (or sometimes SO(1,3)). In addition to linear transformations, the homogeneity of space-time implies that uniform translations of the frame should not effect experiments. As we see then the transformation of the coordinates x µ =Λ µ νx ν + a µ, (1.2.6) with a µ a constant 4-vector, also leaves the interval invariant, ds 2 = ds 2. Note, above it is understood that the translation a µ follows the rotation Λ µ ν. The general inhomogeneous transformation is called a Poincare transformation. Two such transformations (Λ 1,a 1 ) and (Λ 2,a 2 ) obey the composition law x µ 2 =Λµ 2 ν xν 1 + a µ 2 with =Λ µ 2 ν Λν 1 ρx ρ +Λ µ 2 ν a 1 ν + a ν 2 Λ µ νx ν + a µ (1.2.7) Λ µ ν Λµ 2 α Λα 1 ν a µ Λ µ 2 ν aν 1 + a µ 2. (1.2.8) Hence, these transformations also form a group, the Poincare group denoted by P. 25

3 The Lorentz group (and hence, the Poincare group) contains reflections of the space-time coordinates as well as boosts, rotations, and translations. 1) Space Inversion: Let Λ µ ν = P µ ν x µ = P µ νx ν (1.2.9) with thus, P µ ν x 0 =+x 0 µν (1.2.10) x i = x i. (1.2.11) 2) Time Reversal: Let Λ µ ν = T µ ν x µ = T µ νx ν (1.2.12) with thus, T µ ν x 0 = x 0 µν (1.2.13) 3) Space-Time Inversion: Let Λ µ ν = I µ ν I µ ν P µ αt α ν = x i =+x i. (1.2.14) µν = δ µ ν (1.2.15) thus, x µ = x µ. (1.2.16) 26

4 The Lorentz group and, hence, the Poincare group have four disconnected components. That is not every frame may be related by a sequence of Lorentz transformations differing infinitesimally from each other. More precisely, Lorentz transformations depend on 6 parameters, each transformation can be identified by its particular values for these parameters. One cannot go from one transformation to every other by a continuous change in these parameters. That is the parameter space is disconnected. To see this use the fact that equation (1.2.3) can be written in matrix notation (1.2.4) with Λ a matrix with elements Λ µ ν where µ labels the rows and ν labels the columns. Then with g =Λ T gλ, the det g = det Λ T det g det Λ, which implies det Λ = ±1. Furthermore, taking the α =0,β = 0 component of equation (1.2.3) we find 1=(Λ 0 0) 2 3 (Λ i 0) 2 which implies (Λ 0 0 )2 1. Hence we have the two possibilities Λ 0 0 1orΛ Since det Λ and the sign of Λ 0 0 are continuous functions of the matrix elements, Λ µ ν, they must be constant on each component. Hence, we have the four connected components of L denoted by 1) L + in which det Λ = +1, Λ and the transformations of which are called the restricted or proper orthochronous Lorentz transformations. This is the only component which contains Λ µ ν = δ µ ν the identity and hence is a subgroup of L. The direction of time is unchanged and spatial reflections are absent in this component. 2) L in which det Λ = 1, Λ These transformations can be written as the product of space inversion and L +, that is L = PL +. 3) L + in which det Λ = +1, Λ These transformations must include both time inversion (Λ 0 0 1) and space inversion (det Λ = +1). They can be written as total coordinate inversions times L +, that is L + = PTL +. 4) L in which det Λ = 1, Λ The direction of time is changed by this component which can be written as time reversal times L +, that is L = TL +. Symbolically the Lorentz group can be written as the sum of four components: i=1 L = L + + PL + + PTL + + TL +. (1.2.17) A similar decomposition holds for the Poincare group P: P = P + + P + P + + P 27

5 = P + + P P + + PTP + + T P +, (1.2.18) where the component P + is called the restricted or proper orthochronous Poincare group. It is the only component which is a subgroup of P since it contains the identity (Λ, a)=(1, 0). We will be interested in the restricted Lorentz and Poincare transformations since we can build up any general transformation from them as indicated above. Any orthochronous, proper or improper, Lorentz transformation can be written uniquely as a boost followed by a spatial rotation Λ = RΛ B. Boosts of velocity V = V v, v v = 1 (in what follows we choose units such that c=1) can be written as x 0 = x 0 cosh β + v x sinh β x = x + v ( x v )(cosh β 1) + x 0 v sinh β, (1.2.19) with V = tanh β. In 4-vector notation this can be written as x µ =Λ µ B ν xν with the pure boost Lorentz transformation matrix given by Λ µ B ν = chβ v 1 shβ v 2 shβ v 3 shβ v 1 shβ [1 + v 1 v 1 (chβ 1)] v 1 v 2 (chβ 1) v 1 v 3 (chβ 1) v 2 shβ v 2 v 1 (chβ 1) [1 + v 2 v 2 (chβ 1)] v 2 v 3. (chβ 1) v 3 shβ v 3 v 1 (chβ 1) v 3 v 2 (chβ 1) [1 + v 3 v 3 (chβ 1)] (1.2.20) Further, recall that any spatial rotation, x i = R ij x j, can be represented as a rotation through an angle α about some axis with direction u where u u = 1. For instance, in spherical coordinates u is given by (sin θ cos ϕ, sin θ sin ϕ, cos θ). For a spatial rotation x 0 = x 0 x = x cos α + u ( u x )(1 cos α)+ x u sin α, (1.2.21) where 0 α π. Hence x µ = R µ νx ν can be written in 4-vector matrix notation as R µ ν = 28

6 [cα + u 1 u 1 (1 cα)] [u 1 u 2 (1 cα) u 3 sα] [u 1 u 3 (1 cα)+u 2 sα] 0 [u 2 u 1 (1 cα)+u 3 sα] [cα + u 2 u 2 (1 cα)] [u 2 u 3 (1 cα) u 1. sα] 0 [u 3 u 1 (1 cα) u 2 sα] [u 3 u 2 (1 cα)+u 1 sα] [cα + u 3 u 3 (1 cα)] (1.2.22) Thus, we see that the Lorentz group is a six parameter group with three components of velocity for boosts and three angles to specify spatial rotations. Since there are four directions for space-time translations, the Poincare group is a ten parameter group. Since the laws of physics are covariant in form, physical quantities and the equations they obey are most easily described and managed by tensors and tensorial equations. Tensors are defined to have specific Lorentz transformation properties which, as with tensorial equations, are maintained in every inertial frame. We can define contravariant and covariant tensor fields according to their specific Lorentz transformation properties T µ 1 µ n (x )=Λ µ 1 ν1 Λ µ n νn T ν 1 ν n (x) (1.2.23) for a contravariant rank n tensor field and T µ 1 µ n (x )=(Λ 1 ) ν 1 µ1 (Λ 1 ) ν n µn T ν1 ν n (x) for a covariant rank n tensor field and (= T ν1 ν n (x)(λ 1 ) ν 1 µ1 (Λ 1 ) ν n µn ). (1.2.24) T µ 1 µ mν1 ν n (x )=Λ µ 1 α1 Λ µ m αm T α 1 α mβ1 β n (x)(λ 1 ) β 1 ν1 (Λ 1 ) β n νn (1.2.25) for a mixed (m,n) tensor of rank (m+n), where as before Λ µ ν(λ 1 ) ν ρ = δ µ ρ. (1.2.26) Note that V µ W µ =Λ µ ν(λ 1 ) ρ µv ν W ρ = δ ρ νv ν W ρ = V µ W µ 29

7 is a Lorentz invariant. We can define the contravariant metric tensor g µν as the inverse of the covariant metric tensor g µν Note that g =Λ T gλ implies that (equation (1.2.5)) g µν g νρ = δ µ ρ. (1.2.27) g µν =(Λ 1 ) α µ(λ 1 ) β νg αβ = g µν (1.2.28) and similarly g µν = g µν ; the contravariant metric tensor is invariant. Then for every contravariant vector there is an associated covariant vector, and vice versa, obtained by lowering or raising an index with g µν or g µν. That is if V µ is a contravariant vector, V µ =Λ µ ν V ν, then V µ g µν V ν is a covariant vector since V µ = g µν V ν = g µν Λ ν ρv ρ but, equation (1.2.28), g µν Λ ν ρ =(Λ 1 ) β µg βρ so that V µ =(Λ 1 ) β µg βρ V ρ. Hence, V µ = (Λ 1 ) β µv β, is the transformation law for covariant vectors. Using this notation to define Λ µν = g µα Λ α ν etc. we find δα β =Λµα Λ µβ, that is (Λ 1 ) µν =(Λ T ) µν =Λ νµ. (1.2.29) We can also relate the contravariant, covariant and mixed tensors by raising and lowering indices with the metric tensors. Since Λ L + is continuously connected to the identity we can build up any finite Lorentz transformation by making many consecutive small Lorentz transformations. Each coordinate system differing from the previous, as well as the following, by an infinitesimal amount. The properties of Λ can be inferred from the properties of infinitesimal Lorentz transformations. From our experience with spatial rotations we know that every Λ can be written as the exponential of the 6 transformation parameters (the angles of rotation), denoted by ω αβ (Λ), times the six (4x4) matrices that generate the infintesimal Lorentz transformations, denoted by (D αβ ) µν. That Lorentz transformations leave the metric invariant implies that the parameters for infinitesimal Lorentz transformations, ω αβ with the infinitesimal Lorentz transformation written as Λ αβ = g αβ + ω αβ and the ω αβ are infinitesimal, are anti-symmetric g αβ =Λ µα g µν Λ νβ =(g µα + ω µα )g µν (g νβ + ω νβ ) 30

8 = g αβ + ω βα + ω αβ which implies that ω αβ + ω βα = 0, that is ω αβ (and of course ω αβ ) is antisymmetric. Further we know that the Lorentz group multiplication law implies that the D αβ matrices must obey specific commutation relations. Alternatively, the Lorentz algebra completely characterizes the Lorentz group multiplication law. It is sufficient to find the matrices that obey the desired commutation relations in order to construct the finite Lorentz transformations by exponentiation with appropriate parameters. In fact instead of characterizing tensors by their finite Lorentz transformation properties we can equivalently specify their transformation properties under infinitesimal transformations. That is we will define the tensor by specifying its general D αβ matrix. This matrix obeys the Lorentz algebra so that when appropriately exponentiated we will recover the finite Lorentz transformation definition of the tensor. To begin let s go back to just 4x4 matrices and study what is called the fundamental or vector representation of the Lorentz group. It is given by the infinitesimal coordinate transformations, Λ µ ν = δµ ν + ωµ ν x µ =Λ µ νx ν = x µ + ω µ νx ν Thus x µ + ωβ α 2 ( D α β ) µ ν = δµ β δα ν gµα g νβ ( D α β ) µ ν xν. (1.2.30) or raising β and lowering µ D αβ = µν δβ µ δα ν δα µ δβ ν. (1.2.31) We see that since ω αβ is anti-symmetric so is D αβ = D βα. From this vector representation we can obtain the commutation relations for the D µν which then all further representations of the Lorentz group must obey [D µν,d ρσ ] αβ =(D µν ) α γ (Dρσ ) γβ (D ρσ ) α γ (Dµν ) γβ ( ) =(δ ν α gµγ δ µ α gνγ ) δ σ γ δρ β δρ γ δσ β (D ρσ D µν ) αβ ) = g (δ µσ ν αδ ρ β δρ αδ ν β g µρ δ ν αδ σ β δ σ αδ ν β 31

9 ) ( ) g (δ νσ µ α δρ β δρ α δµ β + g νρ δ µ α δσ β δσ α δµ β =(g µσ D ρν g µρ D σν g νσ D ρµ + g νρ D σµ ) αβ. (1.2.32) Thus, surpressing the matrix element indices, the defining commutation relations for the Lorentz group are [D µν,d ρσ ]=g µρ D νσ + g νσ D µρ g µσ D νρ g νρ D µσ. (1.2.33) For a general tensor field we can find its Lorentz representation matrix in a similar way. Consider the rank n tensor transformation law, equation (1.2.23), for infinitesimal Λ µν T µ 1 µ n (x )=(g µ 1ν 1 + ω µ 1ν 1 ) (g µ nν n + ω µ nν n )T ν1 ν n (x) = T µ 1 µ n (x) + = T µ 1 µ n (x)+ ω αβ 2 n g µ 1ν1 ω µ iνi g µ nν n T ν1 ν i ν n (x) i=1 n g µ 1ν1 [g αµ i g βν i g αν i g βµ i ] g µ nν n T ν1 ν n (x). i=1 Thus using the notation (µ) =µ 1 µ n we have (1.2.34) where (D αβ ) (µ)(ν) T (µ) (x ) T (µ) (x) ω βα 2 (Dαβ ) (µ)(ν) T (ν) (x) (1.2.35) n g µ 1ν1 [g αν i g βµ i g αµ i g βν i ] g µ nν n. (1.2.36) i=1 As in the vector case, the (D αβ ) (µ)(ν) obey the Lorentz group commutation relations equation (1.2.33). In general, the difference δt(x), δt(x) T (x ) T (x), (1.2.37) is called the total variation of T. The rank n tensor is then defined so that δt (µ) (x) ω βα 2 (Dαβ ) (µ)(ν) T (ν) (x) (1.2.38) 32

10 with (D αβ ) (µ)(ν) given in equation (1.2.36). When the D αβ matrices are exponentiated with the finite parameter matrices ω βα (Λ) for finite Lorentz transformations Λ the commutation relations (1.2.33) guarantee the correct tensor transformation law (1.2.23). Notice the total variation of T evaluates the change in the tensor field at the same space-time point, x µ in S and x µ in S. It is physically more meaningful to compare tensors not at the same space-time point but at the same numerical value, say x µ, of their argument. This intrinsic variation of T, denoted by δt, is related to the total variation of T, δt, by a Taylor expansion. Thus the intrinsic variation of T is defined by δt(x) T (x) T (x) =[T (x ) T (x)] [T (x ) T (x)] = δt(x) [T (x ) T (x)]. (1.2.39) Again, δt(x) is the change in T(x) for the same value of the argument not the same point in space-time. Since these variations are infinitesimal, we need only keep first order in changes. Writing the space-time point transformation as x µ = x µ + δx µ so that the Taylor expansion of T (x ) about x is T (x )=T (x)+δx µ µ T (x) we conclude that δt(x) =δt(x) δx µ µ T (x). (1.2.40) For a Lorentz transformation we can write δx µ as the defining 4x4 vector representation matrix D αβ x µ = x µ + ωβα 2 [gµβ g να g µα g νβ ]x ν. However this variation is just the first Taylor expansion term of the function x µ, hence it is equivalent, and later more useful when considering variations of more general tensor fields, to write the x-variation as a differential Taylor operator so that x µ = x µ ω αβ 2 (xα β x β α )x µ. (1.2.41) Thus the intrinsic variation of a rank n tensor T (µ), equation (1.2.40), can be written as δt (µ) = ω βα 2 [ ] (D αβ ) (µ)(ν) g (µ)(ν) (x α β x β α ) T (ν). (1.2.43) 33

11 We find the differential operator (x µ ν x ν µ ) obeys the algebra, cf. equation (1.2.33), associated with the Lorentz group also. Thus we define the differential matrix (angular momentum) operator M µν for rank n tensors as [ (M µν ) (α)(β) T (β) i (x µ ν x ν µ )g (α)(β) (D µν ) (α)(β)] T (β). (1.2.43) We check explicitly that the angular momentum commutation relations are satisfied [M µν,m ρσ ]=+i[g µρ M νσ + g νσ M µρ g µσ M νρ g νρ M µρ ]. (1.2.44) The intrinsic variation can then be used to define rank n tensors δt (µ) (x) iω βα (M αβ ) (µ)(ν) T (ν) (x) (1.2.45) 2 where M αβ is the total angular momentum carried by the field while D αβ is related to its intrinsic angular momentum or spin. Thus we can characterize the Lorentz group tensors by their spin, the D αβ matrices, and their orbital angular momentum as represented by the action of the space-time differential operator (x µ ν x ν µ ) on their argument. Hence we can represent the Lorentz group by finite matrices D αβ obeying the algebra (1.2.33) and by space-time differential operators acting on tensor fields T (α) (x). Similarly we can consider infinitesimal space-time translations x µ = x µ + δx µ = x µ + ɛ µ. (1.2.46) Then for translationally invariant fields T (x )=T (x), which is all that is defined, we have δt = δx µ µ T = ɛ µ µ T that is the momentum operator P µ given by +iɛ µ P µ T (1.2.47) P µ +i µ (1.2.48) represents the generator of space-time translations. Thus for any representation of the Lorentz group M µν we can calculate the commutator of P µ with it to find [M µν,p ρ ]= i[p µ g νρ P ν g µρ ]. (1.2.49) 34

12 Along with [P µ,p ν ] = 0, these three sets of commutation relations define the action of the Poincare group on tensor fields T (µ) (x). As usual the field after a finite Poincare transformation is obtained by exponentiation of the translation generator. For finite translations x µ = x µ + a µ, we have ) n T (x) = lim (1+( +iaµ n n )P µ T (x) = e +iaµ P µ T (x) = e aµ µ T (x) =T (x a) (1.2.50) (which is just the definition of a translationally invariant field). To summarize then, the Poincare group is defined by the algebra its generators P µ, the energy-momentum operator which is the generator of space-time translations, and M µν, the angular momentum operator, which is the generator of Lorentz transformations and space rotations, obey [P µ,p ν ]=0 [M µν,p ρ ]= i(p µ g νρ P ν g µρ ) [M µν,m ρσ ]=+i(g µρ M νσ g µσ M νρ + g νσ M µρ g νρ M µσ ). (1.2.51) For the tensor representations of the Lorentz group this algebra is realized by the intrinsic variation of the fields as P µ T (α) (x) =+i µ T (α) (x) ] (M µν ) (α)(β) T (β) (x) = i [(x µ ν x ν µ )g (α)(β) (D µν ) (α)(β) T (β) (x) (1.2.52) where (α) =α 1 α n for a rank n tensor, g (α)(β) = g α 1β1 g α nβ n (1.2.53) and (D µν ) (α)(β) = n g α 1β1 [g µβ i g να i g νβ i g µα i ] g α nβ n (1.2.54) i=1 35

13 is the matrix for the finite dimensional rank n tensor representation of the Lorentz group where the D µν obey the algebra [D µν,d ρσ ]=g µρ D νσ g µσ D νρ + g νσ D µρ g νρ D µσ. (1.2.55) The transformations induced in T (α) when finite Poincare transformations are made x µ =Λ µ νx ν + a µ are obtained by exponentiating the operators T α 1 α n (x) =Λ α 1 β1 Λ α n βn T β 1 β n (Λ 1 (x a)) = where ω µν (Λ) is defined so that ( e +iaµ P µ e + i 2 ω µν(λ)m µν) (α)(β) T(β) (x) (1.2.56) e ω µν (Λ)(x µ ν x ν µ) x ρ =(Λ 1 ) ρ σx σ. (1.2.57) The tensor representations are not the only realizations of the algebra possible; there are also the spinor representations. That is there are other objects besides tensors that have the same transformation law in all inertial frames; the Lorentz group multiplication law is valid for these quantities. We will find that spinorial equations will be covariant and hence will be useful for describing physical laws. Spin one half particles such as electrons will be described by spinor quantum fields. To introduce spinor transformation laws consider the operators M µν more closely. The M ij are associated with spatial rotations in the x i x j plane. For instance, for ω 12 0 only, we have x 0 = x 0 x 1 = x 1 + ω 12 x 2 = x 1 ω 12 x 2 x 2 = x 2 + ω 21 x 1 = x 2 + ω 12 x 1 x 3 = x 3, (1.2.58) a rotation of the coordinate system about the z-axis through an infinitesimal angle ω 12. Hence the operator J i 1 2 ɛ ijkm jk =(M 23,M 31,M 12 ) (1.2.59) 36

14 corresponds to the total angular momentum operator, that is, the generator of spatial rotations for our functions of space-time. Similarly then the M 0i are associated with boosts that is pure Lorentz transformations in the x i direction. For example, for infinitesimal ω 01 0 only we have x 0 = x 0 ω 01 x 1 = x 1 = x 1 ω 01 x 0 = 1 v (ct 1 c x1 ) ct v c x1 v2 c 2 1 (x 1 vt) x 1 v 1 c ct v2 c 2 x 2 = x 2 x 3 = x 3. (1.2.60) Hence, K i M 0i =(M 01,M 02,M 03 ) are the generators of Lorentz transformations for our functions of space-time. The algebra for M µν, equation (1.2.51), implies that J and K obey the algebra [J i,j j ]=+iɛ ijk J k [K i,k j ]= iɛ ijk J k [J i,k j ]=+iɛ ijk K k. (1.2.61) Complex (non-hermitian) generators can be defined from these real (hermitian) generators N 1 2 ( J + i K) Then the commutation relations become disentangled N 1 2 ( J i K). (1.2.62) [N i,n j ]=+iɛ ijk N k [N i,n j ]=+iɛ ijkn k [N i,n j ]=0. (1.2.63) 37

15 Hence, each set of N and N obey the SU(2) spatial rotation algebra of ordinary angular momentum separately. Eigenvalues of N N and N N label the representation. These eigenvalues have values m(m+1) for N N and n(n+1) for N N, where m, n =0, 1 2, 1, 3 2, 2,. So the pair (m,n) will label the representation of the Lorentz group about which we speak. The functions within each representation are distinguished by the eigenvalue of one of the components of each of the operators N and N. For instance, for the third component the eigenvalues of N 3 have the range m, m+1,, +m 1, +m and those of N 3 have the range n, n + 1,, +n 1, +n, the (m, n) representation has (2m+1)(2n+1) components. For example the (0,0) representation consists of only one function, T(x), and is totally invariant, δt = 0. The vector representation consists of four functions, T µ, where δt µ = ω µν T ν. We can show that this corresponds to the ( 1 2, 1 2 ) representation. The (1,0) representation can be shown to be that of the self-dual, antisymmetric tensor, F µν = F µν with F µν = 1 2 ɛµνρσ F ρσ. (By the conventions used in these notes we define the totally antisymmetric permutation or Levi-Civita tensor, denoted ɛ µνρσ, so that ɛ ) Since J = N + N,we see that (m+n) will denote the total spin of the representation. We can show that all integer values of (m+n) i.e. (m + n) =0, 1, 2, 3, can be described by our tensor representations. However, we can also have representations for which (m + n) = (2k+1) 2 for any integer k =0, 1, 2,. These all can be built up from products of the basic spinor representations (as we built up the tensor representations from the fundamental vector representation); the ( 1 2, 0) representation called left-handed spinors and the (0, 1 2 ) representation called right-handed spinors. In this way we will have obtained all possible (finite dimensional) representations of the Lorentz group. In order to obtain the transformation law for spinors we will consider the set of 2x2 complex matrices with determinant =1. These form the group called SL(2,C). We will represent the Lorentz group by the action of these matrices on two component complex spinors. Equivalently we could build the spinor transformation law from the spin 1 2 angular momentum representation matrices familiar from quantum mechanics, the Pauli matrices. Once we know the action of N and N on the spinors we can reconstruct that of M µν. However, it is more useful and to the point to proceed by considering directly SL(2,C). To obtain the relation of the Lorentz group to SL(2,C) we must first recall that there exists a one to one correspondence between 2x2 Hermitian matrices and space-time points. The 38

16 Pauli matrices 1 0 (σ 0 ) α α (σ 1 ) α α 1 0 (σ 2 0 i ) α α +i 0 (σ ) α α 0 1 α α α α α α α α, (1.2.64) where α =1, 2 labels the two rows and α =1, 2 labels the two columns, form a basis for 2x2 Hermitian matrices. Let X α α be a Hermitian matrix, that is, It has the general form X α α = X = X (X ) αα =(X) α α. (1.2.65) (x0 + x 3 ) (x 1 ix 2 ) (x 1 + ix 2 ) (x 0 x 3 ) α α = x µ (σ µ ) α α x α α (1.2.66) for x µ real with x called x slash. Thus corresponding to any 4 vector x µ we associate a 2x2 Hermitian matrix X α α by equation (1.2.66). Using the trace relation for the product of two Pauli matrices or more succinctly written (σ µ ) α α (iσ 2 ) α β(σ ν T ) ββ (iσ2 ) βα = 2g µν, (1.2.67) Tr[σ µ (iσ 2 )σ ν T (iσ 2 )] = 2g µν, (1.2.68) we have for every Hermitian matrix X α α an associated four vector x µ x µ = 1 2 Tr[X(iσ2 )σ µt (iσ 2 )]. (1.2.69) 39

17 This correspondence is one to one (we will use X = x in what follows to underscore this correspondence). Simplifying the notation, since we would like to keep our dotted and undotted indices separate that is when we sum over indices we would like them to be of the same type in order to avoid extra confusion, we introduce an antisymmetric tensor ɛ αβ, that is, ɛ αβ = ɛ βα with ɛ 12 = +1 and with lowered indices ɛ αβ = ɛ αβ = ɛ βα, (1.2.70) that is ɛ 12 = ɛ 12 = 1. Note that the matrix is the same when we use dotted indices, that is, ɛ αβ =(iσ ) αβ = 1 0 αβ ɛ α β =(iσ ) α β =. (1.2.71) 1 0 Also note that ɛ αβ ɛ βγ = δ α γ α β ɛ α βɛ β γ = δ α γ. (1.2.72) Then we can define the Pauli matrices with upper indices ( σ µ ) αα ɛ αβ ɛ α β(σ µ ) β β = (iσ 2 ) α β(σ µt ) ββ (iσ 2 ) βα. (1.2.73) We can write the trace condition as (σ µ ) α α ( σ ν ) αα =+2g µν (1.2.74) and equation (1.2.69) has the simple form The σ µ matrices are given by x µ =+ 1 2 ( x) α α( σ µ ) αα =+ 1 2 Tr[ x σµ ]. (1.2.75) ( σ 0 ) αα 1 0 =+(σ 0 ) 0 1 αα αα 40

18 0 1 ( σ 1 ) αα 1 0 ( σ 2 ) αα 0 +i i ( σ 3 ) αα 0 +1 αα αα αα = (σ 1 ) αα = (σ 2 ) αα = (σ 3 ) αα. (1.2.76) We can readily derive the completeness properties of the Pauli matrices Further products of two yield (σ µ ) α α ( σ ν ) αα =+2g µν (1.2.77) (σ µ ) α α ( σ µ ) ββ =+2δα β δ β α. (1.2.78) (σ µ ) α α ( σ ν ) αβ +(σ ν ) α α ( σ µ ) αβ =2g µν δ β α ( σ µ ) αα (σ ν ) α β +( σ ν ) αα (σ µ ) α β =2g µν δ α β. (1.2.79) If S is an element of SL(2,C) (that is 2x2 complex matrices with determinant equal to one) with matrix elements Sα β, where α labels the rows and β labels the columns, and x is a Hermitian matrix, then we can define the transformed matrix x as ( x ) α α = Sα β ( x) β βs β α (1.2.80) with S the complex conjugate of S, again with α labelling the rows and β labelling the columns, or taking the transpose we have (S ) β α =(S ) β α, with β labelling the rows and α labeling the columns of S. Since det S = S1 1 S2 2 S1 2 S2 1 =1we have det x = det x. (1.2.81) Calculating the determinant we find det x =(x 0 + x 3 )(x 0 x 3 ) (x 1 ix 2 )(x 1 + ix 2 )=(x 0 ) 2 (x 1 ) 2 (x 2 ) 2 (x 3 ) 2 = x µ x µ = det x = x µx µ ; (1.2.82) 41

19 the determinant is the Minkowski interval and is invariant. Thus, the transformation x = S xs (1.2.83) corresponds to a Lorentz transformation, Λ µν, of the coordinates. determine it in terms of the SL(2,C) matrix S consider In order to x µ = 1 2 ( x ) α α ( σ µ ) αα = 1 2 S β α ( x) β βs β α ( σµ ) αα = 1 2 S β α S β α (σν ) β β( σ µ ) αα x ν Λ µν x ν (1.2.84) where we identify Λ µν 1 2 Tr[Sσν S σ µ ] (1.2.85) that is, Λ µν (σ µ ) α α = 1 2 S γ γ β S β (σν ) γ γ ( σ µ ) ββ (σ µ ) α α = S γ = S γ α S γ α (σν ) γ γ, β S γ β (σν ) γ γ δ β α δ β α or more simply written Λ µν σ µ = Sσ ν S. (1.2.86) So for every element ±S of SL(2,C) there is an element Λ of the Lorentz group, the mapping of SL(2,C) into L is 2 to 1 since ±S Λ. We can use the SL(2,C) matrices to define the spinor representations of the Lorentz group. The spinor transformation laws are given by ψ α(x ) S β α ψ β (x) ψ α (x ) ψ β (x)(s 1 ) α β (1.2.87) where Sα β (S 1 ) γ β = δ α γ and ψ α and ψ α are two different two component complex spinors transforming (as we will see) as the ( 1 2, 0) representation of the Lorentz group, the ψ are called Weyl spinors. Similarly, we can use S and (S ) 1 to 42

20 define two more different Weyl spinors, the complex conjugates of ψ, denoted ψ, which transform as (0, 1 2 ) representations of the Lorentz group ψ α (x ) ψ β(x)(s ) β α ψ α (x ) (S 1 ) α β ψ β(x) (1.2.88) where, for the adjoint matrices (S ) α β, α labels the rows and β labels the columns. As with tensors, higher rank spinors transform just like products of the basic rank 1 spinors, for example, ψ α 1 α n α 1 α m (x )=S β 1 α 1 ψ α 1 α n (x )=S β 1 α 1 Since S is special, i.e. det S = 1, we have S β n α n ψ β1 β n (x) S β m α 1 ψ β1 β n β1 β m (x)(s ) β 1 α1 (S ) β m αm. (1.2.89) ( S (S 1 ) α β = 2 S 1 2 S1 2 2 S1 1 ) αβ or in matrix notation = ɛ αγ ɛ βδ S γ δ (1.2.90) S 1 = ɛs T ɛ. (1.2.91) Further ɛ is an anti-symmetric invariant second rank spinor, that is ɛ αβ = S γ α S δ β ɛ γδ or again in matrix form ɛ = SɛS T = SS 1 ɛ = ɛ. Since the indices can be confusing, let s write this out explicitly ɛ 12 = S 1 1 S 2 2 ɛ 12 + S 2 1 S 1 2 ɛ 21 = det S = 1 =ɛ 12. So indeed ɛ αβ = ɛ αβ, ɛ is an invariant second rank spinor. Hence, we can use ɛ to lower and raise indices of the spinors analogous to the invariant metric tensor g µν which lowers and raises vector indices ψ α = ɛ αβ ψ β 43

21 ψ α = ɛ αβ ψ β ψ α = ɛ α β ψ β ψ α = ɛ α β ψ β. (1.2.92) As a consequence of (1.2.92) the transformation law for ψ α, for instance, follows from that of ψ α ψ α (x )=ɛ αβ ψ β(x )=ɛ αβ S γ β ψ γ(x) = ɛ αβ S γ β ɛ γδψ δ (x) = ɛ δγ S γ β ɛ βαψ δ (x) =ψ δ (x)(s 1 ) α δ. (1.2.93) Thus, we can contract similar spinor indices to make Lorentz scalars ψ α (x )ψ α(x )=(S 1 ) α β S γ α ψ β (x)ψ γ (x) = δ γ β ψβ (x)ψ γ (x) =ψ α (x)ψ α (x) (1.2.94) and similarly for ψ α ψ α. Also using the properties of the Pauli matrices we can make a four vector object whose vector index then contracts with another four vector index in order to make a scalar, for example But ψ α (x )(σ µ ) α α µ ψ α (x )=(S 1 ) α β (S 1 ) α β(λ 1 ) ν µψ β (x)(σ µ ) α α ν ψ β(x). (S 1 ) β α (σ µ ) α α (S 1 ) α βλ 1 µν =(S 1 ) β α (σ µ ) α α (S 1 ) α β 2 Tr[Sσν S σ µ ] = 1 2 (S 1 ) α β (S 1 ) α β(sσ ν S ) δ δ(σ µ ) α α ( σ µ ) δδ =(S 1 ) β α (S 1 ) α β(sσ ν S ) δ δδ α δ δ δ α =(S 1 ) β α (S 1 ) α β(sσ ν S ) α α =(σ ν ) β β, (1.2.95) hence ψ α (x )(σ µ ) α α µ ψ α (x )=ψ α (x)(σ µ ) α α µ ψ α (x). (1.2.96) As stated, ψ ψ is a Lorentz invariant. Finally, let s consider infinitesimal Lorentz transformations x µ = x µ + ω µν x ν (1.2.97) 44

22 where now, for infinitesimal transformations, S differs from the identity by an infinitesimal matrix Σ Sα β = δ α β +Σ α β Since ɛ is invariant we have that S β α = δ β α β +Σ α. (1.2.98) ɛ αβ = Sα γ S β δ ɛ γδ =(δα γ +Σ α γ )(δ β δ +Σ β δ )ɛ γδ = [ ] δα γ δβ δ +Σα γ δβ δ +Σβ δ δα γ ɛγδ = ɛ αβ + ɛ γβ Σα γ + ɛ αγ Σ γ β (1.2.99) which implies that Σ is symmetric. With lowered indices we have Σ βα Σ αβ =0. ( ) Now given ω µν we desire Σ αβ ; using Λ µν = 1 2 Tr[Sσν S σ µ ] we find g µν + ω µν = 1 2 ( δ β α ) ) +Σα β (σ ν ) β β (δ β β α +Σ α ( σ µ ) αα = 1 2 (σν ) α α ( σ µ ) αα Σ β α (σ ν ) β α ( σ µ ) αα (σν ) α βσ β α ( σµ ) αα = g µν Σ α β (σ ν ) β α ( σ µ ) αα + 1 β Σ α 2 ( σµ ) αα (σ ν ) α β. ( ) Thus, we must find a solution for ω µν = 1 2 Σ α β (σ ν ) β α ( σ µ ) αα + 1 β Σ α 2 ( σµ ) αα (σ ν ) α β Multiplying by σ µ and σ ν we have (σ µ ) γ γ ( σ ν ) δδ ω µν = 1 2 = 1 2 Tr[ Σσ ν σ µ +Σ σ µ σ ν]. ( ) [ ] (σ µ ) γ γ ( σ ν ) δδ (σ ν ) γ γ ( σ µ ) δδ ω µν Using Σ α α =2Σγ δ δ δ γ +2Σ δ γ δγ δ. ( ) =0=Σ α α,wefind Σγ δ = 1 [ (σµ ) γ γ ( σ ν ) γδ (σ ν ) γ γ ( σ ν ) γδ] ω µν ( ) 8 45

23 and similarly Σ δ γ = 1 ] [( σ ν ) δγ (σ µ ) γ γ ( σ µ ) δγ (σ ν ) γ γ ω µν. ( ) 8 The above commutators of the Pauli matrices arise frequently and so we define the matrices (σ µν ) α β i [ (σ µ ) α α ( σ ν ) αβ (σ ν ) α α ( σ µ ) αβ] = i 2 2 (σµ σ ν σ ν σ µ ) α β ( σ µν ) α β i 2 Thus we secure [ ] ( σ µ ) αα (σ ν ) α β ( σ ν ) αα (σ µ ) α β = i 2 ( σµ σ ν σ ν σ µ ) α β. ( ) Σ β α = i 4 ω µν(σ µν ) α β (Σ ) β α = +i 4 ω µν( σ µν ) β α. ( ) From our definitions of (σ µ ) α α we see that (σ µ ) α α ( σ ν ) αβ = g µν δ β α i(σµν ) β α ( σ µ ) αα (σ ν ) α β = g µν δ α β i( σ µν ) α β. ( ) The infinitesimal spinor transformations can now be obtained ψ α(x )=S β α ψ β (x) =ψ α (x) i 4 ω µν(σ µν ) β α ψ β (x) ψ α (x) 1 2 ω µν(d µν ) β α ψ β (x) ( ) and ψ α(x )= ψ β(x)(s ) β α = ψ α (x)+ i 4 ω µν ψ β(x)( σ µν ) β α Hence, the spinor representations are given by ψ α (x) 1 2 ω µν( D µν ) β α. ( ) (D µν ) α β +i 2 (σµν ) α β ( D µν ) β α i 2 ( σµν ) β α. ( ) 46

24 We must check that these matrices indeed obey the Lorentz algebra as did the tensor representation matrices. After some tedious Pauli matrix algebra we find [σ µν,σ ρσ ] β α = 1 4 [(σµ σ ν σ ν σ µ ), (σ ρ σ σ σ σ σ ρ )] β α = 2i (g µρ σ νσ g µσ σ νρ + g νσ σ µρ g νρ σ µσ ) β α. ( ) Thus the spinor representation obeys the Lorentz algebra [D µν,d ρσ ] β α =(g µρ D νσ g µσ D νρ + g νσ D µρ g νρ D µσ ) β α, ( ) and ψ α is the ( 1 2, 0) spinor representation of the Lorentz group. Similarly the commutation relation for σ µν can be worked out and we find that the complex conjugate dotted spinors ψ α are the (0, 1 2 ) representation of the Lorentz group with the D µν obeying the Lorentz algebra. As with tensors, we find the intrinsic variations of the spinor fields are given by δψ α = ψ α(x) ψ α (x) =δψ α δx µ µ ψ α For Poincare transformations we find that δψ α = 1 2 ω µν δ ψ α = ψ α(x) ψ α (x) =δ ψ α δx µ µ ψ α. ( ) x µ = x µ + ω µν x ν + ɛ µ [ (x µ ν x ν µ )δ β α ] (D µν ) α β ɛ µ µ ψ α (x) i 2 ω µν(m µν ) β α ψ β (x)+iɛ µ P µ ψ α (x) ( ) and δ ψ α = 1 2 ω µν [ ] (x µ ν x ν µ )δ β α ( D µν ) β α ψ β(x) ɛ µ µ ψ α (x) i 2 ω µν(m µν ) β α ψ β (x)+iɛµ P µ ψ α (x). ( ) As with tensors, the P µ and M µν obey the defining commutation relations of the Poincare group, equation (1.2.51). Note that in the rest frame for ψ(x), assuming it describes a massive particle with rest frame four momentum p µ =(m, 0, 0, 0), J i 1 2 ɛ ijkm jk = i 2 ɛ ijkd jk = 1 4 ɛ ijkσ jk 47

25 =+ 1 2 σi, ( ) hence the third component of the intrinsic angular momentum J 3 has eigenvalues ± 1 2 and the particle has spin 1 2. Similarly finding K we have that N N = 1 2 ( ) and N N = 0, so ψ α is the ( 1 2, 0) representation of the Lorentz group. Similarly we find that ψ α is the (0, 1 2 ) representation of the Lorentz group. For finite Poincare transformations x µ =Λ µν x ν + a µ ( ) we again exponentiate the generators to obtain ψ α(x) =S β α ψ β (Λ 1 (x a)) and with = [e +iaµ P µ e i 2 ω µν(λ)m µν] β ψ β (x) ( ) = ψ α (x) = ψ β(λ 1 (x a))(s ) β α [e +iaµ P µ e i 2 ω µν (Λ)M µν] β α α ψ β(x) ( ) Λ µν = 1 2 Tr[Sσν S σ µ ] ( ) and ω µν (Λ) given by equation (1.2.57) e 1 2 ω µν(λ)(x µ ν x ν µ) x ρ =(Λ 1 ) ρ σx σ. ( ) Thus we have found all representations of the Poincare group. Finally, let s relate our two-component Weyl spinors to the usual Dirac fourcomponent spinors. We can realize the Clifford algebra defining the 4x4 Dirac matrices γ µa b by using the Pauli matrices, this representation being referred to as the Weyl basis (or representation) or the chiral basis (or representation). Defining the Dirac matrices as γ µ 0 σ µ σ µ, ( ) 0 48

26 that is, γ 0a b = ab γ 1a b = ab i γ 2a b = 0 0 +i 0 0 +i 0 0 i ab γ 3a b =. ( ) Thus, the γ µ obey the defining Dirac anti-commutation relations ab γ µ γ ν + γ ν γ µ =2g µν 1. ( ) Also, we can define an additional matrix γ 5 = σ σ 0 = γ 5 +iγ 0 γ 1 γ 2 γ ( ) In this basis the 4 component complex Dirac spinor, denoted ψd a, is given in terms of two Weyl spinors ψ α and χ α ψ a D ψα χ α = Under a Lorentz transformation the Dirac spinor transforms as ψ 1 ψ 2 χ 1 χ 2 a. ( ) ψ a D(x )=L a bψ b D(x) ( ) 49

27

28 The Majorana condition ( ) implies that = C ψ T M = iγ 2 γ 0 γ 0 ψ M 0 iσ 2 ψ = i σ 2 0 χ χα ψα ψ α ψ M = χ α, ( ) or ψ = χ, ψ = χ. Hence we find that a 4 component Majorana spinor is made up of a 2 component Weyl spinor and its complex conjugate ψ M = ( ψα ψ α ). ( ) Needless to say the Weyl representation for the Dirac γ matrices is not the only way we could have reralized the Dirac algebra γ µ γ ν + γ ν γ µ =2g µν 1. ( ) After all, this remains invariant under unitary transformations U, U = U 1 and so ( ) becomes ˆγ µ U γ µ U, ˆγ µˆγ ν +ˆγ νˆγ µ =2g µν 1. ( ) Further we can use these unitary transformations to define linear combinations of the Weyl spinor components to form a four-component complex spinor ˆψ D U ψ D. ( ) Under a Poincare transformation we have ˆψ D(x )=U ψ D(x )=U Lψ D (x) =U LUU ψ D (x) = U LUψ D (x) =ˆL ˆψ D (x) ( ) 51

29 where ˆL U LU. As before we have for the hatted transformations Λ µνˆγ µ =Λ µν U γ µ U = U Lγ ν L 1 U = U LUU γ ν UU L 1 U = ˆLˆγ ν ˆL 1. ( ) Thus, all relations go through as before with all quantities replaced by their hatted values. There are several common choices for the four- component Dirac quantities. We have first defined the Weyl (or chiral) representation, in brief review in obvious notation γ µ Weyl ( 0 σ µ σ µ 0 ). ( ) That is 0 1 γweyl 0 = 1 0 γweyl i o σ i 0 σ i = σ i = 0 σ i. ( ) 0 The Weyl basis Dirac spinor, now denoted ψ Weyl, is given as ψ Weyl Under Poincare transformations ψα χ α = ψ 1 ψ 2 χ 1 χ 2. ( ) ψ Weyl(x )=Lψ Weyl (x) ( ) with S 0 L = 0 S 1. ( ) Left handed and right handed chiral spinors are defined by ψ Weyl L 1 2 (1 γ 5 Weyl)ψ Weyl (x) = ψ Weyl R 1 2 (1 + γ 5 Weyl)ψ Weyl (x) = 52 ( ψα 0 ) 0 χ α ( )

30 with 1 0 γ 5 Weyl = Another common representation is that of Dirac with γ µ Dirac U γ µ Weyl U ( ) U U = 1 2 ( ). ( ) Hence γ µ Dirac = 1 (σ + σ) µ (σ σ) µ 2 ( σ σ) µ (σ + σ) µ ( ) that is γdirac = 0 1 γdirac i 0 σ i 0 σ i = σ i = 0 σ i. ( Writing out all the components in order to be explicit, we have γdirac = γdirac = i γdirac 2 = 0 0 i 0 0 i 0 0 i γdirac 3 = ( )

31 The γ 5 matrix becomes γ 5 Dirac U γ 5 Weyl U = 0 1. ( ) 1 0 Note the γ matrices in all representations obey γ 0 = γ 0,γ i = γ i,γ 5 = γ 5. The Dirac four component spinors (or bi-spinors as they are sometimes called) in the Dirac representation are ψ Dirac U ψ Weyl = ψ χ = 1 (ψ + χ). ( ) 2 ( ψ + χ) Hence, the chiral spinors are given by ψ Dirac L = 1 2 (1 γ 5 Dirac)ψ Dirac = U ψ Weyl L = 1 ψ 2 ψ ψ Dirac R = 1 2 (1 + γ 5 Dirac)ψ Dirac = U ψ Weyl R = 1 2 ( χ χ ). ( ) Another common representation is the Majorana representation in which all the γ matrices have pure imaginary matrix elements. In this basis we have γ µ Majorana U γ µ Dirac U ( ) with the unitary transformation matrix also being hermitian and given as U 1 1 σ 2 2 σ 2 = U. ( ) 1 54

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

In this way we will obtain all possible (finite dimensional) representations of the Lorentz group. In order to obtain the transformation law for spinors we will consider the set of 2 2 complex matrices

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4 Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Symmetry. March 31, 2013

Symmetry. March 31, 2013 Symmetry March 3, 203 The Lie Derivative With or without the covariant derivative, which requires a connection on all of spacetime, there is another sort of derivation called the Lie derivative, which

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

1 Lorentz transformation of the Maxwell equations

1 Lorentz transformation of the Maxwell equations 1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc 4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3) PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

The Hartree-Fock Equations

The Hartree-Fock Equations he Hartree-Fock Equations Our goal is to construct the best single determinant wave function for a system of electrons. We write our trial function as a determinant of spin orbitals = A ψ,,... ϕ ϕ ϕ, where

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 2 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ z, which obey both commutation

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

A Short Introduction to Tensors

A Short Introduction to Tensors May 2, 2007 Tensors: Scalars and Vectors Any physical quantity, e.g. the velocity of a particle, is determined by a set of numerical values - its components - which depend on the coordinate system. Studying

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2 PiTP Study Guide to Spinors in D and 0D S.J.Gates Jr. John S. Toll Professor of Physics Director Center for String and Particle Theory University of Maryland Tel: 30-405-6025 Physics Department Fax: 30-34-9525

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Riemannian Curvature

Riemannian Curvature Riemannian Curvature February 6, 013 We now generalize our computation of curvature to arbitrary spaces. 1 Parallel transport around a small closed loop We compute the change in a vector, w, which we parallel

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα