Διοίκηση Παραγωγής και Υπηρεσιών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διοίκηση Παραγωγής και Υπηρεσιών"

Transcript

1 Διοίκηση Παραγωγής και Υπηρεσιών Γραμμές Παραγωγής Εκτίμηση Ελαττωματικών Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής

2 Σύνοψη διάλεξης Παρουσίαση χαρακτηριστικών γραμμών παραγωγής Παραδείγματα σε παραγωγή προϊόντων και υλοποίηση υπηρεσιών Ορισμοί σχετικοί με γραμμές παραγωγής Αλγόριθμος εξισορρόπησης γραμμής παραγωγής Αριθμητικό παράδειγμα εξισορρόπησης Μεθοδολογία εκτίμησης ελαττωματικών Αριθμητικό παράδειγμα εκτίμησης ελαττωματικών 2

3 Γραμμές παραγωγής Οι γραμμές παραγωγής αποτελούν την πλέον διαδεδομένη μορφή εργοστασιακής οργάνωσης Συναντώνται τόσο σε μονάδες παραγωγής (π.χ. Συναρμολόγηση αυτοκινήτων) όσο και σε συστήματα υπηρεσιών (π.χ., τα σύγχρονα Κέντρα Υποστήριξης Καταστημάτων της Alpha Bank) Στις γραμμές παραγωγής, οι σταθμοί εργασίας τοποθετούνται σειριακά και τα προϊόντα μετακινούνται από τη μια μηχανή (θέση εργασίας) στην επόμενη μέχρι να ολοκληρωθούν όλες οι διαδικασίες που απαιτούνται για τη δημιουργία του τελικού αποτελέσματος (προϊόν ή υπηρεσία) Οι γραμμές παραγωγής διακρίνονται για την αποδοτικότητά τους (πετυχαίνουν το μέγιστο δυνατό ρυθμό παραγωγής εκροών), αλλά απαιτούν εξειδικευμένο εξοπλισμό με σημαντικό επενδυτικό κόστος 3

4 Γραμμές παραγωγής Το συνηθέστερο σχεδιαστικό πρόβλημα που αντιμετωπίζει κανείς σχετικά με τις γραμμές παραγωγής είναι η εξισορρόπησή τους (assembly-production line balancing) Ο ρυθμός μιας γραμμής καθορίζεται μονοσήμαντα από τον πιο αργό σταθμό εργασίας Επομένως, κατά τη φάση του σχεδιασμού πρέπει να οργανωθούν με τέτοιο τρόπο οι εργασίες σε σταθμούς έτσι ώστε, αφενός μεν να επιτυγχάνεται ο ζητούμενος ρυθμός παραγωγής, αφετέρου δε να υπάρχει ισορροπία σε όλους τους σταθμούς εργασίας (σχετικά με τους χρόνους των εργασιών) Η ανάλυση κι ο σχεδιασμός των γραμμών παραγωγής ξεκινά με τον καθορισμό όλων των επιμέρους εργασιών που πρέπει να εκτελεστούν στη γραμμή παραγωγής Οι εργασίες εξαρτώνται τόσο από το σχεδιασμό του προϊόντος όσο κι από το σχεδιασμό των κατεργασιών-διαδικασιών υλοποίησης Με βάση τις εργασίες και την αλληλουχία τους καταρτίζεται το διάγραμμα συσχέτισης εργασιών (precedence diagram) που οριοθετεί σχέσεις μεταξύ της σειράς εκτέλεσης των εργασιών 4

5 Γραμμές παραγωγής Στο παράδειγμα precedence diagram, τα λατινικά γράμματα μέσα στους κύκλους δηλώνουν τις εργασίες, τα βέλη δηλώνουν άμεσα προηγούμενες εργασίες (δηλαδή εργασίες που πρέπει να έχουν τελειώσει πριν ξεκινήσει μια επόμενη για παράδειγμα η εργασία Α είναι άμεσα προηγούμενη της εργασίας C, αφού συνδέονται με βέλος) και οι αριθμοί κάτω από τους κύκλους τους χρόνους που απαιτούνται για κάθε εργασία (συνήθως σε sec, min ή hrs) D A 40 B 30 F 40 E 6 H 20 C G

6 Παραδείγματα Γραμμής Κάθε εργασία συνδέεται με συγκεκριμένα δομικά στοιχεία. Για παράδειγμα, αν οι εργασίες του προηγούμενου σχήματος αφορούν σε τραπεζικό δάνειο, τα δομικά στοιχεία μπορεί να είναι: Α Παραλαβή αίτησης κι έλεγχος τυπικών στοιχείων Β Έλεγχος πιστωτικής θέσης από το Σύστημα ΤΕΙΡΕΣΙΑΣ C Έλεγχος λογαριασμών στην ίδια ή άλλες τράπεζες D Σύνταξη αναφοράς πιστωτικής θέσης Ε Πιστοποίηση ταυτότητας προσώπου που κατέθεσε την αίτηση F Σύνταξη αναφοράς κατάστασης λογαριασμών G Έλεγχος περιουσιακών στοιχείων καταθέτη της αίτησης H Έγκριση ή απόρριψη με βάση την πιστωτική θέση Έγκριση / απόρριψη με βάση περιουσιακά στοιχεία / Λογαριασμούς 6

7 Παραδείγματα Γραμμής Σε περίπτωση που οι εργασίες του προηγούμενου σχήματος αφορούν σε παραγωγή / συναρμολόγηση τραπεζιού, τα δομικά στοιχεία μπορεί να είναι: Α Παραλαβή αρχικού MDF και συμπαγών υλικών Β Κοπή βασικών τμημάτων MDF (επιφάνειες) C Κοπή βασικών τμημάτων από συμπαγή υλικά D Έλεγχος διαστάσεων τμημάτων Ε Κόλληση ταινίας επιφανειών F Συναρμολόγηση τραπεζιού G Έλεγχος ισορροπίας και λοιπών χαρακτηριστικών H Αμπαλάρισμα Τοποθέτηση στην αποθήκη ετοίμων προϊόντων 7

8 Ορισμοί Ο ρυθμός παραγωγής που απαιτείται κατά την λειτουργία του συστήματος εκφράζεται σε μονάδες προϊόντος ανά μονάδα χρόνου Για το παράδειγμα του τραπεζικού δανείου, ας θεωρήσουμε ότι απαιτείται η επεξεργασία αιτήσεων την εβδομάδα Αν το Κέντρο Υποστήριξης Καταστημάτων λειτουργεί 5 ημέρες την εβδομάδα με δύο οκτάωρες βάρδιες την ημέρα, τότε ο απαιτούμενος ρυθμός παραγωγής είναι: r r 60 αιτήσεις ανά ώρα 8

9 Ορισμοί Με βάση το ρυθμό παραγωγής υπολογίζεται και ο χρόνος κύκλου εργασίας (cycle time) που για το παράδειγμά μας δίνεται από τη σχέση: c 1 1 hr c c r 60 unit 1αίτηση ανά min Αν m είναι ο αριθμός των εργασιών, i ο δείκτης των εργασιών (i1,,m) και t i οαπαιτούμενοςχρόνοςγιαναεκτελεσθείηεργασίαi, τότε ο θεωρητικός ελάχιστος αριθμός σταθμών εργασίας δίνεται από τη σχέση: TM m i 1 c t i 9

10 Ορισμοί Στην προηγούμενη σχέση, τα brackets ορίζουν τη συνάρτηση ceiling (κοντινότερος προς τα πάνω ακέραιος) Για το παράδειγμά μας, ο θεωρητικός ελάχιστος αριθμός σταθμών εργασίας είναι: TM 1 Στις γραμμές παραγωγής με n σταθμούς εργασίας, σημαντικό ρόλο παίζει ο συνολικός άεργος χρόνος (idle time), ο οποίος δίνεται από τη σχέση: dle Time n c m i 1 t i 5 10

11 Ορισμοί Επίσης καθοριστικός παράγοντας της λειτουργίας μιας γραμμής παραγωγής είναι η αποδοτικότητα (efficiency) που ορίζεται από τον τύπο: m Efficiency i 1 t i n c 100% Τέλος, η καθυστέρηση εξισορρόπησης μιας γραμμής παραγωγής (balance delay) υπολογίζεται ως εξής: Balance Delay 100 Efficiency 11

12 Αλγόριθμος εξισορρόπησης Αλγόριθμος LB Βήμα 1: Θέσε k1 και διέταξε σε φθίνουσα σειρά χρόνων τις εργασίες Βήμα 2: Επέλεξε την πρώτη εργασία i που δεν έχει άμεσα προηγούμενη Βήμα 3: Ανέθεσε την εργασία του Βήματος 2 στο σταθμό εργασίας k αν δεν παραβιάζεται ο χρόνος κύκλου c Βήμα 4: Αφαίρεσε την εργασία i από τη λίστα των άμεσα προηγούμενων εργασιών και επέστρεψε στο Βήμα 2 Βήμα 5: Αν όλες οι εργασίες χωρίς άμεσα προηγούμενες έχουν εξετασθεί, θέσε kk+1 και επέστρεψε στο Βήμα 2 Βήμα 6: Αν όλες οι εργασίες έχουν ανατεθεί σε σταθμούς εργασίας, τέλος Με το τέλος του αλγορίθμου έχουμε τον αριθμό των σταθμών εργασίας και τις εργασίες που εκτελούνται σε κάθε σταθμό 12

13 Αριθμητικό παράδειγμα ΒΗΜΑ 1 A 40 B 30 F D 40 E 6 H 20 Εργασία Χρόνος Άμεσα Προηγούμενες Εργασίες C 50 A A 40 - D 40 B B 30 A F 25 C H 20 D, E 18 F, G G 15 C E 6 B C G

14 Αριθμητικό παράδειγμα Σταθμός Εργασίας Εργασία Συνολικός Χρόνος Άεργος Χρόνος S 1 A S 2 C S 3 B F 25 5 S 4 D G 15 5 S E 6 36 H D ΒΗΜΑΤΑ 2-5 A 40 B 30 F 40 E 6 H 20 C G

15 Αριθμητικό παράδειγμα Επομένως, απαιτούνται πέντε σταθμοί εργασίας (ο θεωρητικά ελάχιστος αριθμός, όπως ήδη έχουμε υπολογίσει) Τα μεγέθη απόδοσης της γραμμής παραγωγής είναι: dle Time Efficiency (244/300) % Balance Delay ( ) % 18.7 % D B 40 H A F E 6 20 C G

16 Εκτίμηση ελαττωματικών Η πρόβλεψη ζήτησης, όπως θα δούμε σε επόμενο κεφάλαιο προσδιορίζεται για τελικά προϊόντα από τα τμήματα Μάρκετινγκ και Πωλήσεων Για να μπορέσει το παραγωγικό σύστημα να ανταποκριθεί στη ζήτηση, στον όγκο της παραγωγής θα πρέπει να συνεκτιμηθεί και το ποσοστό των ελαττωματικών που προκύπτουν σε κάθε στάδιο κατεργασίας Δυστυχώς, παρά τις σημαντικές προσπάθειες που καταβάλλονται μέσω προγραμμάτων Ολικής Ποιότητας και Στατιστικού Ποιοτικού Ελέγχου, πάντα θα υπάρχει κάποιο ποσοστό ελαττωματικών που θα επιβάλλει πρόσθετο εξοπλισμό και αυξημένο χρόνο επαν-επεξεργασίας Αυτό το ποσοστό συνήθως παρέχεται από τον κατασκευαστή των μηχανώνήαπόσυναφείςκατεργασίεςήαπόάλλεςεταιρίεςπου χρησιμοποιούν τις ίδιες μηχανές 16

17 Εκτίμηση ελαττωματικών Ας θεωρήσουμε ένα σύστημα n μηχανών που λειτουργούν σε σειρά (όπως στις γραμμές παραγωγής) με τα ακόλουθα χαρακτηριστικά: k δείκτης μηχανών P k ποσοστό ελαττωματικών του σταδίου κατεργασίας k O k απαιτούμενο output (εκροή) μη ελαττωματικών προϊόντων από το στάδιο κατεργασίας k k input (εισροή) στοστάδιοκατεργασίαςk 1 Ο 1 2 Ο 2 n Μηχανή 1 Μηχανή 2 Μηχανή n O n 17

18 Εκτίμηση ελαττωματικών Η σχέση μεταξύ input και output δίνεται από τον ακόλουθο τύπο: O k k Επομένως, το input μπορεί να εκφρασθεί ως: P k k Εκτελώντας αναδρομικά τον παραπάνω τύπο από τη μηχανή n προς τη μηχανή 1 και λαμβάνοντας υπόψη μας ότι Ι k O k-1, καταλήγουμε στην ακόλουθη σχέση: 1 Στην παραπάνω σχέση, O n, είναι η πρόβλεψη ζήτησης για το τελικό προϊόν και Ι 1 οι απαιτούμενες πρώτες ύλες. O k O ( 1 P1 )(1 P2 ) L(1 P n k ( 1 Pk ) Ok k 1 P n ) k 18

19 Αριθμητικό παράδειγμα Έστω ένα προϊόν που απαιτεί τρεις κατεργασίες Αν η πρόβλεψη ζήτησης είναι και το ποσοστό ελαττωματικών σε κάθε στάδιο κατεργασίας είναι P 1 0,04 P 2 0,01 P 3 0,03 Υπολογίστε τον όγκο παραγωγής σε κάθε στάδιο κατεργασίας 19

20 Αριθμητικό παράδειγμα Εφαρμόζοντας τις προηγούμενες σχέσεις έχουμε: O P 1 0, O P 1 P 1 0, O P 1 P 1 0,

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ 7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ Για να αναπτυχθούν οι βασικές έννοιες της δυναμικής του εργοστασίου εισάγουμε εδώ ορισμένους όρους πέραν αυτών που έχουν ήδη αναφερθεί σε προηγούμενα Κεφάλαια π.χ. είδος,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ

ΜΕΛΕΤΗ ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ ΣΧΕΔΙΑΣΜΟΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΣΧΕΔΙΑΣΜΟΣ ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ Ι. ΓΙΑΝΝΑΤΣΗΣ ΜΕΛΕΤΗ ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ Μελέτη Εργασίας (Work Study ή Motion and Time Study): έχει ως αντικείμενο την ανάπτυξη και τυποποίηση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Διοίκηση και Προγραμματισμός Έργων ΠΕΡΙΕΧΟΜΕΝΑ 1. Βασικές έννοιες 2. Ανάλυση του έργου και διαμόρφωση του δικτύου 3. Επίλυση δικτύου 1 1. Βασικές έννοιες Με τον όρο έργο, εκτός από

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εισαγωγή στην πληροφορική Ενότητα 5: ΑΛΓΟΡΙΘΜΟΙ Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης Μάθημα 7 ο Αλγόριθμοι Χρονοδρομολόγησης Σκοπός του μαθήματος Στην ενότητα αυτή θα εξηγήσουμε το ρόλο και την αξιολόγηση των αλγορίθμων χρονοδρομολόγησης, και θα παρουσιάσουμε τους κυριότερους. Θα μάθουμε:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ 1 Εισαγωγικά Απόθεμα εννοείται κάθε είδους αγαθό, το οποίο μπορεί να αποθηκευτεί με στόχο την τρέχουσα ή μελλοντική χρησιμοποίησή του. Αποθέματα συναντώνται σε κάθε

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ

ΜΕΛΕΤΗ ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ ΣΧΕΔΙΑΣΜΟΣ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΜΕΘΟΔΟΥ Ι. ΓΙΑΝΝΑΤΣΗΣ ΜΕΛΕΤΗ ΜΕΘΟΔΟΥ Μελέτη Εργασίας (WorkStudyή MotionandTimeStudy): έχει ως αντικείμενο την ανάπτυξη και τυποποίηση της μεθόδου και, γενικά, του συστήματος

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βέλτιστη Ποσότητα Παραγγελίας (EOQ) Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός του προβλήματος βέλτιστης ποσότητας παραγγελίας

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Ι. Γιαννατσής ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Σχεδιασμός Επιλογή Παραγωγικής παραγωγικής Διαδικασίας (πως) ικανότητας (πόσο)

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βασικές Αρχές και Κατηγοριοποιήσεις Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός αποθεμάτων Κατηγορίες αποθεμάτων Λόγοι πίεσης

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Σχεδιασμός διαδικασιών. Source: Joe Schwarz, www.joyrides.com

Σχεδιασμός διαδικασιών. Source: Joe Schwarz, www.joyrides.com Σχεδιασμός διαδικασιών Source: Joe Schwarz, www.joyrides.com Σχεδιασμός διαδικασιών Σχεδιασμός διαδικασιών Σχεδιασμός δικτύου εφοδιασμού Στρατηγική παραγωγής Διάταξη και ροή Σχεδιασμός Διοίκηση παραγωγής

Διαβάστε περισσότερα

Ανάπτυξη μεθοδολογίας για την αξιολόγηση των επιπτώσεων στην οδική ασφάλεια των έργων υποδομής στην Ελλάδα

Ανάπτυξη μεθοδολογίας για την αξιολόγηση των επιπτώσεων στην οδική ασφάλεια των έργων υποδομής στην Ελλάδα Τεχνικό Επιμελητήριο Ελλάδας 3o Πανελλήνιο Συνέδριο Οδοποιίας Αθήνα, 9-10 Φεβρουαρίου 2012 Ανάπτυξη μεθοδολογίας για την αξιολόγηση των επιπτώσεων στην οδική ασφάλεια των έργων υποδομής στην Ελλάδα Γιώργος

Διαβάστε περισσότερα

Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.

Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa. Πληροφορική 1 Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.gr/~organosi/ 2 Η δομή του μαθήματος Εισαγωγή στην

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ - ΠΡΟΒΛΗΜΑΤΑ

ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ - ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ 1 ΠΡΟΒΛΗΜΑ 1 Οι δραστηριότητες Χ και Ψ ενός σύνθετου έργου μηχανοργάνωσης (βλ. επόμενη σελίδα) παριστάνουν τις δύο κύριες εργασίες εγκατάστασης ενός μεγάλου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και

Διαβάστε περισσότερα

1. ΜΕΤΡΗΣΗ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑΣ

1. ΜΕΤΡΗΣΗ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑΣ 1. ΜΕΤΡΗΣΗ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑΣ Για την μέτρηση της παραγωγικότητας χρησιμοποιούμε τους επόμενους τύπους Παραγωγικότητα = Έξοδος (Εκροή) Είσοδος (Εισροή) Διακρίνονται τρεις διαφορετικές περιπτώσεις μέτρησης

Διαβάστε περισσότερα

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Προγραμματισμός και έλεγχος αποθεμάτων Στρατηγική παραγωγής Η αγορά απαιτεί μια ποσότητα προϊόντων και υπηρεσιών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΠΑΙΤΟΥΜΕΝΩΝ ΥΛΙΚΩΝ (MRP) Δημ. Εμίρης Αναπλ. Καθηγητής Πειραιάς, 2012 ΔΙΑΡΘΡΩΣΗ ΤΗΣ ΕΝΟΤΗΤΑΣ Εισαγωγή Ορισμοί Είδη ζήτησης Χρόνοι υστέρησης Κοινόχρηστα είδη Δομή και συστατικά

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΟ 2 2.4 Βασικές συνιστώσες/εντολές ενός αλγορίθμου 2.4.1 Δομή ακολουθίας ΚΕΦΑΛΑΙΟ 7 7.1 7.9 Σταθερές (constants): Προκαθορισμένες τιμές που παραμένουν

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού...

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού... ΚΕΦΑΛΑΙΟ 5. ΧΩΡΟΤΑΞΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Περιεχόμενα 5.1. Χωροταξικός Σχεδιασμός... 2 5.2. Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού... 4 5.3. Δραστηριότητες Χωροταξικού Σχεδιασμού... 5 5.4. Τύποι Χωροταξίας...

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΑ ΑΠΟΔΟΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙΔΟΣΕΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙΔΟΣΕΩΝ Η

Διαβάστε περισσότερα

Προαπαιτούµενες Εργασίες A Συναρµολόγηση καθίσµατος 19 - B Τοποθέτηση φρένων στο τιµόνι 28 - C

Προαπαιτούµενες Εργασίες A Συναρµολόγηση καθίσµατος 19 - B Τοποθέτηση φρένων στο τιµόνι 28 - C Η συναρµολόγηση του ποδηλάτου Larry της εταιρείας Ideal περιλαµβάνει 19 βασικά στοιχεία εργασίας. Ο χρόνος εκτέλεσης κάθε στοιχείου σε δευτερόλεπτα καθώς και οι προαπαιτούµενες εργασίες δίνονται στον πίνακα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1 Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Εισαγωγή -2 Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Η στρατηγική διάσταση της διοίκησης παραγωγής και υπηρεσιών Ανταγωνιστικές προτεραιότητες Στρατηγικές

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΟΜΑΛΗ ΚΙΝΗΣΗ Θα ακολουθούμε για όλες τις περιπτώσεις την παρακάτω σειρά διαδικασιών: i) Προσεκτική μελέτη της εκφώνησης και εξακρίβωσης του είδους της κίνησης ii) Αναδρομή στη θεωρία, προσεκτική μελέτη

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter):

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter): 1 ΧΡΟΝΙΚΑ ΑΜΕΤΑΒΛΗΤΟ ΦΙΛΤΡΟ KALMAN Για το χρονικά αμετάβλητο μοντέλο, όπου οι μήτρες F( k 1, k) F, H( k 1) H, Q( k) Q και R( k 1) R είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο

Διαβάστε περισσότερα

ΕΚΠΑ_Τμήμα Οικονομικών Επιστημών

ΕΚΠΑ_Τμήμα Οικονομικών Επιστημών Συντελεστής και βάση καταλογισμού ΓΒΕ 3 Βήματα 1. Εκτίμηση μελλοντικού επιπέδου παραγωγής μιας περιόδου 2. Εκτίμηση των μελλοντικών ΓΒΕ μιας περιόδου 3. Υπολογισμός συντελεστή καταλογισμού ΓΒΕ (πηλίκο

Διαβάστε περισσότερα

Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση

Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος

Διαβάστε περισσότερα

Οργάνωση επεξεργαστή (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Οργάνωση επεξεργαστή (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Οργάνωση επεξεργαστή (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ταχύτητα εκτέλεσης Χρόνος εκτέλεσης = (αριθμός εντολών που εκτελούνται) Τί έχει σημασία: Χ (χρόνος εκτέλεσης εντολής) Αριθμός

Διαβάστε περισσότερα

Θέμα 1ο ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: Π ΧΑΡΑΚΤΗΡΕΣ:Χ

Θέμα 1ο ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: Π ΧΑΡΑΚΤΗΡΕΣ:Χ ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΤΜΗΜΑ: ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ ΤΟΥΜΠΑ THΛ: 919113 949422 ΗΜΕΡΟΜΗΝΙΑ:3/02/20 :3/02/2013 3 Θέμα 1ο Α Να απαντήσετε με Σ ή Λ στα παρακάτω: 1 τις Στατικές

Διαβάστε περισσότερα

Ο Αλγόριθµος της Simplex

Ο Αλγόριθµος της Simplex Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Η φύση του προγραμματισμού και του ελέγχου. Source: Arup

Η φύση του προγραμματισμού και του ελέγχου. Source: Arup Η φύση του προγραμματισμού και του ελέγχου Source: Arup Προγραμματισμός και έλεγχος Προγραμματισμός και έλεγχος Η αγορά απαιτεί προϊόντα και υπηρεσίες που διανέμονται στον απαιτούμενο χρόνο, ποσότητα και

Διαβάστε περισσότερα

Εφαρμογές και Παραδείγματα

Εφαρμογές και Παραδείγματα ΚΕΦΑΛΑΙΟ 5 ΕΦΑΡΜΟΓΕΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Στο κεφάλαιο αυτό αναφέρονται ορισμένα παραδείγματα εφαρμογής των συστημάτων CAD/CAM στο σχεδιασμό και την κατασκευή διαφόρων καλουπιών και εξαρτημάτων. 5.1 ΠΑΡΑΔΕΙΓΜΑ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1. Κεφάλαιο 2. Κεφάλαιο 3

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1. Κεφάλαιο 2. Κεφάλαιο 3 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 ΕΙΣΑΓΩΓΗ... 17 ΓΕΝΙΚΑ... 19 ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΟΣ ΠΑΡΑΓΩΓΗΣ... 19 ΕΙΔΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ... 21 ΕΙΔΗ ΑΠΟΦΑΣΕΩΝ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ... 22 ΟΙ ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ ΣΕ ΜΙΑ

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # : Επιχειρησιακή έρευνα Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο 3.07 Να γραφεί αλγόριθμος που θα δημιουργεί πίνακα 100 θέσεων στον οποίο τα περιττά στοιχεία του θα έχουν την τιμή 1 και τα άρτια την τιμή 0. ΛΥΣΗ Θα δημιουργήσω άσκηση βάση κάποιων κριτηρίων. Δηλ. δεν

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Ι. Γιαννατσής ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Σχεδιασμός Παραγωγικής Διαδικασίας (πως) Επιλογή παραγωγικής ικανότητας (πόσο)

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΧΩΡΟΤΑΞΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΧΩΡΟΤΑΞΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΣΧΕΔΙΑΣΜΟΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΧΩΡΟΤΑΞΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Ι. ΓΙΑΝΝΑΤΣΗΣ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΧΩΡΟΤΑΞΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Αντικείμενο: η διάταξη του παραγωγικού δυναμικού στο χώρο, δηλαδή η χωροταξική διευθέτηση των

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Ακολούθως αναπτύσσονται ορισμένα διευκρινιστικά σχόλια για το Σχέδιο Μαθήματος. Αφετηρία για τον ακόλουθο σχολιασμό υπήρξαν οι σχετικές υποδείξεις που μας

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 2: Μοντελο Συσχετίσεων Οντοτήτων, Μελέτη Περίπτωσης: Η βάση δεδομένων των CD

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 2: Μοντελο Συσχετίσεων Οντοτήτων, Μελέτη Περίπτωσης: Η βάση δεδομένων των CD Ενότητα 2: Μοντελο Συσχετίσεων Οντοτήτων, Μελέτη Περίπτωσης: Η βάση δεδομένων των CD Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 2: «ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΔΕΙΚΤΩΝ» («RATIO ANALYSIS») ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( ) ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης

Διαβάστε περισσότερα

Εργαλείο Διαχείρισης Διαδικασιών ADONIS. Μάνος Χάλαρης

Εργαλείο Διαχείρισης Διαδικασιών ADONIS. Μάνος Χάλαρης Εργαλείο Διαχείρισης Διαδικασιών ADONIS Μάνος Χάλαρης Διαχείριση Διαδικασιών Διαχείριση Διαδικασιών Οι Επιχειρησιακές Διαδικασίες βρίσκονται στο κέντρο κάθε οργανισμού. Οι Επιχειρησιακές Διαδικασίες έχουν

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Εργασία 1 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΡΙΑΣ: Τσελίγκα Αρετή, 1312009161, Στ εξάμηνο, κατεύθυνση: Εκπαιδευτική Τεχνολογία και Διαπολιτισμική Επικοινωνία Το γνωστικό αντικείμενο

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ 1 ο Γενικό Λύκειο Ηρακλείου Αττικής Σχ έτος 2011-2012 Εργαστήριο Φυσικής Υπεύθυνος : χ τζόκας 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ Η γραφική παράσταση

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΕΚΠΑ_Τμήμα Οικονομικών Επιστημών

ΕΚΠΑ_Τμήμα Οικονομικών Επιστημών 3 Βήματα 1. Εκτίμηση μελλοντικού επιπέδου παραγωγής μιας περιόδου 2. Εκτίμηση των μελλοντικών ΓΒΕ μιας περιόδου 3. Υπολογισμός συντελεστή καταλογισμού ΓΒΕ (πηλίκο 2/1) Συντελεστής και βάση καταλογισμού

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Ηλεκτρονικό Εμπόριο. Ενότητα 7: Διαχείριση Εφοδιαστικής Αλυσίδας Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ηλεκτρονικό Εμπόριο. Ενότητα 7: Διαχείριση Εφοδιαστικής Αλυσίδας Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ηλεκτρονικό Εμπόριο Ενότητα 7: Διαχείριση Εφοδιαστικής Αλυσίδας Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ισοζύγιο Πληρωμών και Εισόδημα

Ισοζύγιο Πληρωμών και Εισόδημα Κεφάλαιο 3 Ισοζύγιο Πληρωμών και Εισόδημα 3.1 Σύνοψη Στο τρίτο κεφάλαιο του συγγράμματος περιγράφεται αναλυτικά το ισοζύγιο πληρωμών, καθώς και τα επί μέρους ισοζύγια στα οποία διακρίνεται. Στη συνέχεια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β Καβακλή Χειμερινό Εξάμηνο 2001 Στόχοι του Μαθήματος! Ανάπτυξη αναλυτικής

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 10 Η φύση του προγραµµατισµού και του ελέγχου

Κεφάλαιο 10 Η φύση του προγραµµατισµού και του ελέγχου Κεφάλαιο 10 Η φύση του προγραµµατισµού και του ελέγχου Source: Arup Προγραµµατισµός και έλεγχος Προγραµµατισµός και έλεγχος Η αγορά απαιτεί προϊόντα και υπηρεσίες που διανέµονται στον απαιτούµενο χρόνο,

Διαβάστε περισσότερα

Κεφ. 1: Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος

Κεφ. 1: Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος Η έννοια του προβλήματος 1. Αναφέρετε μερικά από τα προβλήματα που συναντάτε στην καθημερινότητά σας. Απλά προβλήματα Ποιο δρόμο θα ακολουθήσω για να πάω στο σχολείο; Πως θα οργανώσω μια εκδρομή; Πως θα

Διαβάστε περισσότερα

Μάθημα: ΕΛΛΗΝΙΚΑ ΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ- ΣΧΕΔΙΑ

Μάθημα: ΕΛΛΗΝΙΚΑ ΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ- ΣΧΕΔΙΑ TEI Ανατολικής Μακεδονίας & Θράκης Τμήμα Λογιστικής & Χρηματοοικονομικής Μάθημα: ΕΛΛΗΝΙΚΑ ΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ- ΣΧΕΔΙΑ 4 η Εισήγηση Διδάσκων: Αθανάσιος Μανδήλας smand@teiemt.gr ΟΜΑΔΑ 2: ΑΠΟΘΕΜΑΤΑ 20 Εμπορεύματα:

Διαβάστε περισσότερα

Βασικά ζητήματα μιας βάσης δεδομένων

Βασικά ζητήματα μιας βάσης δεδομένων Τριαντάφυλλος Πριμηκύρης* Βασικά ζητήματα μιας βάσης δεδομένων Τι είναι μια βάση δεδομένων; Ας ξεκινήσουμε με κάτι πολύ απλό! Όλοι έχετε έναν τηλεφωνικό κατάλογο. Ο κατάλογος αυτός είναι μια χειροκίνητη

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι. Καταναλωτές - Παραγωγοί - Αποτελεσματικότητα Αγοράς. Αρ. Διάλεξης: 7

Εισαγωγή στην Οικονομική Επιστήμη Ι. Καταναλωτές - Παραγωγοί - Αποτελεσματικότητα Αγοράς. Αρ. Διάλεξης: 7 Εισαγωγή στην Οικονομική Επιστήμη Ι Καταναλωτές - Παραγωγοί - Αποτελεσματικότητα Αγοράς Αρ. Διάλεξης: 7 Καταναλωτές, Παραγωγοί και Αποτελεσματικότητα Αγοράς Αγοραία ισορροπία Μπορούν η τιμή και η ποσότητα

Διαβάστε περισσότερα

Κεφάλαιο 5 Διαχείριση του Χρόνου Ανοχής

Κεφάλαιο 5 Διαχείριση του Χρόνου Ανοχής Κεφάλαιο 5 Διαχείριση του Χρόνου Ανοχής ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ προσδιορισμός ορισμών και εννοιών σχετικών με τον ανταγωνισμό που βασίζεται στο χρόνο ανάδειξη τρόπου διαχείρισης χρόνου ανοχής με σκοπό την εξυπηρέτηση

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές έννοιες αλγορίθμων Εισαγωγή Αρχικά εξηγείται ο όρος αλγόριθμος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληροί κάθε

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Συστήµατα Παραγωγής Εξισορρόπηση Γραµµής Παραγωγής (Paced Assembly Line Balancing) Dr. Ι. Θ. Χρήστου

Συστήµατα Παραγωγής Εξισορρόπηση Γραµµής Παραγωγής (Paced Assembly Line Balancing) Dr. Ι. Θ. Χρήστου Συστήµατα Παραγωγής Εξισορρόπηση Γραµµής Παραγωγής (Paced Assembly Line Balancing) Dr. Ι. Θ. Χρήστου Εξισορρόπηση Γραµµής Παραγωγής Ανάλυση Γραµµής Ανάθεσε καθήκοντα (tasks) µεταξύ σταθµών εργασίας ώστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 Διαφορικός ενισχυτής

ΚΕΦΑΛΑΙΟ 6 Διαφορικός ενισχυτής ΚΕΦΑΛΑΙΟ 6 Διαφορικός ενισχυτής Ο διαφορικός ενισχυτής (differential amplifier) είναι από τα πλέον διαδεδομένα και χρήσιμα κυκλώματα στις ενισχυτικές διατάξεις. Είναι βασικό δομικό στοιχείο του τελεστικού

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Ανάπτυξη Λογισμικού ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Η διαδικασία ανάπτυξης λογισμικού μπορεί να

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΕΠΙΔΡΩΝΤΕΣ ΠΑΡΑΓΟΝΤΕΣ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΜΑΡΚΕΤΙΝΓΚ

ΕΠΙΔΡΩΝΤΕΣ ΠΑΡΑΓΟΝΤΕΣ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΜΑΡΚΕΤΙΝΓΚ Η ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΜΑΡΚΕΤΙΝΓΚ Το Μάρκετινγκ αποτελεί μια βασική επιχειρηματική λειτουργία που έχει στόχο την ανάπτυξη, την οργάνωση και των έλεγχο ανταλλακτικών διαδικασιών μεταξύ της επιχείρησης και των

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

Γενική Επισκόπηση. Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι)

Γενική Επισκόπηση. Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι) Γενική Επισκόπηση Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι) Έργο Ø «Ένα προσωρινό εγχείρημα που στοχεύει στη δημιουργία ενός μοναδικού προϊόντος, υπηρεσίας

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Ηλ. Γκρίνιας Τ. Ε. Ι. Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Αλγόριθμοι Ορισμός: ο αλγόριθμος είναι μια σειρά από πεπερασμένα βήματα που καθορίζουν

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα