Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14."

Transcript

1 Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje krutog tjea A. Transacjsko gbanje Gbanje krutog tjea A. Transacja B. Rotacja B. Rotacjsko gbanje C. Soženo gbanje Panarno gbanje (transacja rotacja) C. Soženo gbanje Kotrjanje ajkastog tjea po horontanoj podo be kanja 5 A. Transacjsko gbanje krutog tjea Pod djeoanjem se F doojno je ponaat gbanje jedne toke tjea centar masa () sredšte masa. Jednadžba transacjskog gbanja krutog tjea: a m F 6

2 Knetka energja krutog tjea Transacja: se toke tjea gbaju se stm brnama koje su jednake brn sredšta masa k B. Rotacjsko gbanje krutog tjea oko nepomne os pod djeoanjem momenta ( k m ) 7 8 se estce tjea gbaju se stom kutnom brnom trajektorjeestca su kružnce ja sredšta eže na pracu praac koj spaja sredšta kružnca predstaja os rotacje os rotacje proa sredštem masa os rotacje: nepomna pomna (rk) rotacju n samo komponenta se koja ež u rann okomtoj na os rotacje F t 9 oment tromost krutog tjea obrom na os rotacje: m r 0 Ukupn statk moment sa F t oko os r F εm oment tromost masa: ε ( krocrtnog gbanja : r m ε t ε m F m a t t m r a r ε ) t oment tromost masa: m r

3 oment tromost masa je mjera tromost tjea pr rotacjskom gbanje. Štap dujne, mase m m r dm (kg m ) m oment tromost štapa a os kro centar masa - težšte r dm Štap - dujne - mase m dm ρ dv ρ A dx r x ρ A ρa ρa m 8 8 m x ρ A dx ρ A x V x dx ρ A 5 oment tromost štapa a os kro težšte centar masa 6 oment tromost homogene poe radjusa R r dm dm ρ dv ρ rπ dr ρ gustoa mr 7 R r πρ r dr πρ 0 m R πρ R R ρ R π 8

4 oment tromost prstena mr oment tromost ajka radjusa r (pun ajak) m r dm R dm m R 9 0 šupjeg ajka oment tromost kuge radjusa r oment tromost tjea a paraenu os koja ne proa centrom masa Stenero teorem omoguuje raun momenta tromost a bo koju paraenu os rotacje ako je ponat moment tromost obrom na os rotacje kro centar mase mr m r 5 Stenero teorem: + m d Stenero teorem: + m d m + m oment tromost obrom na neku os jednak je momentu tromost obrom na paraenu os kro sredšte mase, ueanom a produkt mase tjea kadrata udajenost me u th dju os. m m + m

5 Rad krutog tjea pr rotacj da FT ds Put: ds r d A ϕ da FT r d Obrtn moment: a konst. 5 a konst. da dϕ ϕ A da dϕ 0 r F T ϕ 6 Knetka energja krutog tjea Rotacja: oko nepomne os k 7 Rotacja: oko nepomne os k m k m m m r r 8 Kona gbanja K a os oko koje tjeo rotra m K Podsjetnk: O - moment kone gbanja a materjanu toku K m O r m 9 O m kg s 0 5

6 oment kone gbanja a kruto tjeo r m r m - obodna brna: r oment kone gbanja tjea koje rotra jednak je produktu momenta tromost krutog tjea kutne brne rotacje tjea oko nepomne os r m Vea meu momenta se momenta kone gbanja f r F r K r m dm d r m + r m + r F 0 + r F r F / Σ d Os je os rotacje Rotacja štapa oko nepomne os: - Centrfugana sa: F m a c n m m r r d d ( ) ε u osoncma se jajaju jednake reaktne se F C / ε 5 6 6

7 Podsjetnk: Gbanje materjane toke po kružnoj putanj Rotacja štapa oko nepomne os: Reutanta parcjanh centrfuganh sa F c jednaka je nu nema optereenja osonaca A B D`Aemberto prncp F cp c F 0 c F F cp m a n m m r r 7 8 Rotacja štapa oko nepomne os: Rotacja štapa oko nepomne os: centrfugane Parcjane se F c spregom optereuju osonce A B Reutrajua centrfugana sa: F m c r T optereuju osonce A B 9 0 D Aemberto prncp Dodamo nekom sustau sa su nercju, susta e bt u ranotež. Tme adatak dnamke možemo rješaat pomou statkh ujeta ranoteže. Op akon dnamke krutog tjea:. Zakon o promjen kone gbanja. Zakon o promjen knetke energje. Zakon o ouanju mehanke energje. Zakon o promjen momenta kone gbanja 7

8 Op akon dnamke krutog tjea:. Zakon o promjen kone gbanja m () m 0 ()0 t F t transacja rotacja Op akon dnamke krutog tjea:. Zakon o promjen kone gbanja. Zakon o promjen knetke energje m () m 0 ()0 ϕ F s rotacja transacja Op akon dnamke krutog tjea:. Zakon o promjen kone gbanja. Zakon o promjen knetke energje. Zakon o ouanju mehanke energje m () + mgh m ()0 + mgh 0 Op akon dnamke krutog tjea:. Zakon o promjen kone gbanja. Zakon o promjen knetke energje. Zakon o ouanju mehanke energje. Zakon o promjen momenta kone gbanja 5 6 C. Panarno gbanje krutog tjea knematke: se toke na okomc opsuju dentne me usobno paraene putanje u sakom trenutku maju jednake ektore brna ubranja Sako gbanje presjeka S može se raožt na transacjsko gbanje rotacjsko gbanje oko proojno odabranog poa - toke A sod se na prouaanje gbanja presjeka S u rann Π

9 Trenutn po brna P Trenutn po brna je toka P u presjeku S krutog tjea ja je brna u odre enom trenutku jednaka nu ( P 0). Knetka energja krutog tjea pr panarnom gbanju P - moment tromost krutog tjea u odnosu na os rotacje kro trenutn po brna P P 9 50 Prmjer panarnog gbanja krutog tjea: Kotrjanje be kanja ajkastog tjea po horontanoj podo m + P 5 5 P ( + m ) c. m. P c. m. + m r PC r + m + m 5 Kraj! 5 9

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Dinamika rotacionog kretanja krutog tela.

Dinamika rotacionog kretanja krutog tela. Dnamka otaconog ketanja kutog tela. Delovanje sla momenata sla na kuto telo Čvsto (kuto) telo je sstem čvsto povezanh matejalnh tačaka (masa Δm 1, Δm,, Δm,, Δm n ) koje maju svaka svoju težnu (ΔQ 1, ΔQ,,

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Το πρόβληµα της σκέδασης

Το πρόβληµα της σκέδασης Το πρόβληµα της σκέδασης ΦΥΣ 11 - Διαλ.18 1 q Θεωρήστε μή φραγμένη κίνηση σε κεντρικό δυναμικό Ø Σωματίδιο έρχεται από το άπειρο και πηγαίνει στο άπειρο q Υποθέστε ότι F( r) 0 καθώς r Ø H τροχιά προσεγγίζει

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης. Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 9 ο μάθημα Κεφάλαιο 1 Κινηματική του Στερεού Σώματος Κίνηση στερεού σώματος

Διαβάστε περισσότερα

Κεφάλαιο 1 Χημικός δεσμός

Κεφάλαιο 1 Χημικός δεσμός Κεφάλαιο 1 Χημικός δεσμός 1.1 Άτομα, Ηλεκτρόνια, και Τροχιακά Τα άτομα αποτελούνται από + Πρωτόνια φορτισμένα θετικά μάζα = 1.6726 X 10-27 kg Νετρόνια ουδέτερα μάζα = 1.6750 X 10-27 kg Ηλεκτρόνια φορτισμένα

Διαβάστε περισσότερα

Δελτίο δεδομένων ασφαλείας

Δελτίο δεδομένων ασφαλείας Σελίδα: 1/11 ΤΜΗΜΑ 1: Αναγνωριστικός κωδικός ουσίας/μείγματος και εταιρείας/επιχείρησης 1.1 Αναγνωριστικός κωδικός προϊόντος REF 918163 Εμπορική ονομασία NANOCOLOR Chlorine dioxide 1 x 1 x 1 x 1 x 1 x

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Η Κβαντομηχανική. υπό ισχυρή συμπίεση

Η Κβαντομηχανική. υπό ισχυρή συμπίεση Σημειώσεις Σ. Τραχανά Η Κβαντομηχανική υπό ισχυρή συμπίεση Σημειώσεις του Καθ. Στέφανου Τραχανά Τμ. Φυσικής, Παν/μιο Κρήτης Σημειώσεις Σ. Τραχανά Το μέλαν σώμα Ι. Τι είναι η ακτινοβολία του μέλανος σώματος

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΔΕΥΤΕΡΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΔΕΥΤΕΡΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΔΕΥΤΕΡΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ 1. Μηχανισμοί σκέδασης των φορέων (ηλεκτρόνια οπές) 2. Ηλεκτρική Αγωγιμότητα 3. Ολίσθηση φορέων (ρεύμα ολίσθησης) 4. Διάχυση

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

1 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ο ΚΕΦΑΛΑΙΟ (ΤΑΛΑΝΤΩΣΕΙΣ)

1 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ο ΚΕΦΑΛΑΙΟ (ΤΑΛΑΝΤΩΣΕΙΣ) δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ (ΤΑΛΑΝΤΩΣΕΙΣ) ΔΙΑΡΚΕΙΑ: ώρες ΒΑΘΜΟΣ:.. ΗΜΕΡΟΜΗΝΙΑ: /0/009 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC. 5ppm/ SOT-23 12/14/16nanoDAC AD562/AD564/AD566 nanodac AD566 16 AD564 14 AD562 12 12 1.25V/2.5V 5ppm/ 8SOT-23/MSOP 48nA 5V 2nA 3V 3V/5V 16 DAC 3 to SYNC 1. 1212/14/16nanoDAC 2. 1.25V/2.5V 5ppm/ 3. 8SOT-23

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. ΒΑΘΜΟΛΟΓΙΑ 2008 ΚΟΡΙΣΙΑ 12 αα ΑΜ Ονοματεπώνυμο Έτος Παν Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Int1 Int2 Int3 Int4 Int5 Mas Εν (-) Βαθμ ύλλογος 1 21368

Ε.Φ.Ο.Α. ΒΑΘΜΟΛΟΓΙΑ 2008 ΚΟΡΙΣΙΑ 12 αα ΑΜ Ονοματεπώνυμο Έτος Παν Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Int1 Int2 Int3 Int4 Int5 Mas Εν (-) Βαθμ ύλλογος 1 21368 1 21368 ΚΞΝΟΙΑΘΝ ΑΛΑΠΡΑΠΗΑ 1996 120 60 60 60 60 20 380 ΝΑ ΑΘΖΛΥΛ 2 21937 ΘΑΦΟΖ ΑΓΓΔΙΗΘΖ 1996 100 50 50 50 30 20 300 ΝΑ ΑΘΖΛΥΛ 3 23838 ΚΑΡΝΙΑ ΚΑΟΘΑ 1997 50 18 15 10 30 60 30 60 20 250 ΑΞΝΙΙΥΛ ΘΑΙΑΚΑΟΗΑΠ

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ & Φ.ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ & Φ.ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ & Φ.ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ; ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΓΕΩΦΥΣΙΚΩΝ ΚΑΤΑΓΡΑΦΩΝ ΣΕ ΥΔΡΟΓΕΩΤΡΗΣΕΙΣ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

Αγώνες αυτοκινήτου σε πίστα

Αγώνες αυτοκινήτου σε πίστα Αγώνες αυτοκινήτου σε πίστα Αυτοκίνητο τρέχει στην πίστα που φαίνεται και έχει κυκλικά τόξα ένα ακτίνας 80m και ένα 40m. Αν οδηγός τρέχει ένα πλήρη κύκλο με σταθερή ταχύτητα 50m/s (80km/h) συγκρίνετε την

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

THΛ: THΛ: 270727 222594 919113 949422 #&"'"%$ #"%$!"#$ '"(#"')%$ Α. Για τις παρακάτω προτάσεις 1-4 να γράψετε το γράµµα α, β, γ ή δ, που αντιστοιχεί στην σωστή απάντηση 1. Η υπέρυθρη ακτινοβολία α. είναι

Διαβάστε περισσότερα

ΣΥΝΟΨΗ 1 ου Μαθήματος

ΣΥΝΟΨΗ 1 ου Μαθήματος Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

Ovdje će se prikazati dva primjera za funkciju cilja sa dvije varijable: kružnicu i elipsu.

Ovdje će se prikazati dva primjera za funkciju cilja sa dvije varijable: kružnicu i elipsu. Neke metode z nelnearnog programranja Od metoda nelnearnog programranja koje se korste za rješavanje nekh problema sa specfčnom funkcjom clja zdvojt će se sljedeće: a) grafčka metoda, b) metoda neposrednog

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου.

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 10.1. Ερώτηση: Τι ονομάζουμε χημικό δεσμό; Ο χημικός δεσμός είναι η δύναμη που συγκρατεί τα άτομα ή άλλες δομικές

Διαβάστε περισσότερα

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά Τρώγοντας έξω : Στην είσοδο Θα ήθελα να κρατήσω ένα τραπέζι για _[αριθμός ατόμων]_ στις _[ώρα]_. (Tha íthela na kratíso éna trapézi ya _[arithmós atómon]_ στις _[óra]_.) Θα ήθελα να κρατήσω ένα τραπέζι

Διαβάστε περισσότερα

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó L09 cloj=klk=tsvjmosopa jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó 4 16 27 38 49 60 71 82 93 P Éå Ñê ÇÉ áí dbq=ql=hklt=vlro=^mmif^k`b mo pbkq^qflk=ab=slqob=^mm^obfi ibokbk=pfb=feo=dboûq=hbkkbk

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Σύστημα. Ανοικτά Συστήματα. Γενικό Ροϊκό Πεδίο. Περιβάλλον. Θερμότητα. Ροή Μάζας. Ροή Μάζας. Έργο

Σύστημα. Ανοικτά Συστήματα. Γενικό Ροϊκό Πεδίο. Περιβάλλον. Θερμότητα. Ροή Μάζας. Ροή Μάζας. Έργο ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Όγκος και επιφάνεια ελέγχου Διατήρηση μάζας και ενέργειας Μόνιμες-Μεταβατικές διεργασίες Ισοζύγιο μάζας Έργο Ροής-Ισοζύγιο ενέργειας Διατάξεις μόνιμης

Διαβάστε περισσότερα

Mehanika I. Fizika. Mehanika. Materijalno tijelo. Mehanika I

Mehanika I. Fizika. Mehanika. Materijalno tijelo. Mehanika I Mehanika I. dio Mehanika I Obavezna literatura: V. Andrejev: Mehanika I. dio Statika www.sfsb.hr/ksk/statika www.mating.hr/prim_mehanika Ostala literatura: A. Kirienko: Tehnika mehanika I. dio-statika

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΠΕΡΙΟΔΙΚΑ ΦΑΙΝΟΜΕΝΑ Περίοδος (Τ) ενός περιοδικού φαινομένου είναι ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου. Αν σε χρόνο t γίνονται Ν επαναλήψεις

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Eφαρμογές Περιστροφική κίνηση Άσκηση 1 Η κυματοσυνάρτηση ψ(φ) για

Διαβάστε περισσότερα

=+4m το μέτρο της ταχύτητας του είναι u 2

=+4m το μέτρο της ταχύτητας του είναι u 2 1. Ένα σώμα μάζας = 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2 το μέτρο της ταχύτητας του είναι u 1 =4/ s, ενώ στη θέση με απομάκρυνση x 2 =+4 το μέτρο

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΙΔΙΟΤΗΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΣΥΝΘΕΤΙΚΩΝ ΥΦΑΣΜΑΤΩΝ ΜΕ ΠΛΑΣΜΑ ΧΑΜΗΛΗΣ ΚΑΙ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ

ΜΕΤΑΒΟΛΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΙΔΙΟΤΗΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΣΥΝΘΕΤΙΚΩΝ ΥΦΑΣΜΑΤΩΝ ΜΕ ΠΛΑΣΜΑ ΧΑΜΗΛΗΣ ΚΑΙ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ ΜΕΤΑΒΟΛΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΙΔΙΟΤΗΤΩΝ ΦΥΣΙΚΩΝ ΚΑΙ ΣΥΝΘΕΤΙΚΩΝ ΥΦΑΣΜΑΤΩΝ ΜΕ ΠΛΑΣΜΑ ΧΑΜΗΛΗΣ ΚΑΙ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Υποβληθείσα στο Τμήμα χημικών Μηχανικών Πανεπιστήμιο Πατρών Υπό ΚΩΣΤΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014

Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014 Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 7 Μαίου 014 Στόχοι διάλεξης Πώς να: υπολογίζει την μεταβολή της μαγνητικής ροής. εφαρμόζει το νόμο του Faraday για τον υπολογισμό της επαγόμενης

Διαβάστε περισσότερα

Ευσταθής - Ασταθής ισορροπία

Ευσταθής - Ασταθής ισορροπία ΦΥΣ 131 - Διαλ.27 1 Ευσταθής - Ασταθής ισορροπία Έστω ένα σώμα σε ισορροπία. Του δίνουμε μια μικρή ώθηση Αν το σώμα κινηθεί προς τη θέση ισορροπίας τότε η ισορροπία είναι ευσταθής. Αν το σώμα απομακρυνθεί

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ 0 ΘΕΜ ο Να γράψετε στο φύλλο απαντήσεών σας τον αριµό καεµιάς από τις ακόλοες ηµιτελείς προτάσεις και δίπλα της το γράµµα πο αντιστοιχεί στο σωστό σµπλήρωµά της..

Διαβάστε περισσότερα

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα

Διαβάστε περισσότερα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Κεφάλαιο Μ10 Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Άκαµπτο σώµα Τα µοντέλα ανάλυσης που παρουσιάσαµε µέχρι τώρα δεν µπορούν να χρησιµοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούµε να

Διαβάστε περισσότερα

Κέντρο Μάζας - Παράδειγμα

Κέντρο Μάζας - Παράδειγμα Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M Απαντήσεις 51 5. Εφαρµογές των παραλληλογράµµων α Εφαρµογές στα τρίγωνα α.1 Στο τρίγωνο AB Γ είναι Ε // (1) Επίσης Ζ, ΕΗ, άρα Ζ // ΕΗ () Από τις (1), () έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. α. Στο

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 9

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 9 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 9 1. Μια σανίδα µήκους 2l και µάζας Μ βρίσκεται πάνω σε µια λεία επιφάνεια. Μια µπάλα µάζας m που κινείται µε ταχύτητα υ 0 χτυπά το ένα άκρο της σανίδας. Να βρεθεί η τελική ταχύτητα

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α 3 o ΔΑΓΩΝΣΜΑ ΜΑΡΤOΣ 03: ΕΝΔΕΚΤΚΕΣ ΑΠΑΝΤΗΣΕΣ ΦΥΣΚΗ ΘΕΤΚΗΣ ΚΑ ΤΕΧΝΟΛΟΓΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΑΓΩΝΣΜΑ (ΣΤΕΡΕΟ ΣΩΜΑ) ΕΝΔΕΚΤΚΕΣ ΑΠΑΝΤΗΣΕΣ ΘΕΜΑ Α β δ 3 δ 4 β 5 Λ βσ γλ δσ ελ ΘΕΜΑ Β Σωστή είνι η πάντηση γ Ο ρυθμός

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 0: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

Περιεχόµενα Παρουσίασης 2.9

Περιεχόµενα Παρουσίασης 2.9 Πυρηνική Τεχνολογία - ΣΕΜΦΕ Κ ε φ ά λ α ι ο ο Π α ρ ο υ σ ί α σ η. 9 1 Περιεχόµενα Παρουσίασης.9 1. Αρχή Λειτουργίας των ΠΑΙ : Η Σχάση. Πυρηνική Ηλεκτροπαραγωγή ΠΗΣ 3. Πυρηνικά Υλικά και Τύποι ΠΑΙ 4. Σύγχρονοι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.

Διαβάστε περισσότερα

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες 5 η Εργασία Παράδοση /5/7 Οι ασκήσεις είναι ισοδύναµες Για ένα συµµετρικό σώµα (για παράδειγµα, ϑεωρείστε ένα κυλινδρικό σώµα) που κυλά προς τα κάτω, χωρίς να ολισθαίνει, πάνω σε κεκλιµένο επίπεδο, να

Διαβάστε περισσότερα

Αστρικές Ατμόσφαιρες Ισορροπίες Βασικοί Ορισμοί

Αστρικές Ατμόσφαιρες Ισορροπίες Βασικοί Ορισμοί Αστρικές Ατμόσφαιρες Ισορροπίες Βασικοί Ορισμοί Ισορροπία Θερμική Θερμοδυναμική Υδροστατική Ακτινοβολιακή Θερμική Ισορροπία Συνθήκη Θερμικής Ισορροπίας: dl dm r r ε: συντελεστής παραγωγής ενέργειας (de/gr/sec)

Διαβάστε περισσότερα

24o YNE PIO I O O IA 24th INTERNATIONAL CONFERENCE OF PHILOSOPHY

24o YNE PIO I O O IA 24th INTERNATIONAL CONFERENCE OF PHILOSOPHY IE NH ETAIPEIA E HNIKH I O O IA 5, 17456 - H H YMMETOXH N 1 (N μ 29/02/2012 ) (.,,,,.): KATOIKIA : TH E NO TH E NO KATOIKIA : KINHTO TH E NO: NA META X TO : μ YNE PO AKPOATH KAI YNE PO PO O OY YNO EYEI

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Predavanja iz mehanike u okviru predmeta Fizika 1 i 2

Predavanja iz mehanike u okviru predmeta Fizika 1 i 2 Predavanja iz mehanike u okviru predmeta Fizika 1 i 2 Saša Ilijić (UniZG/FER) 27. lipnja 2016. Sadržaj 1 Materija, prostor, vrijeme i fizikalne veličine 1 1.1 Tijela, čestice i gustoća mase.............................

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α γ Α α Α3 γ Α δ (ισχύει: Α5 ασ ισχύον: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κριακή Αριλίο 3 ιάρκεια Εξέτασης: 3

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΥΠΟΨΗΦΙΩΝ ΔΙΕΥΘΥΝΤΩΝ ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΑΝΤΙΚΕΙΜΕΝΙΚΩΝ ΜΟΡΙΩΝ ΚΑΙ ΑΝΑ ΥΠΟΨΗΦΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ (2015)

ΠΙΝΑΚΑΣ ΥΠΟΨΗΦΙΩΝ ΔΙΕΥΘΥΝΤΩΝ ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΑΝΤΙΚΕΙΜΕΝΙΚΩΝ ΜΟΡΙΩΝ ΚΑΙ ΑΝΑ ΥΠΟΨΗΦΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ (2015) ΑΓΑΛΙΑΝΟΥ ΟΛΥΜΠΙΑ ΑΡΙΣΤΕΙΔΗΣ 587815 16ο ΔΣ Ν. ΙΩΝΙΑΣ ΕΠΙΛΟΓΗ 1 11,75 7 4,75 0 ΑΓΓΕΛΑΚΗ ΜΑΡΙΑΝΝΑ ΕΛΕΥΘΕΡΙΟΣ 590460 4ο ΔΣ Ν. ΙΩΝΙΑΣ ΕΠΙΛΟΓΗ 1 15,38 8 5,5 1,88 ΑΓΓΕΛΑΚΗ ΜΑΡΙΑΝΝΑ ΕΛΕΥΘΕΡΙΟΣ 590460 8ο ΔΣ Ν.

Διαβάστε περισσότερα

d S q Q r Q ( ) R=9cm, e= C, k =1/(4 )~ 9 x 10 9 Nm 2 /C 2 N r Q=10 19 e = C =1.6 C Q Q q q q = = = = = 4 4 R ).

d S q Q r Q ( ) R=9cm, e= C, k =1/(4 )~ 9 x 10 9 Nm 2 /C 2 N r Q=10 19 e = C =1.6 C Q Q q q q = = = = = 4 4 R ). (6-7-8) A. 9 R=9cm,. e=.6-9 C, k =/(4 )~ 9 9 Nm /C B. N r V. ( N V ). (. : N r R ).. Q= 9 e = 9.6-9 C =.6 C r < R Gauss E q d S, q. E d S. o E d S E ds cos E4 r E4 r q' o Q Q q q q r = = = = = 4 4 R r

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Η μέθοδος του κινουμένου τριάκμου

Η μέθοδος του κινουμένου τριάκμου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις

Διαβάστε περισσότερα

2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ

2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ 2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Διαθέτουμε τροχό ο οποίος αποτελείται από έναν ομογενή λεπτό δακτύλιο μάζας m = 1 kg και ακτίνας R και τέσσερις λεπτές ομογενείς ράβδους μάζας Μ ρ = ¾m και μήκους l = 2R η

Διαβάστε περισσότερα

1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ 1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις πολλαπλής επιλογής Να βάλετε σε κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση ή στη φράση που συµπληρώνει σωστά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΛΥΜΕΝΑ θεματα ΘΕΜΑΤΑ.για ΛΥΣΗ

ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΛΥΜΕΝΑ θεματα ΘΕΜΑΤΑ.για ΛΥΣΗ 01 ςεδς ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΛΥΜΕΝΑ θεματα ΘΕΜΑΤΑ.για Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΠΟΛΥΤΑ ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΟΡΙΣΜΟΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ Λέγοντας απόλυτη τιμή του πραγματικού αριθμού α εννοούμε

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα

1906-1986 Μαθητολόγια, βιβλία πιστοποιητικών σπουδών, γενικοί έλεγχοι, βιβλία πράξεων Σχολικής Εφορείας Αρχείο Δημοτικού Σχολείου Μουρνιών

1906-1986 Μαθητολόγια, βιβλία πιστοποιητικών σπουδών, γενικοί έλεγχοι, βιβλία πράξεων Σχολικής Εφορείας Αρχείο Δημοτικού Σχολείου Μουρνιών ΕΚΠΑΙΔΕΥΤΙΚΑ Τίτλος Ακραίες χρονολογίες Περιεχόμενο Γαλατά 1906-1986 Μαθητολόγια, βιβλία πιστοποιητικών σπουδών, γενικοί έλεγχοι, βιβλία πράξεων Σχολικής Εφορείας Μουρνιών 1899-2008 Μαθητολόγια, βιβλία

Διαβάστε περισσότερα

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Τβριδιςμόσ Υβριδικά τροχιακά και γεωμετρίεσ Γηαίξεζε

Διαβάστε περισσότερα