Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας."

Transcript

1 Το πρόγραµµα λογιστικών φύλλων (spreadsheet) Microsoft Excel ενσωµατώνει ρουτίνα επίλυσης προτύπων γραµµικού προγραµµατισµού. Η ρουτίνα ονοµάζεται Solver και χρησιµοποιεί το λογιστικό φύλλο του Microsoft Excel για την εισαγωγή δεδοµένων από και προς αυτό. Σκοπός κεφαλαίου Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας. 1. Ενεργοποίηση του SOLVER Παρότι ο Solver είναι τµήµα του Microsoft Excel, ανήκει στην κατηγορία των add-in s και πιθανότατα δεν είναι ενεργοποιηµένος. Για να εξεταστεί αν ο Solver είναι ενεργοποιηµένος, αρκεί να εξεταστεί το µενού Tools ( Εργαλεία ) του MS-Excel. Αν υπάρχει επιλογή Solver στο µενού αυτό, ο Solver είναι ενεργοποιηµένος (Εικόνα Λ.1): 216

2 Επιλογή Solver (ενεργοποιηµένη) Επιλογή Add-Ins Εικόνα Λ.1: Μενού Tools του MS-Excel. 217

3 Αν ο Solver είναι απενεργοποιηµένος, ενεργοποιείται µε βάση την παρακάτω διαδικασία: Από το µενού Tools (Εικόνα Λ.1) επιλέγεται η εντολή Add ins και εµφανίζεται το παρακάτω παράθυρο διαλόγου (Εικόνα Λ.2). Επιλογή Solver Add-n Εικόνα Λ.2: Παράθυρο διαλόγου Add Ins. Γίνεται επιλογή του Solver, κάνοντας κλικ στο τετραγωνίδιο δίπλα στην επιλογή Solver Add-in, οπότε εµφανίζεται ένα τικ µέσα στο κουτάκι. Στη συνέχεια επιλέγοντας OK, ενεργοποιείται ο Solver και η επιλογή εκτέλεσής του φαίνεται στο µενού Tools, όπως στην Εικόνα Λ.1. ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ Για την επίδειξη του SOLVER, θα χρησιµοποιηθεί το παρακάτω παράδειγµα, το οποίο θα αποκαλείται από εδώ και πέρα «Παράδειγµα Κεραµοσκεπών». Ο Σχηµατισµός της 69 Α ΤΕ επιθυµεί την κατασκευή κεραµοσκεπών σε Στρατόπεδα της Ζώνης Ευθύνης του για να αντικαταστήσει παλαιότερες σκεπές από φύλλα αµιαντοτσιµέντου. Λόγω υπηρεσιακών αναγκών ο Σχηµατισµός δεν δύναται να κατασκευάσει άνω των m 2 πραγµατικής επιφάνειας κεραµοσκεπών. Για την κατασκευή των κεραµοσκεπών έχει διατεθεί κονδύλι ΕΥΡΩ από την ΑΣ ΕΝ, ως τµήµα του ΕΜΠΑΕ (συνέχεια στην επόµενη σελίδα) 218

4 (συνέχεια από την προηγούµενη σελίδα) ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ Η 69 Α ΤΕ σκοπεύει να προχωρήσει σε απ ευθείας ανάθεση του έργου και για τον λόγο αυτόν έχει αναθέσει στον Λόχο Μηχανικού του Σχηµατισµού (69 ΛΜΧ) την εξεύρεση κατασκευαστών. Μετά από αξιολόγηση ο 69ΛΜΧ προτείνει τρεις κατασκευαστές των οποίων οι προσφορές και οι απαιτήσεις για να αναλάβουν την εργασία είναι οι παρακάτω: Κατασκευαστής Τιµή ανά m 2 (EΥΡΩ) Ελάχιστα m 2 που αναλαµβάνει Μέγιστα m 2 που αναλαµβάνει Για υπηρεσιακούς λόγους η 69 Α ΤΕ επιθυµεί την κατά το συντοµότερο κατασκευή των κεραµοσκεπών για τον λόγο αυτόν προτίθεται να µοιράσει το έργο και στους τρεις κατασκευαστές. Επίσης, οι κατασκευαστές 1 και 2 είναι κουµπάροι και έχουν αποφασίσει ότι δεν θα αναλάβουν τµήµα του έργου αν δεν λάβουν και οι δύο µαζί τουλάχιστον ΕΥΡΩ ώστε να µπορούν να αποπληρώσουν δάνειο που είχαν λάβει παλαιότερα. Να βρεθεί και να επιλυθεί προτύπου γραµµικού προγραµµατισµού ώστε να µοιράζονται τα m 2 και στους τρεις κατασκευαστές µε τέτοιον τρόπο που να µεγιστοποιείται το σύνολο των m 2 που θα κατασκευαστούν υπό τις ανωτέρω συνθήκες. Λύση: Έστω x ii το σύνολο των m 2 κατασκευαστής (i=1,2,3). κεραµοσκεπών που θα αναλάβει ο κάθε To προτύπου Γραµµικού Προγραµµατισµού θα είναι το: Max x 1 +x 2 +x 3 Μεγιστοποίηση s.t. 47x 1 +48x 2 +53x { Περιορισµός Κονδυλίου x 1 +x 2 +x { Περιορισµός Επιφάνειας 47x 1 +48x { Περιορισµός Συµφωνίας Κατασκευαστών 1 & x { υνατότητες Κατασκευαστή x { υνατότητες Κατασκευαστή x { υνατότητες Κατασκευαστή 3 x 1,x 2,x 3 0 (συνέχεια στην επόµενη σελίδα) 219

5 (συνέχεια από την προηγούµενη σελίδα) H επίλυση του παραπάνω προβλήµατος θα γίνει µε τη βοήθεια του SOLVER. Πρώτα όµως θα αναφερθούµε σε µερικές γενικές αρχές χρήσης του SOLVER. Σηµειώνεται ότι βασικές αρχές χρήσης του Microsoft Excel θεωρούνται δεδοµένες και δεν πρόκειται να πραγµατοποιηθεί εµβάθυνση σε αυτές. 2. Βασικές Aρχές Οι βασικότερες αρχές για τον χειρισµό του SOLVER είναι οι παρακάτω: Κάθε µεταβλητή του προβλήµατος πρέπει να αντιστοιχιστεί σε ένα κελί του φύλλου εργασίας. Οι συντελεστές της αντικειµενικής συνάρτησης και των περιορισµών τοποθετούνται σε κελιά. Η αντικειµενική συνάρτηση αντιστοιχίζεται σε ένα κελί το οποίο µετά την επίλυση θα πάρει ως τιµή τη βέλτιστη τιµή της (αν υπάρχει). Τα δεξιά µέλη των περιορισµών τοποθετούνται σε κελιά. Τα αριστερά µέλη περιορισµών αλλά και η αντικειµενική συνάρτηση προκύπτουν ως πράξεις κελιών. 3. Οι Eντολές SUMPRODUCT και SUM Οι εξισώσεις των προτύπων γραµµικού προγραµµατισµού αποτελούν αθροίσµατα γινοµένων συντελεστών και µεταβλητών. Η εντολή SUMPRODUCT έχει τη δυνατότητα να αθροίζει γινόµενα κελιών. Λόγου χάρη, έστω τα κελιά A1, A2, A3 και τα κελιά Β1, Β2, Β3 τα οποία περιέχουν αριθµητικές τιµές. Η εντολή =SUMPRODUCT(A1:A3;B1:B3) θα αποδόσει το αποτέλεσµα της πράξης Α1 x B1 + A2 x B2 + A3 x B3 (των αριθµητικών τιµών των κελιών). Η εντολή αυτή είναι πολύ χρήσιµη. Όσο για την εντολή SUM, αυτή αθροίζει απλά κελιά, για παράδειγµα για τα κελιά Α1,Α2,Α3, η εντολή SUM(A1:A3) θα ήταν το αποτέλεσµα της πράξης Α1+Α2+Α3 (των αριθµητικών τιµών των κελιών). 220

6 4. Εισαγωγή του Προτύπου σε Φύλλο του MS-Excel Η καλή οργάνωση των δεδοµένων στο φύλλο εργασίας είναι σηµαντική για την εύκολη και παραστατική προβολή και επίλυση του προβλήµατος. Οι δυνατότητες του MS-Excel διευκολύνουν ιδιαίτερα την διαδικασία αυτή. Για το παράδειγµα των κεραµοσκεπών, τα δεδοµένα και η οργάνωσή τους στο φύλλο εργασίας φαίνονται στην Εικόνα Λ.3: Εικόνα Λ.3: Απεικόνιση του προβλήµατος σε φύλλο εργασίας του MS- Excel. Οι µεταβλητές x1, x2, x3 αντιστοιχίζονται στα κελιά D7, E7, F7 ενώ η αντικειµενική συνάρτηση στο κελί Η7. Η τιµή της αντικειµενικής συνάρτησης υπολογίζεται µε τη βοήθεια της συνάρτησης SUM, H13=SUM(D7;E7;F7). Το αριστερό µέλος του περιορισµού διατιθέµενων κονδυλίων αντιστοιχίζεται στο κελί Ε15, όπου Ε15=SUMPRODUCT(D7:F7;D11:F11). Το αριστερό µέλος του περιορισµού Συµφωνίας κουµπάρων» αντιστοιχίζεται στο κελί Ε15, όπου Ε15=SUMPRODUCT(D7:Ε7;D11:Ε11). Το αριστερό µέλος του περιορισµού προσφερόµενων τετραγωνικών µέτρων αντιστοιχίζεται στο κελί D25, όπου D25=SUM(D7;E7;F7). Το αριστερό µέλος του περιορισµού ορίων κατασκευαστή 1 αντιστοιχίζεται στο κελί D26, όπου D26=D11(=x1). Το αριστερό µέλος του περιορισµού ορίων κατασκευαστή 2 αντιστοιχίζεται στο κελί D27, όπου D27=E11(=x2). 221

7 Το αριστερό µέλος του περιορισµού ορίων κατασκευαστή 1 αντιστοιχίζεται στο κελί D28, όπου D28=D11(=x3). 5. Παρατηρήσεις Οι ονοµασίες των διαφόρων στοιχείων δεν επηρεάζουν τα δεδοµένα επίλυσης αλλά το πώς έχουν τοποθετηθεί στο φύλλο εργασίας σε σχέση µε τα στοιχεία που αντιπροσωπεύουν, επηρεάζει τις ονοµασίες που περιέχονται στις εξαγόµενες αναφορές. Ένας βασικός κανόνας είναι να υπάρχει µόνο ένα όνοµα στη σειρά ή στη στήλη (σε µία όµως από τις δύο) όπου υπάρχει κελί που αντιστοιχεί σε περιορισµό (εκτός και αν το όνοµα αφορά περισσότερα στοιχεία). Παρόλα αυτά, δοκιµές του προγράµµατος θα παρείχαν το καλύτερο αποτέλεσµα. Αντί για την εντολή SUM θα µπορούσε να χρησιµοποιηθεί η έκφραση H13=D7+E7+F7. Ανάλογα θα µπορούσε να αντικατασταθεί και η εντολή SUMPRODUCT από αντίστοιχη έκφραση. Οι εκφράσεις για τα αριστερά µέλη των περιορισµών του κατασκευαστή θα µπορούσαν να έχουν παραληφθεί (οπότε το αριστερό µέλος για τον κατασκευαστή 1 θα ήταν το κελί D11, µέλος για τον κατασκευαστή 2 θα ήταν το E11 και για τον κατασκευαστή 3 θα ήταν το F11. Από το µενού Tools καλείται ο Solver (Εικόνα Λ.1) και εµφανίζεται το παράθυρο διαλόγου αυτού: Εικόνα Λ.4: Παράθυρο διαλόγου Solver. Στο παράθυρο διαλόγου εισάγονται τρεις οµάδες στοιχείων: 222

8 (α) Η αντικειµενική συνάρτηση (την οποία αντιπροσωπεύει το κελί στόχος Τarget cell) Στην Εικόνα Ε-5, φαίνεται αναλυτικά η περιοχή του παραθύρου όπου εισάγονται τα δεδοµένα της αντικειµενικής συνάρτησης: Θέση Εισαγωγής κελιόυ Αντικειµενικής Συνάρτησης Εικονίδιο απ ευθείας επιλογής κελιών από το φύλλο εργασίας Επιλογή προβλήµατος µεγιστοποίησης (MAX), Ελαχιστοποίησης (MIN), ή ισότητας για το προτύπου Γ.Π. Εικόνα Λ.5: Περιοχή παραθύρου διαλόγου που αφορά την αντικειµενική συνάρτηση. Στην θέση «Target Cell» εισάγεται το κελί στο οποίο αντιστοιχεί η αντικειµενική συνάρτηση, δηλαδή το Η13, είτε πληκτρολογώντας Η13, είτε απευθείας από το φύλλο εργασίας αφού ο χρήστης πιέσει το ανάλογο εικονίδιο δίπλα στην θέση εισαγωγής. Στη συνέχεια, ανάλογα µε το προτύπου, επιλέγεται αν το πρόβληµα αφορά «µεγιστοποίηση» (Max), «ελαχιστοποίηση» (Min) ή αν η αντικειµενική συνάρτηση ισούται µε κάποια τιµή (Value of). Στην τελευταία περίπτωση, η τιµή αυτή µπορεί να καθοριστεί στην αντίστοιχη θέση εισαγωγής της τιµής δίπλα στην επιλογή «Value of». (β) Οι µεταβλητές (τις οποίες αντιπροσωπεύουν τα κελιά που ορίσαµε changing cells) Στην Εικόνα Λ.6, φαίνεται η περιοχή του παραθύρου όπου εισάγονται οι µεταβλητές: Εικονίδιο απ ευθείας επιλογής κελιών από το φύλλο εργασίας Εικόνα Λ.6: Περιοχή παραθύρου διαλόγου που αφορά τις µεταβλητές του προτύπου. Τα κελιά που αντιπροσωπεύουν τις µεταβλητές µπορούν να εισαχθούν µέσω πληκτρολογίου είτε απευθείας από το φύλλο εργασίας αφού πιεστεί το ανάλογο εικονίδιο δίπλα στην θέση εισαγωγής. Αφού τα κελιά των µεταβλητών είναι 223

9 συνεχόµενα στην ίδια περιοχή του φύλλου εργασίας, µπορούν να εισαχθούν οµαδικά (δηλαδή D7:F7). Αλλιώς θα πρέπει να εισαχθούν ξεχωριστά το καθένα παρεµβάλλοντας ερωτηµατικά (λόγου χάρη αν αντί των κελιών D7:F7 ήταν τα κελιά D7, E8, F9, θα εισάγονταν ως D7;E8;F9) ή θα επιλέγονταν από το φύλλο εργασίας µε το ποντίκι κρατώντας πατηµένο το πλήκτρο Ctrl. Επίσης, υπάρχει η δυνατότητα να επιλέξει το πρόγραµµα αυτόµατα τα κελιά που αντιστοιχούν στις µεταβλητές από το κελί στόχο (αντικειµενική συνάρτηση), µε τη βοήθεια του κουµπιού Guess δίπλα στην θέση εισαγωγής των κελιών που αντιστοιχούν στις µεταβλητές. Τα κελιά που έχουν επιλεγεί είναι προφανώς αυτά από τα οποία υπολογίζεται η τιµή του κελιού στόχου της αντικειµενικής συνάρτησης. (γ) Οι περιορισµοί (constraints, οι οποίοι αντιπροσωπεύονται από κελιά τα οποία περιέχουν τις εκφράσεις των αριστερών µελών των περιορισµών και τις αριθµητικές τιµές των δεξιών µελών αυτών). Στην Εικόνα Λ.7 φαίνεται το τµήµα του παραθύρου διαλόγου όπου εισάγονται οι περιορισµοί: Πλήκτρο Προσθήκης Περιορισµού Πλήκτρο Τροποποίησης Περιορισµού Πλήκτρο ιαγραφής Περιορισµού Εικόνα Λ.7: Περιοχή παραθύρου διαλόγου που αφορά τους περιορισµούς του προτύπου. Για να προσθέσει ο χρήστης έναν περιορισµό, πρέπει να πιέσει το πλήκτρο Add. Ένα νέο παράθυρο εµφανίζεται (Εικόνα Λ.8): Εικόνα Λ.8: Παράθυρο διαλόγου για την εισαγωγή των περιορισµών. Στο παράθυρο διαλόγου αυτό διακρίνονται τρεις θέσεις: Στην θέση Cell Reference εισάγουµε το κελί στο οποίο έχουµε τοποθετήσει το αριστερό µέλος του περιορισµού. 224

10 Στο ενδιάµεσο κυλιόµενο µενού εισάγουµε το σύµβολο που καθορίζει το περιορισµό (Εικόνα Λ.9). Εικόνα Λ.9: Κυλιόµενο µενού εισαγωγής συµβόλου περιορισµού. Πέρα από τα συνήθη σύµβολα ανισότητας και ισότητας, ο χρήστης µπορεί µε την επιλογή int ή bin να καθορίσει ως περιορισµό ότι µια µεταβλητή είναι ακέραια (int) ή λαµβάνει µόνο τις τιµές 0 ή 1 (bin), αν στην θέση Cell Reference επιλέξει το κελί στο οποίο αντιστοιχεί η µεταβλητή αυτή. Στην θέση Constraint εισάγεται το κελί όπου είναι τοποθετηµένη η τιµή του δεξιού µέλους του περιορισµού. Η πλήρης εισαγωγή ενός περιορισµού για το «Πρόβληµα Κεραµοσκεπών» φαίνεται στην Εικόνα Λ.10: Εικόνα Λ.10: Εισαγωγή περιορισµού. Με τη βοήθεια του πλήκτρου Add ο χρήστης µπορεί να εισάγει και άλλους περιορισµούς, ενώ όταν ολοκληρώσει την εισαγωγή των περιορισµών, πιέζοντας το πλήκτρο ΟΚ, επιστρέφει στο προηγούµενο παράθυρο διαλόγου όπου θα φαίνονται οι παράµετροι που έχουν εισαχθεί (Εικόνα Λ.11): 225

11 Μπάρα επιλογής Εικόνα Λ.11: Περιοχή παραθύρου διαλόγου περιορισµών του προτύπου όταν αυτοί έχουν εισαχθεί. Με απλό κλικ πάνω σε έναν περιορισµό, αυτός σηµειώνεται µε έγχρωµη µπάρα επιλογής. Ο χρήστης µπορεί να τροποποιήσει (από το παράθυρο διαλόγου της εικόνας Λ.8) ή να διαγράψει τον σηµειωµένο περιορισµό (πλήκτρα Change και Delete αντίστοιχα). 6. Επίλυση του Προτύπου Αφού ο χρήστης έχει εισάγει το προτύπου, µπορεί να προχωρήσει στην επίλυσή του αφού µεταβάλλει κατάλληλα τις παραµέτρους (Options) επίλυσης. Πιέζοντας το πλήκτρο Options του κεντρικού παραθύρου διαλόγου, εµφανίζεται νέο παράθυρο διαλόγου (Εικόνα Λ.12): Εικόνα Λ.12: Παράθυρο διαλόγου παραµέτρων. Από τις επιλογές του παραθύρου διαλόγου της Εικόνας Λ.12, ορισµένες αφορούν επίλυση µη γραµµικών προβληµάτων βελτιστοποίησης, οπότε και δεν θα αναλυθούν. Οι επιλογές είναι οι παρακάτω: 226

12 Μax Time: ίνεται στον χρήστη η δυνατότητα εισαγωγής του µέγιστου χρόνου που θα αφιερώσει το πρόγραµµα για την επίλυση του προτύπου. Iterations: ίνεται στον χρήστη η δυνατότητα εισαγωγής του µέγιστου αριθµού επαναλήψεων που θα αφιερώσει το πρόγραµµα για την επίλυση του προτύπου. Tolerance: Ο χρήστης µπορεί να επιλέξει το µέγιστο ποσοστό ανεκτού σφάλµατος στα αποτελέσµατα που θα λάβει (αφού για την επίλυση χρησιµοποιούνται προσεγγιστικοί αλγόριθµοι). Assume linear: Πρέπει να επιλεγεί (τικ στο τετραγωνίδιο) αφού επιλύονται πρότυπα γραµµικού προγραµµατισµού. Assume non-negative: Πρέπει να επιλεγεί αν δεν έχει εισαχθεί ως περιορισµός στο φύλλο εργασίας. Use Automatic Scaling: Αν επιλεγεί µετατρέπει, αυτόµατα κατά την επίλυση, τους συντελεστές των περιορισµών ώστε τυχόν µεγάλες ή µικρές τιµές να µετατραπούν χωρίς να αλλάξουν οι αναλογίες των εξισώσεων των περιορισµών (πολύ µεγάλες ή µικρές τιµές συντελεστών µπορεί να δηµιουργήσουν προβλήµατα στην επίλυση). Show Iteration Results: Παρουσιάζει τους ενδιάµεσους υπολογισµούς (tableau Simplex) µέχρι την εξεύρεση της βέλτιστης λύσης. Convergence: εν αφορά πρότυπα γραµµικού προγραµµατισµού. Estimates: εν αφορά πρότυπα γραµµικού προγραµµατισµού. Derivatives: εν αφορά πρότυπα γραµµικού προγραµµατισµού. Search: εν αφορά πρότυπα γραµµικού προγραµµατισµού. Αφού τροποποιηθούν κατάλληλα οι παράµετροι, ο χρήστης επιστρέφει στο κύριο παράθυρο διαλόγου του Solver. Πιέζοντας το πλήκτρο Solve, γίνεται έναρξη της επίλυσης. Όταν βρεθεί η άριστη λύση (εφόσον υπάρχει), εµφανίζεται πλαίσιο διαλόγου που ενηµερώνει για τα αποτελέσµατα της επίλυσης και ζητά από τον χρήστη να εισάγει το είδος των αναφορών αποτελεσµάτων που θα δηµιουργήσει σε νέα φύλλα ο Solver (Εικόνα Λ.13). Στο φύλλο εργασίας που είχε εισαχθεί αρχικά το πρόβληµα, το κελί-στόχος και τα κελιά των µεταβλητών αποκτούν τις βέλτιστες τιµές (Εικόνα Λ.14): Μήνυµα αποτελεσµάτων Εικόνα Λ.13: Παράθυρο διαλόγου ολοκλήρωσης εργασίας Solver. 227

13 Το µήνυµα των αποτελεσµάτων Solver found a solution. All constraints and optimality conditions are satisfied υποδεικνύει ότι βρέθηκε βέλτιστη λύση στο πρόβληµα γραµµικού προγραµµατισµού. Εικόνα Λ.14: Το φύλλο εργασίας µε τις βέλτιστες τιµές του προτύπου. Ο χρήστης έχει τη δυνατότητα να διατηρήσει τις νέες τιµές στο φύλλο εργασίας επιλέγοντας Keep Solver Solution ή να τις απορρίψει επιλέγοντας Restore Original Values. Παράλληλα από το πλαίσιο Reports στο δεξιό τµήµα του παραθύρου διαλόγου, ο χρήστης µπορεί να επιλέξει τις αναφορές που θα αποδόσει ο Solver, σε νέα φύλλα εργασίας. Οι επιλεγόµενες αναφορές «φωτίζονται» µε έγχρωµη µπάρα (Εικόνα Λ.15). Έγχρωµη µπάρα επιλογής Εικόνα Λ.15: Πλαίσιο επιλογής είδους αναφοράς που θα εκδόσει το Solver. Ο χρήστης έχει τη δυνατότητα να αποθηκεύσει ως σενάριο τις τιµές µεταβαλλόµενων κελιών και κελιού στόχου ως σενάριο, µε την επιλογή Save Scenario. Εµφανίζεται πλαίσιο διαλόγου στο οποίο εισάγεται το όνοµα του σεναρίου (Εικόνα Λ.16) και πιέζοντας OK αποθηκεύεται. 228

14 Εικόνα Λ.16: Παράθυρο εισαγωγής ονόµατος σεναρίου προς αποθήκευση. Πιέζοντας ΟΚ στο παράθυρο διαλόγου ολοκλήρωσης εργασίας Solver, δηµιουργούνται οι τυχόν επιλεγµένες αναφορές Αναφορές Επίλυσης Ο Solver έχει τη δυνατότητα να αποδόσει τρία είδη αναφορών σε νέα φύλλα εργασίας του Microsoft Excel. Γενικά, η αναφορά περιέχει το κελί στο οποίο αντιστοιχεί κάθε στοιχείο, την ονοµασία του όπως περιγράφεται στο φύλλο εργασίας και διάφορα άλλα στοιχεία: (α) Αναφορά αποτελεσµάτων Answer Report (Εικόνα Λ.17) Περιέχει στοιχεία για τη βέλτιστη τιµή της αντικειµενικής συνάρτησης, των µεταβαλλόµενων κελιών και των περιορισµών. Στην Εικόνα Λ.16 φαίνονται τα στοιχεία που περιέχονται στην αναφορά: 229

15 Εικόνα Λ.17: Αναφορά αποτελεσµάτων. Η αναφορά χωρίζεται σε τρία µέρη: Target Cell ( ): Αφορά την αντικειµενική συνάρτηση, περιέχει το κελί στο οποίο αντιστοιχίστηκε (Cell), το όνοµά της (Name), την αρχική τιµή του κελιού (Original value συνήθως 0) και τη βέλτιστη τιµή (Final value) της. H λέξη στις παρενθέσεις δίπλα στον τίτλο αναφέρει αν το πρόβληµα είναι µεγιστοποίησης (max) κ.λ.π. Adjustable Cells: Αφορά τις µεταβλητές, περιέχει τα κελιά στα οποία αντιστοιχίστηκαν (Cell), τα ονόµατά τους (Name), την αρχική τιµή τους (Original value συνήθως 0) και τη βέλτιστη τιµή (Final value) τους. Constraints: Αφορά τους περιορισµούς, το κελί στο οποίο αντιστοιχεί το αριστερό µέλος τους (Cell), το όνοµα του περιορισµού (Name), την τιµή του δεξιού µέλους (Cell Value), το είδος της εξίσωσης (Formula), την επίδραση της εξίσωσης στο προτύπου (Status) η οποία µπορεί να είναι ή όχι δεσµευτική για το αποτέλεσµα (Binding- Not Binding) και την τιµή της περιθώριας µεταβλητής (Slack). 230

16 Λόγου χάρη, στο παράδειγµα των κεραµοσκεπών, η βέλτιστη τιµή της αντικειµενικής συνάρτησης είναι 1500 τ.µ., που αντιστοιχεί σε 300 τ.µ. για τον πρώτο κατασκευαστή, 500 τ.µ. για τον δεύτερο κατασκευαστή και 700 τ.µ. για τον τρίτο. Από τους περιορισµούς, κρίσιµος είναι ο περιορισµός τ.µ. και ο περιορισµός ορίων για τον πρώτο και τον τρίτο κατασκευαστή. ΣΗΜΕΙΩΣΗ Το συγκεκριµένο πρόβληµα εµπίπτει στην κατηγορία αυτών µε πολλαπλές λύσεις (alternative solutions). Για τον λόγο αυτόν, αλλαγή στις παραµέτρους του Solver ή χρήση άλλου προγράµµατος, όπως η LINDO, µπορεί να προκαλέσει αλλαγή στις τιµές των µεταβλητών της βάσης (π.χ. η LINDO δίνει x 1 =300, x 2 =600, x 3 =600). Κάτι τέτοιο φαίνεται από το γεγονός ότι στο tableau SIMPLEX του προβλήµατος, η γραµµή της αντικειµενικής συνάρτησης (row 0), έχει µηδενικό συντελεστή που αντιστοιχεί στις βασικές µεταβλητές του προβλήµατος. (β) Αναφορά ανάλυσης ευαισθησίας Sensitivity Analysis Report (Εικόνα Λ.18) Περιέχει στοιχεία ανάλυσης ευαισθησίας του προτύπου. Στην Εικόνα Λ.18 φαίνονται τα στοιχεία που περιέχονται στην αναφορά: Εικόνα Λ.18: Αναφορά ανάλυσης ευαισθησίας. 231

17 Η αναφορά χωρίζεται σε δύο µέρη: Adjustable Cells: Αφορά τις µεταβλητές, περιέχει τα κελιά στα οποία αντιστοιχίστηκαν (Cell), τα ονόµατά τους (Name), τη βέλτιστη τιµή (Final value) τους, το ευκαιριακό κόστος κάθε µεταβλητής (Reduced cost), τον συντελεστή τους στην αντικειµενική συνάρτηση (Objective Coefficient), την επιτρεπτή αύξηση του συντελεστή χωρίς να αλλάξει η βέλτιστη βάση (Allowable Increase) όπως και την επιτρεπτή µείωση του συντελεστή χωρίς να αλλάξει η βέλτιστη βάση (Allowable decrease). Constraints: Αφορά τους περιορισµούς, το κελί στο οποίο αντιστοιχεί το αριστερό µέλος τους (Cell), το όνοµα του περιορισµού (Name), την τιµή του αριστερού µέλους για την βέλτιστη βάση (Final Value), την δυαδική τιµή κάθε περιορισµού (Shadow Price), την τιµή του δεξιού µέλους του περιορισµού (Constraint R.H. Side), την επιτρεπτή αύξηση του δεξιού µέλους κάθε περιορισµού χωρίς να αλλάξει η βέλτιστη βάση (Allowable Increase) όπως και την επιτρεπτή µείωση του δεξιού µέλους κάθε περιορισµού χωρίς να αλλάξει η βέλτιστη βάση (Allowable decrease). Λόγου χάρη, το κονδύλι µπορεί να µειωθεί κατά ΕΥΡΩ, τα προσφερόµενα τ.µ. µπορούν να µειωθούν κατά τ.µ. ή να αυξηθούν κατά 100 τ.µ. χωρίς να αλλάξει η βάση. Αντίστοιχα µπορούν να βγουν συµπεράσµατα για κάθε περιορισµό. (γ) Αναφορά ορίων - Limits Report (Εικόνα Λ.19) Περιέχει στοιχεία για τη δυνατή µεταβολή (αύξηση ή µείωση) των τιµών των µεταβλητών, χωρίς να παραβιαστούν οι περιορισµοί του προβλήµατος: Εικόνα Λ.19: Αναφορά ορίων. 232

18 Η αναφορά χωρίζεται σε δύο µέρη: Το πρώτο µέρος αφορά την αντικειµενική συνάρτηση, περιέχει το κελί στο οποίο αντιστοιχίστηκε (Cell), το όνοµά της (Name) και τη βέλτιστη τιµή (Final value) της. Το δεύτερο µέρος αφορά τις µεταβλητές, περιέχει τα κελιά στα οποία αντιστοιχίστηκαν (Cell), τα ονόµατά τους (Name), τη βέλτιστη τιµή (Final value) τους, τα ανώτερα και κατώτερα όρια ανάµεσα στα οποία µπορούν να κινηθούν (Upper Limit - Lower limit ) καθώς και την τιµή της αντικειµενικής συνάρτησης για τις µεταβολές αυτές (Target Result). Στο παράθυρο διαλόγου της Εικόνας Λ.13, πέρα από το µήνυµα της βέλτιστης λύσης, το µήνυµα αποτελεσµάτων θα είναι κάποιο από τα ακόλουθα: Solver could not find a feasible solution : To προτύπου δεν έχει εφικτή λύση. The maximum iteration limit was reached; continue anyway?: O Solver ολοκλήρωσε τον αριθµό επαναλήψεων που είχε καθοριστεί στις παραµέτρους χωρίς να βρεθεί βέλτιστη λύση. Ο χρήστης µπορεί να διακόψει την επίλυση ή να επιτρέψει την επίλυση του προτύπου επ αόριστο, µέχρι να βρεθεί βέλτιστη λύση, εφόσον βρεθεί. The maximum time limit was reached; continue anyway?: O Solver ολοκλήρωσε το χρονικό διάστηµα που είχε καθοριστεί στις παραµέτρους χωρίς να βρεθεί βέλτιστη λύση. Ο χρήστης µπορεί να διακόψει την επίλυση ή να επιτρέψει την επίλυση του προτύπου επ αόριστο, µέχρι να βρεθεί βέλτιστη λύση, εφόσον βρεθεί. 7. Συµπεράσµατα Ο Solver του MS-Excel είναι ένα δυνατό εργαλείο για την επίλυση προβληµάτων γραµµικού (και µη) προγραµµατισµού, µε πλήρεις αναφορές αποτελεσµάτων και ανάλυσης ευαισθησίας. Παράλληλα έχει τα πλεονεκτήµατα του ότι είναι µέρος ενός ιδιαίτερα δηµοφιλούς προγράµµατος του οποίου ακολουθεί τη φιλοσοφία ενώ είναι αυξηµένες οι δυνατότητες παραστατικής απεικόνισης του προβλήµατος. Βιβλιογραφικές Αναφορές Microsoft, MS-Excel 2000 On-line Help Manual, U.S.A., Βασιλείου Π.-Χ.Γ., Τσακλίδη Γ., Τσάντα Ν., Ασκήσεις στην Επιχειρησιακή Έρευνα (τόµος 1 Γραµµικός Προγραµµατισµός), Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη, Ελλάδα,

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER 4.1. ΕΙΣΑΓΩΓΗ Με την "Επίλυση", µπορείτε να βρείτε τη βέλτιστη τιµή για τον τύπο ενός κελιού το οποίο ονοµάζεται κελί προορισµού σε ένα φύλλο εργασίας. Η "Επίλυση" λειτουργεί

Διαβάστε περισσότερα

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL 1. Στο Tools menu, click Solver. 2. Εάν η επιλογή Solver δεν είναι διαθέσιµη στο Tools menu, πρέπει να το

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το LINDO (Linear Interactive and Discrete Optimizer) είναι ένα πολύ γνωστό λογισµικό για την επίλυση προβληµάτων γραµµικού,

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός (ΓΠ)

Γραµµικός Προγραµµατισµός (ΓΠ) Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.

Διαβάστε περισσότερα

MICROSOFT OFFICE 2003

MICROSOFT OFFICE 2003 MICROSOFT OFFICE 2003 MICROSOFT EXCEL 2003 Επεξεργασία δεδοµένων Εισαγωγή κενών κελιών, γραµµών ή στηλών 1. Κάντε ένα από τα εξής: Εισαγωγή νέων κενών κελιών Επιλέξτε µια περιοχή (περιοχή: ύο ή περισσότερα

Διαβάστε περισσότερα

Εξαγωγή Οικονοµικών Αναφορών (Ισολογισµός, Αποτελέσµατα Χρήσης, Λογαριασµοί Γενικής Εκµετάλλευσης) στην Εφαρµογή Ms Excel

Εξαγωγή Οικονοµικών Αναφορών (Ισολογισµός, Αποτελέσµατα Χρήσης, Λογαριασµοί Γενικής Εκµετάλλευσης) στην Εφαρµογή Ms Excel Εξαγωγή Οικονοµικών Αναφορών (Ισολογισµός, Αποτελέσµατα Χρήσης, Λογαριασµοί Γενικής Εκµετάλλευσης) στην Εφαρµογή Ms Excel Η εφαρµογή σε συνεργασία µε τη Microsoft σας προσφέρει τη δυνατότητα να διαχειρίζεστε

Διαβάστε περισσότερα

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα)

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα) 1 ο Ερώτημα Έστω μια βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων. Στην προσπάθειά της να διεισδύσει ακόμα περισσότερο στην αγορά γιαουρτιού παράγει μεταξύ άλλων δύο νέα προϊόντα σε οικογενειακή συσκευασία,

Διαβάστε περισσότερα

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΣΩ LINDO

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΣΩ LINDO ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΣΩ LINDO LINDO (Linear Interactive and Discrete Optimizer) ΠΡΟΓΡΑΜΜΑ LINDO Το

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΕΠΙΧΕΙΡΙΣΙΑΚΗ ΕΡΕΥΝΑ-ΜΑΘΗΜΑ ΤΡΙΤΟ ΕΠΙΛΥΣΗ Π.Γ.Π ΜΕ ΤΟΝ SOLVER

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΕΠΙΧΕΙΡΙΣΙΑΚΗ ΕΡΕΥΝΑ-ΜΑΘΗΜΑ ΤΡΙΤΟ ΕΠΙΛΥΣΗ Π.Γ.Π ΜΕ ΤΟΝ SOLVER ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2013-2014 ΕΠΙΧΕΙΡΙΣΙΑΚΗ ΕΡΕΥΝΑ-ΜΑΘΗΜΑ ΤΡΙΤΟ ΕΠΙΛΥΣΗ Π.Γ.Π ΜΕ ΤΟΝ SOLVER SOLVER EXCEL 2000-2003 Στο μενού Εργαλεία(Tools), κάντε κλικ στην εντολή Πρόσθετα

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.)

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.) Μια εταιρεία χημικών προϊόντων παρασκευάζει μεταξύ των άλλων και δύο διαλύματα, ΔΛ, ΔΛ2. Η γραμμή παραγωγής διαχωρίζεται χοντρικά σε δύο στάδια, αυτό της μίξης κι εκείνο του καθαρισμού. Μια σχετική μελέτη

Διαβάστε περισσότερα

Geogebra. Μακρή Βαρβάρα. Λογισµικό Geogebra

Geogebra. Μακρή Βαρβάρα. Λογισµικό Geogebra Λογισµικό Geogebra 1 Τι είναι το πρόγραµµα Geogebra; Το πρόγραµµα GeoGebra, είναι ένα δυναµικό µαθηµατικό λογισµικό που συνδυάζει Γεωµετρία, Άλγεβρα και λογισµό. Αναπτύσσεται από τον Markus Hohenwarter

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Τεχνικές αριστοποίησης

Τεχνικές αριστοποίησης ΚΕΦΑΛΑΙΟ 9 Τεχνικές αριστοποίησης Εισαγωγή Τα µοντέλα αριστοποίησης, ευρέως γνωστά ως µοντέλα µαθηµατικού προγραµµατισµού, είναι αναµφίβολα η δηµοφιλέστερη τεχνική λήψης αποφάσεων στο χώρο της Επιχειρησιακής

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος

Διαβάστε περισσότερα

Singular Report Generator. Σχ 1 ηµιουργία Καταστάσεων SRG

Singular Report Generator. Σχ 1 ηµιουργία Καταστάσεων SRG Μια από τις πιο σηµαντικές ανάγκες που αντιµετωπίζει µια επιχείρηση κατά την εγκατάσταση ενός λογισµικού «πακέτου» (Οικονοµικής & Εµπορικής ιαχείρισης), είναι ο τρόπος µε τον οποίο πρέπει να ανταποκριθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2013-2014 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΓΠ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΗ Το πρόγραμμα LINDO O Solver (Επίλυση) του Excel ΕΦΑΡΜΟΓΕΣ ΓΠ ΣΕ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΡΟΒΛΗΜΑΤΑ Το Πρόβλημα Μίξης Παραγωγής

ΕΠΙΛΥΣΗ ΓΠ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΗ Το πρόγραμμα LINDO O Solver (Επίλυση) του Excel ΕΦΑΡΜΟΓΕΣ ΓΠ ΣΕ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΡΟΒΛΗΜΑΤΑ Το Πρόβλημα Μίξης Παραγωγής Εφαρμογές ΓΠ - Επίλυση με Χρήση Υπολογιστή ΕΠΙΛΥΣΗ ΓΠ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΗ Το πρόγραμμα LINDO O Solver (Επίλυση) του Excel ΕΦΑΡΜΟΓΕΣ ΓΠ ΣΕ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΡΟΒΛΗΜΑΤΑ Το Πρόβλημα Μίξης Παραγωγής (Product mix)

Διαβάστε περισσότερα

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Σχεδίαση Βάσεων Δεδομένων

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Σχεδίαση Βάσεων Δεδομένων Ενότητα 3 Σχεδίαση Βάσεων Δεδομένων 17 18 3.1 Εισαγωγή Μία βάση δεδομένων αποτελείται από δεδομένα για διάφορα θέματα τα οποία όμως σχετίζονται μεταξύ τους και είναι καταχωρημένα με συγκεκριμένο τρόπο.

Διαβάστε περισσότερα

GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα

GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα Μάθημα 6ο Σουίτα Γραφείου LibreOffice 2 Ύλη Μαθημάτων V Μαθ. 5/6 : Σουίτα Γραφείου LibreOffice LibreOffice Γενικά, Κειμενογράφος - LibreOffice Writer,

Διαβάστε περισσότερα

MICROSOFT OFFICE 2003 MICROSOFT WORD 2003

MICROSOFT OFFICE 2003 MICROSOFT WORD 2003 MICROSOFT OFFICE 2003 MICROSOFT WORD 2003 Εµφάνιση των γραµµών εργαλείων "Βασική" και "Μορφοποίηση" σε δύο γραµµές Από προεπιλογή, οι γραµµές εργαλείων Βασική και Μορφοποίηση εµφανίζονται µε αγκύρωση (σταθεροποίηση:

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Περιεχόμενα. Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών Μέρος 2: Χρήση υπολογιστή και διαχείριση αρχείων Πρόλογος...

Περιεχόμενα. Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών Μέρος 2: Χρήση υπολογιστή και διαχείριση αρχείων Πρόλογος... Περιεχόμενα Πρόλογος...11 Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών... 13 1.1 Εισαγωγή στους υπολογιστές... 15 1.2 Μονάδες μέτρησης... 27 1.3 Οι βασικές λειτουργίες ενός ηλεκτρονικού υπολογιστή...

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Εγχειρίδιο διαχείρισης χρηστών και λιστών διανομής για τον Υπεύθυνο Φορέα του Δικτύου "Σύζευξις" -1-

Εγχειρίδιο διαχείρισης χρηστών και λιστών διανομής για τον Υπεύθυνο Φορέα του Δικτύου Σύζευξις -1- -1- 1 Διαχείριση Χρηστών...3 1.1 Υπηρεσίες...5 1.1.1 Δημιουργία νέου χρήστη...6 1.1.2 Αναζήτηση χρήστη...7 1.1.2 Επεξεργασία στοιχείων χρήστη...8 1.1.3 Δημιουργία /Επεξεργασία mailbox plan...10 1.1.4 Ενεργοποίηση

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΣΥΜΠΛΗΡΩΣΗΣ ΤΗΣ ΦΟΡΜΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΥΠΟΒΟΛΗΣ

Ο ΗΓΙΕΣ ΣΥΜΠΛΗΡΩΣΗΣ ΤΗΣ ΦΟΡΜΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΥΠΟΒΟΛΗΣ Ο ΗΓΙΕΣ ΣΥΜΠΛΗΡΩΣΗΣ ΤΗΣ ΦΟΡΜΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΥΠΟΒΟΛΗΣ 1 Περιεχόµενα 1. ΓΕΝΙΚΑ... 3 2. ΒΑΣΙΚΕΣ ΕΝΕΡΓΕΙΕΣ ΓΙΑ ΤΗ ΣΥΜΠΛΗΡΩΣΗ ΤΗΣ ΦΟΡΜΑΣ... 3 α. Ανάκτηση (downloading) της ηλεκτρονικής φόρµας και αποθήκευση

Διαβάστε περισσότερα

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες) Ένας κοσμηματοπώλης, κατασκευάζει μπρασελέ και κολιέ αναμειγνύοντας ασήμι με κάποιο άλλο μέταλλο. Το μοντέλο π.γ.π. που ανέπτυξε για την εύρεση της εβδομαδιαίας παραγωγής (x 1 μπρασελέ και x 2 κολιέ) η

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες

Διαβάστε περισσότερα

Λίγα λόγια από το συγγραφέα Κεφάλαιο 1: Microsoft Excel Κεφάλαιο 2: Η δομή ενός φύλλου εργασίας... 26

Λίγα λόγια από το συγγραφέα Κεφάλαιο 1: Microsoft Excel Κεφάλαιο 2: Η δομή ενός φύλλου εργασίας... 26 Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 Κεφάλαιο 1: Microsoft Excel 2002... 9 Κεφάλαιο 2: Η δομή ενός φύλλου εργασίας... 26 Κεφάλαιο 3: Δημιουργία νέου βιβλίου εργασίας και καταχώριση δεδομένων...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Calc

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Calc ΚΕΦΑΛΑΙΟ ΙΙ OpenOffice 3.x Calc Στόχοι: Με τη βοήθεια του οδηγού αυτού ο εκπαιδευόμενος θα μπορεί να: χρησιμοποιεί τα βασικά εργαλεία του Calc κατασκευάζει πίνακες δημιουργεί φόρμουλες υπολογισμού κατασκευάζει

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...9

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...9 ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL...11 1.1 Εισαγωγή στο Excel...11 1.2 Tα βασικά του Excel...12 1.3 Εισαγωγή κειμένου...14 1.4 Απλές μαθηματικές πράξεις στο Excel...16 1.5 ιάφορες

Διαβάστε περισσότερα

4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ :

4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ : 4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ : Σκοπός του συγκεκριμένου φύλλου εργασίας είναι ο μαθητής να εξοικειωθεί με τις συναρτήσεις, τις αριθμητικές πράξεις καθώς και την επισήμανση κελιών υπό όρους με στόχο

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) 1

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex )  1 Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) http://users.uom.gr/~acg 1 Η μέθοδος SIMPLEX Χρησιμοποιείται ο λεγόμενος πίνακας simplex (simplex table, simplex

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 8/6/2009

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 8/6/2009 Επιχειρησιακή Έρευνα Θεωρία Αποφάσεων. ΠΑΡΑΡΤΗΜΑ: το Precision Tree Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος

Διαβάστε περισσότερα

Γνωριµία µε τη Microsoft Access

Γνωριµία µε τη Microsoft Access Γνωριµία µε τη Microsoft Access ηµιουργία νέας βάσης δεδοµένων Έναρξη - Προγράµµατα - Microsoft Access - ηµιουργία νέας βάσης δεδοµένων µε χρήση Κενής βάσης δεδοµένων - ΟΚ Επιλέγουµε Φάκελο και στο Όνοµα

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 Εισαγωγή στην Access Κεφάλαιο 2 Χειρισμός πινάκων... 27

Περιεχόμενα. Κεφάλαιο 1 Εισαγωγή στην Access Κεφάλαιο 2 Χειρισμός πινάκων... 27 Περιεχόμενα Κεφάλαιο 1 Εισαγωγή στην Access... 9 Γνωριμία με την Access... 12 Δημιουργία βάσης δεδομένων... 22 Άνοιγμα και κλείσιμο βάσης δεδομένων... 24 Ερωτήσεις ανακεφαλαίωσης... 25 Πρακτική εξάσκηση...

Διαβάστε περισσότερα

Πρότυπα βιβλίων εργασίας και ονόματα κελιών

Πρότυπα βιβλίων εργασίας και ονόματα κελιών Περιεχόμενα Λίγα λόγια από το συγγραφέα...7 Κεφάλαιο 1: Ρυθμίσεις γραμμών εργαλείων και μενού...9 Κεφάλαιο 2: Διαχείριση παραθύρων και προβολές...25 Κεφάλαιο 3: Εισαγωγή δεδομένων...44 Κεφάλαιο 4: Προσαρμογή

Διαβάστε περισσότερα

Πληροφορική. Εργαστηριακή Ενότητα 1 η : Εισαγωγή στα Λογιστικά Φύλλα με το MS Excel. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Εργαστηριακή Ενότητα 1 η : Εισαγωγή στα Λογιστικά Φύλλα με το MS Excel. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 1 η : Εισαγωγή στα Λογιστικά Φύλλα με το MS Excel Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 1

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 1 Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο ΕΠΛ001 Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο Microsoft Excel Μέρος 1 Παναγιώτης Χατζηχριστοδούλου

Διαβάστε περισσότερα

ΤΕΙ Ηρακλείου. Τμήμα Λογιστικής Πληροφορική I 6 η Εργαστηριακή άσκηση (Excel)

ΤΕΙ Ηρακλείου. Τμήμα Λογιστικής Πληροφορική I 6 η Εργαστηριακή άσκηση (Excel) ΤΕΙ Ηρακλείου Τμήμα Λογιστικής Πληροφορική I 6 η Εργαστηριακή άσκηση (Excel) Ανοίγοντας το Excel (Έναρξη /Προγράμματα /Microsoft Office / Microsoft Office Excel 2003), ανοίγει μπροστά μας ένα βιβλίο εργασίας

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς ΤμήμαΠληροφορικής. Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Πανεπιστήμιο Πειραιώς ΤμήμαΠληροφορικής. Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Πανεπιστήμιο Πειραιώς ΤμήμαΠληροφορικής. Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Ονοματεπώνυμο φοιτητή Πατρώνυμο Γραμμικός Προγραμματισμός Γεώργιος Αριθμός

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3)

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3) Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 3) Μάρτιος

Διαβάστε περισσότερα

Δημιουργία ενός κενού πίνακα

Δημιουργία ενός κενού πίνακα 3.4.1.1 Δημιουργία ενός κενού πίνακα Ένας πίνακας αποτελείται από έναν αριθμό γραμμών και στηλών που δημιουργούν ένα πλέγμα. Σε αυτό το πλέγμα είναι πιθανή η ύπαρξη ή μη περιθωρίων. Κάθε κελί του πίνακα

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 1

Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο. Microsoft Excel Μέρος 1 Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη της Πληροφορικής και Πληροφοριακά Συστήματα Εργαστήριο - ΕΠΛ003 Εισαγωγή στην Επιστήμη της Πληροφορικής Εργαστήριο Microsoft Excel Μέρος 1

Διαβάστε περισσότερα

Παρουσίαση της έκδοσης 6 για Windows 98 (η οποία λειτουργεί και σε άλλες νεότερες εκδόσεις των Windows, όπως τα Windows ME, ΧΡ κ.λ.π.).

Παρουσίαση της έκδοσης 6 για Windows 98 (η οποία λειτουργεί και σε άλλες νεότερες εκδόσεις των Windows, όπως τα Windows ME, ΧΡ κ.λ.π.). Η LINDO (Linear Interactive and Discrete Optimizer) ανήκει στην κατηγορία λογισµικού που χρησιµοποιείται για την επίλυση προβληµάτων Γραµµικού Προγραµµατισµού. Το λογισµικό αυτό είναι από τα δηµοφιλέστερα

Διαβάστε περισσότερα

RIGHTHAND SIDE RANGES

RIGHTHAND SIDE RANGES Μια εταιρεία εξόρυξης μεταλλευμάτων, έλαβε μια παραγγελία για 100 τόνους σιδηρομεταλλεύματος. Η παραγγελία πρέπει να περιλαμβάνει τουλάχιστον.5 τόνους νικέλιο, το πολύ τόνους άνθρακα κι ακριβώς 4 τόνους

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 5 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Βελτιστοποίηση ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ σε διάφορα

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,

Διαβάστε περισσότερα

Προγραμματισμός ταμειακής ροής για αγορές υλικών

Προγραμματισμός ταμειακής ροής για αγορές υλικών Προγραμματισμός ταμειακής ροής για αγορές υλικών Η βάση δεδομένων του Navision μπορεί να χρησιμοποιηθεί για την άντληση δεδομένων και από άλλα εργαλεία εκτός Navision. Θα δημιουργήσουμε ένα παράδειγμα

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

Εισαγωγή και επεξεργασία δεδοµένων

Εισαγωγή και επεξεργασία δεδοµένων Μάθηµα 4 Εισαγωγή και επεξεργασία δεδοµένων Εισαγωγή δεδοµένων σε πίνακα 1. Ανοίγουµε το παράθυρο του πίνακα Υπάλληλοι σε προβολή φύλλου δεδοµένων. 2. Η κενή γραµµή, η οποία υπάρχει πάντα στον πίνακα,

Διαβάστε περισσότερα

MICROSOFT OFFICE 2003 MICROSOFT WORD 2003

MICROSOFT OFFICE 2003 MICROSOFT WORD 2003 MICROSOFT OFFICE 2003 MICROSOFT WORD 2003 Το Microsoft Office Word 2003 είναι το πρόγραµµα επεξεργασίας κειµένου που κάνει ευκολότερη τη δηµιουργία, την κοινή χρήση και την ανάγνωση εγγράφων. Οι λειτουργίες

Διαβάστε περισσότερα

Microsoft PowerPoint 2007

Microsoft PowerPoint 2007 Information Technology Services and Solutions Σύμβουλοι Μηχανογράφησης και Εκπαίδευσης Στεφ. Σκουλούδη 27, Καλλίπολη, Πειραιάς 210 45 38 177 http://www.itss.gr/ Microsoft PowerPoint 2007 Κωνσταντίνος Κωβαίος

Διαβάστε περισσότερα

Γνωριµία µε το Microsoft Excel

Γνωριµία µε το Microsoft Excel Γνωριµία µε το Microsoft Excel Καθηµερινά σχεδόν στη ζωή µας, χρειάζεται να κάνουµε αριθµητικές πράξεις. Από τα πανάρχαια χρόνια, ο άνθρωπος ένιωσε την ανάγκη να κάνει υπολογισµούς. Αρχικά χρησιµοποίησε

Διαβάστε περισσότερα

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel 11.1. Πολλαπλά φύλλα εργασίας Στο προηγούμενο κεφάλαιο δημιουργήσαμε ένα φύλλο εργασίας με τον προϋπολογισμό δαπανών του προσωπικού που θα συμμετάσχει

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Βασικά Στοιχεία Μορφοποίησης

Βασικά Στοιχεία Μορφοποίησης Βασικά Στοιχεία Μορφοποίησης Φύλλων Εργασίας 3 ΚΥΡΙΑ ΣΗΜΕΙΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ Επιλογή διαφόρων στοιχείων ενός φύλλου Αλλαγή μεγέθους γραμμών και στηλών Εισαγωγή και διαγραφή γραμμών και στηλών Εισαγωγή και

Διαβάστε περισσότερα

Ενότητα. Σχεδίαση Βάσεων Δεδομένων

Ενότητα. Σχεδίαση Βάσεων Δεδομένων Ενότητα 3 Σχεδίαση Βάσεων Δεδομένων 2 3 3.1 Εισαγωγή Μία βάση δεδομένων αποτελείται από δεδομένα για διάφορα θέματα τα οποία όμως σχετίζονται μεταξύ τους και είναι καταχωρημένα με συγκεκριμένο τρόπο. Όλα

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ Ο ΗΓΙΕΣ ΧΡΗΣΗΣ

ΒΑΣΙΚΕΣ Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ «IrYdium» Η εκκίνηση του Εικονικού εργαστηρίου Χηµείας «IrYdium Chemistry Lab» γίνεται µε διπλό κλικ στο αρχείο «VLab.exe». Κατόπιν επιλέγετε το µενού Αρχείο > Άνοιγµα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ΠΡΩΤΟ: Θεωρήστε το π.γ.π.: maximize z(θ) = (10 4θ)x 1 +

Διαβάστε περισσότερα

Μάθημα 6ο. Υπολογιστικό Φύλλο

Μάθημα 6ο. Υπολογιστικό Φύλλο Μάθημα 6ο Υπολογιστικό Φύλλο Σελίδα 81 από 105 6.1 Εισαγωγή Ένα υπολογιστικό φύλλο, είναι μια πολύ χρήσιμη εφαρμογή, χωρισμένη σε γραμμές και στήλες για την ευκολότερη καταγραφή διάφορων δεδομένων. Με

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #2: Αναπαράσταση δεδομένων Αβεβαιότητα και Ακρίβεια Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Αναπαράσταση δεδομένων (Data Representation), Αβεβαιότητα

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μέρος ΙΙ Τεχνικές Μαθηματικού Προγραμματισμού Μαθηματικά Μοντέλα Εισαγωγή Μεθοδολογία

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ (ΟΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΠΕΡΙΟΔΟ ΣΕΣ

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ (ΟΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΠΕΡΙΟΔΟ ΣΕΣ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ (ΟΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΠΕΡΙΟΔΟ ΣΕΣ 2014-2020 ΕΝΟΤΗΤΑ «ΔΙΑΧΕΙΡΙΣΗ ΠΡΟΣΚΛΗΣΕΩΝ ΕΡΓΩΝ ΣΧΕΔΙΩΝ ΧΟΡΗΓΙΩΝ» 1η Έκδοση: 2015 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ...3

Διαβάστε περισσότερα

Περιεχόμενα. Μέρος 1: Βασικές έννοιες της πληροφορικής... 13. Πρόλογος... 11

Περιεχόμενα. Μέρος 1: Βασικές έννοιες της πληροφορικής... 13. Πρόλογος... 11 Περιεχόμενα Πρόλογος... 11 Μέρος 1: Βασικές έννοιες της πληροφορικής... 13 1.1 Windows XP... 15 1.2 Επιφάνεια εργασίας... 19 1.3 Γραμμή εργασιών... 24 1.4 Χειρισμός παραθύρων... 30 1.5 Μενού... 36 1.6

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Στην συνέχεια και στο επόµενο παράθυρο η εφαρµογή µας ζητάει να εισάγουµε το Username και το Password το οποίο σας έχει δοθεί από τον ΕΛΚΕ.

Στην συνέχεια και στο επόµενο παράθυρο η εφαρµογή µας ζητάει να εισάγουµε το Username και το Password το οποίο σας έχει δοθεί από τον ΕΛΚΕ. 1. Πρόσβαση Οδηγίες προγράµµατος διαχείρισης ανάλυσης χρόνου εργασίας (Time Sheet) Για να ξεκινήσετε την εφαρµογή, από την κεντρική σελίδα του ΕΛΚΕ (www.elke.aua.gr) και το µενού «ιαχείριση», Time Sheet

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

Διαχείριση Αξιόγραφων

Διαχείριση Αξιόγραφων Διαχείριση Αξιόγραφων 1 Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της διαδικασίας Διαχείρισης Αξιόγραφων στην εφαρμογή extra Λογιστική Διαχείριση. Παρακάτω προτείνεται μια

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 15 2η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η

Διαβάστε περισσότερα

Αντιγραφή με χρήση της γυάλινης επιφάνειας σάρωσης

Αντιγραφή με χρήση της γυάλινης επιφάνειας σάρωσης Γρήγορη αναφορά Αντιγραφή Δημιουργία αντιγράφων Γρήγορη δημιουργία αντιγράφου 3 Στον πίνακα ελέγχου του εκτυπωτή πατήστε το κουμπί αντίγραφο 4 Εάν τοποθετήσατε το έγγραφο στη γυάλινη επιφάνεια σάρωσης

Διαβάστε περισσότερα

MICROSOFT OFFICE 2003

MICROSOFT OFFICE 2003 MICROSOFT OFFICE 2003 MICROSOFT EXCEL 2003 Γραφήµατα Πληροφορίες για τα γραφήµατα T α γραφήµατα προσελκύουν την προσοχή και διευκολύνουν την προβολή συγκρίσεων, τάσεων σε δεδοµένα. Για παράδειγµα, αντί

Διαβάστε περισσότερα

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Σημειώσεις Excel) ΕΚΠΑΙΔΕΥΤΕΣ: ΒΑΡΕΛΑΣ ΙΩΑΝΝΗΣ, ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ MICROSOFT EXCEL (ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ) ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Πληροφορική. Εργαστηριακή Ενότητα 2 η : Το βιβλίο εργασίας του MS Excel. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Εργαστηριακή Ενότητα 2 η : Το βιβλίο εργασίας του MS Excel. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 2 η : Το βιβλίο εργασίας του MS Excel Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες

Διαβάστε περισσότερα

Κανονική μορφή μοντέλου μεγιστοποίησης

Κανονική μορφή μοντέλου μεγιστοποίησης http://users.uom.gr/~acg Η μέθοδος SIMPLEX (Both Simple and Comple ) Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX Χρησιμοποιείται ο λεγόμενος πίνακας simple (simple table, simple tableαu)

Διαβάστε περισσότερα

Πίνακες δημιουργία και μορφοποίηση πίνακα

Πίνακες δημιουργία και μορφοποίηση πίνακα Πίνακες δημιουργία και μορφοποίηση πίνακα Πρόκειται για ένα από τα πλέον χρήσιμα και ισχυρά εργαλεία του Word. Οι πίνακες αποτελούνται από κατακόρυφες στήλες και οριζόντιες γραμμές, οι οποίες σχηματίζουν

Διαβάστε περισσότερα

Οδηγίες Ηλεκτρονικής Υποβολής Προτάσεων

Οδηγίες Ηλεκτρονικής Υποβολής Προτάσεων ΥΠΟΥΡΓΕΊΟ ΑΝΑΠΤΥΞΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΒΙΟΜΗΧΑΝΙΑΣ /ΝΣΗ ΜΜΕ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ» 2007 2013 ΠΡΟΓΡΑΜΜΑΤΑ «ΕΝΙΣΧΥΣΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ ΝΕΩΝ» «ΕΝΙΣΧΥΣΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑΣ

Διαβάστε περισσότερα

POWERPOINT 2003. Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων.

POWERPOINT 2003. Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων. POWERPOINT 2003 1. Τι είναι το PowerPoint (ppt)? Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων. 2. Τι δυνατότητες έχει? Δημιουργία παρουσίασης. Μορφοποίηση παρουσίασης. Δημιουργία γραφικών. Δημιουργία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Άνοιγμα Της Εφαρμογής Υπολογιστικών Φύλλων. 2. Κύρια Οθόνη Της Εφαρμογής Υπολογιστικών Φύλλων ΣΤΟΧΟΙ:

ΜΑΘΗΜΑ Άνοιγμα Της Εφαρμογής Υπολογιστικών Φύλλων. 2. Κύρια Οθόνη Της Εφαρμογής Υπολογιστικών Φύλλων ΣΤΟΧΟΙ: ΜΑΘΗΜΑ 1 ΣΤΟΧΟΙ: 1. Άνοιγμα Της Εφαρμογής Υπολογιστικών Φύλλων (Microsoft Excel) 2. Κύρια Οθόνη Της Εφαρμογής Υπολογιστικών Φύλλων 3. Δημιουργία Νέου Υπολογιστικού Φύλλου 4. Δημιουργία Υπολογιστικού Φύλλου

Διαβάστε περισσότερα

Επιλογή ενός στοιχείου γραφήματος από μια λίστα στοιχείων γραφήματος

Επιλογή ενός στοιχείου γραφήματος από μια λίστα στοιχείων γραφήματος - 217 - Το στοιχείο που θέλετε να επιλέξετε επισημαίνεται ξεκάθαρα με λαβές επιλογής. Συμβουλή: Για να σας βοηθήσει να εντοπίσετε το στοιχείο γραφήματος που θέλετε να επιλέξετε, το Microsoft Office Excel

Διαβάστε περισσότερα

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα,

Διαβάστε περισσότερα

Διαχείριση Αδειών - Βιβλίο Αδειών - Μαζικές ενέργειες

Διαχείριση Αδειών - Βιβλίο Αδειών - Μαζικές ενέργειες Διαχείριση Αδειών - Βιβλίο Αδειών - Μαζικές ενέργειες Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της Διαδικασίας Πλήρους Διαχείρισης Αδειών - Βιβλίο Αδειών - Μαζικές ενέργειες.

Διαβάστε περισσότερα

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop.

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop. Η δοµή «Shift register» 1. Η δοµή «Shift register» εισάγεται στο βρόγχο for-loop αλλά και σε άλλους βρόγχους που θα δούµε στη συνέχεια, όπως ο βρόγχος «While loop». Ο τρόπος εισαγωγής και λειτουργίας της

Διαβάστε περισσότερα

Υπολογισμός και αποστολή Αναλυτικής Περιοδικής Δήλωσης

Υπολογισμός και αποστολή Αναλυτικής Περιοδικής Δήλωσης Υπολογισμός και αποστολή Αναλυτικής Περιοδικής Δήλωσης Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της Διαδικασίας υπολογισμού και αυτόματης υποβολής της Αναλυτικής Περιοδικής

Διαβάστε περισσότερα

Α1. (α). ώστε τον ορισµό του προβλήµατος (Μονάδες 3)

Α1. (α). ώστε τον ορισµό του προβλήµατος (Μονάδες 3) ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 28/11/2011 ΘΕΜΑ Α Α1. (α). ώστε τον ορισµό του προβλήµατος (Μονάδες 3) (β). ίνεται ο παρακάτω πίνακας που στην Στήλη 1 υπάρχουν κριτήρια κατηγοριοποίησης

Διαβάστε περισσότερα

6 Το μικρό βιβλίο για το ελληνικό Word 2010

6 Το μικρό βιβλίο για το ελληνικό Word 2010 Περιεχόμενα Κεφάλαιο 1 Microsoft Word 2010... 7 Κεφάλαιο 2 ημιουργία νέου εγγράφου... 13 Κεφάλαιο 3 Το σύστημα Βοήθειας του Office... 26 Κεφάλαιο 4 Μετακίνηση σε έγγραφο και προβολές εγγράφου... 31 Κεφάλαιο

Διαβάστε περισσότερα

Συνεργείο Αυτοκινήτων

Συνεργείο Αυτοκινήτων Συνεργείο Αυτοκινήτων v2.102, Οκτώβριος 2015 Σύντοµες οδηγίες χρήσης Εισαγωγή Το πρόγραµµα Συνεργείο Αυτοκινήτων έχει σκοπό τη διαχείριση και παρακολούθηση του πελατολογίου, των αυτοκινήτων και των εργασιών

Διαβάστε περισσότερα

Οδηγίες Χρήσης Εφαρµογής Καταχώρησης Αποδείξεων µε απλά βήµατα

Οδηγίες Χρήσης Εφαρµογής Καταχώρησης Αποδείξεων µε απλά βήµατα Οδηγίες Χρήσης Εφαρµογής Καταχώρησης Αποδείξεων µε απλά βήµατα Βήµα 1 Έναρξη Λειτουργίας Εφαρµογής Μετά την ολοκλήρωση της εγκατάστασης έχει την δυνατότητα ο χρήστης µέσα από ένα ευέλικτο υποσύστηµα να

Διαβάστε περισσότερα