Vectori liberi-seminar 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Vectori liberi-seminar 1"

Transcript

1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j 6 k, b = ī + j + 5 k, c = 8 ī j 4 k, unde ī, j, k sunt trei vectori liberi necoplanari. ) Fie vectorii necoliniari ā si b. Se considera vectorii ū = αā+β b si v = α ā+β b. (α,β,α,β R, α + β > 0) Sa se arate ca ū si v sunt coliniari daca si numai daca αβ α β = 0. 4) Fie {ū, v} o baza intr-un plan vectorial. a) Sa se arate ca vectorii ā = ū + v si b = ū + v sunt necoliniari (deci formeaza o baza in planul vectorial). b) Sa se descompuna vectorul w = 5ū v in baza {ā, b}. 5) Daca ABCD este un paralelogram si M CD, calculati urmatoarele sume: a) AB + AD; b) AB + CD; c) MA + DM; d) DA + BM; e) CM + AB + AD; f) MA + AD + AB + CM. 6) Daca ABCD este un paralelogram de centru O, sa se determine diferenta vectorilor: a) AB AO; b) DO CB; c) CO OB; d) ( DA) AB; e) ( AC AD) DO; f) ( AD AO) OB; g) (AD ( AO OB); 7) Fie ABCD este un paralelogram de centru O. Sa se determine x R astfel incat: a) AB = xcd; b) AC = x OA; c) OC = xca; d) DB = x OB. 8) Fie ABCDEF un hexagon regulat. Daca AB = ū si BC = v, calculati CD in functie de ū si v. 9) In trapezul isoscel ABCD se da vectorul AB = ā determinat de baza mare, vectorul AD = b determinat de latura neparalela si m( DAB) = π. Sa se descompuna dupa ā si b toti vectorii determinati de laturile si diagonalele trapezului.

2 0) Notam prin r M vectorul de pozitie al unui punct arbitrar M in raport cu un reper oarecare in E. Date punctele A, B, P, cu r P = m r A + n r B, atunci punctele A, B, P sunt coliniare daca valoarea sumei m + n este: a) -; b) ; c) ; d) -. ) Fie un reper in spatiu si punctele A( r A ), B( r B ), C( r C ), D( r D ). Daca r A + k r C = r B +k r D, k R, atunci patrulaterul ABCD este: a) trapez; b) trapez sau paralelogram; c) dreptunghi; d) paralelogram. ) Fie triunghiul ABC cu AB = 5, BC = 6, AC =. Fie punctele M, N, P definite prin MB + MC = 0, NC 4 NA = 0, PA + PB = 0. ) Demonstrati ca BM = BC, CN = 4 CA, AP = AB. 5 Construiti figura corespunzatoare. ) Determinati coordonatele vectorilor PN si PM in raport cu baza ( AB, AC),motivand mai intai de ce ( AB, AC) reprezinta o baza in planul vectorial considerat. ) Demonstrati ca M, N, P sunt puncte coliniare. ) Dati doi vectori ā si b, sa se spuna in ce conditii au loc egalitatile: a) ā + b = ā b ; b) ā + b = ā + b ; c) ā + b = ā b ; d) ā b = ā + b. 4) Daca ABCDEF este un hexagon regulat cu centrul in O, aratati ca AB + AC+ AD + AE + AF = 6 AO. 5) Fie punctele A si B si functia f care asociaza fiecarui punct M din spatiu vectorul f (M) = MA + 5 MB. a) Demonstrati ca exista un singur punct G astfel incat f (G) = 0. Construiti acest punct G. b) Exprimati vectorul f (M) in functie de MG. Sa se deduca de aici ca pentru orice vector ū, exista un singur punct M astfel incat f (M) = ū. Indicatii: a) f (G) = 0 BG = 5AB. Punctul B este dat, la fel si vectorul 5 AB, deci exista un singur punct G astfel incat f (G) = 0. b) Se obtine ca f (M) = f (M) f (G) = MG. Atunci f (M) = ū GM = ū si de aici se determina in mod unic punctul M. 6) Fie vectorii ā, b, c nenuli, necoliniari doi cate doi. Atunci exista un triunghi astfel incat vectorii asociati laturilor lor sunt intocmai ā, b, c daca si numai daca (ā + b + c = 0) (ā + b = c) ( b + c = ā) ( c + ā = b).

3 7) Daca ABCD este un trapez cu AB CD, AB > CD si E, F sunt mijloacele laturilor AB si BC. Atunci: a) EF AB si EF = (AB +CD); b) daca AC EF = {M} si BD EF = {N}, avem AM = MC, EM = DC, DN = NB, EN = AB si MN = (AB DC). 8) Fie E si F mijloacele laturilor AD si BC ale patrulaterului ABCD. Sa se arate ca : a) AB + DC = EF; b) EF (AB +CD); c) AB CD EF = AB +CD; d) daca AB CD, atunci mijloacele segmentelor DC, EF si AB sunt coliniare. Indicatii: b) se obtine din a) considerand lungimile vectorilor: EF = AB+ CD ( AB + CD ). c) Inegalitatea precedenta devine egalitate daca si numai daca vectorii EF, AB si CD sunt coliniari AB CD. d) AB CD AB = λcd. Vectorii MN si NP se exprima cu ajutorul altor vectori di figura si se obtine MN = λdc 4 + CF = NP. 9) Se dau punctele A, B, C, D in spatiu. Fie I mijlocul lui AC si J mijlocul lui BD. a) Demonstrati ca IJ = AB + CD = AD + CB. b) Ce devine patrulaterul ABCD daca punctele I si J coincid? 0) Sa se gaseasca interpretari geometrice pentru urmatoarele identitati: a) (ū + v) + (ū v) = ū; b) (ū v) + v = (ū + v); c) (ū + v) ( v + ū) = (ū v). Indicatii: Se considera un paralelogram ABCD cu centrul O astfel incat AB = ū, AD = v. a) (ū+ v)+(ū v) = ū AC+ DB = AB. Deci suma vectorilor reprezentati de diagonalele paralelogramului este egala cu dublul vectorului reprezentat de latura AB a paralelogramului. Etc. ) Fie triunghiul ABC. a) Demonstrati concurenta medianelor triunghiului ABC. Punctul lor de concurenta se noteaza cu G si se numeste centrul de greutate al triunghiului. Verificati ca OG = ( OA + OB + OC), O (ABC). b) Aratati ca exista un triunghi astfel incat vectorii asociati laturilor lor sunt egali cu vectorii determinati de medianele triunghiului ABC. Construiti efectiv un astfel de triunghi. Indicatii: Se scriu ecuatiile vectoriale ale medianelor triunghiului si se obtine ca exista un punct de intersectie a doua din cele trei mediane, G, si acesta are vectorul de pozitie (in raport cu un reper arbitrar) r G = ( r A + r B + r C ). Considerand apoi mediana ramasa, se obtine ca ea intersecteaza una din primele mediane intr-un punct care are acelasi vector de pozitie ca si G, deci punctele coincid. b) se aplica problema 6). ) Pe segmentele necoplanare OA, OB, OC se construieste paralelipipedul avandu-

4 le pe acestea ca muchii din varful O. Sa se arate ca diagonala OD a paralelipipedului intersecteaza planul (ABC) in centrul de greutate al triunghiului ABC. Indicatii: Fie {M} = OD (ABC). Avem OM = λod, OD = OA + OB + OC. Deoarece punctele A,B,C,M sunt coplanare avem AM = α AB + β AC. Rezulta OM OA = α( OB OA)+β( OC OA). Inlocuim OM in functie de OA, OB, OC si se obtine o combinatie liniara a acestor vectori. Deoarece ei sunt liniar independenti rezulta ca λ = β = α =, deci OD = ( OA + OB + OC) D = G. ) Fie (AA, (BB si (CC bisectoarele interioare ale unghiurilor triunghiului ABC, cu A (BC), B (AC), C (AB). Notam lungimile laturilor triunghiului in mod uzual cu a, b, c. a) Exprimati vectorii AA, BB, CC in functie de a, b, c si AB, BC, CA. b) In ce caz vectorii AA, BB, CC inchid un triunghi? c) Cercetati punctele a) si b) pentru bisectoarele exterioare. Indicatii: Vom demonstra mai intai teorema bisectoarei interioare. Fie (AA bisectoarea interioara a unghiului A a triunghiului ABC, A (BC). Notam AB = c, AC = b, BC = ā. Un vector coliniar si de acelasi sens cu AA este c c + b, b deci AA = λ( c c + b). b Observam ca BA = k BC = kā. Rezulta A C = ( k)ā. Din AB + BA = AA, inlocuind vectorii prin relatiile anterioare si folosind faptul ca b, c sunt liniar independenti, deducem ca k = λ b si k = λ c λ = b+c bc. Atunci obtinem usor ca AA = b+c b ( c + b) = b+cā. b De asemenea avem imediat ca A B = b c A C. Analog pentru BB, CC. Daca triunghiul ABC are AB AC, atunci bisectoarea exterioara a unghiului A intersecteaza dreapta AB in N, si se procedeaza analog. Se obtine BN = si CN = b c bā. c c bā Folosind problema 6) se obtine ca vectorii AA, BB, CC inchid un triunghi daca si numai daca triunghiul ABC este echilateral. 4) Demonstrati pe cale vectoriala teorema bisectoarei interioare si folosind acest rezultat aratati ca bisectoarele interioare ale unui triunghi sunt concurente. Exprimati vectorul de pozitie al centrului cercului inscris in triunghi in functie de vectorii de pozitie ale varfurilor triunghiului si lungimile laturilor triunghiului. Ce puteti spune despre bisectoarele exterioare? Indicatii: Din problema precedenta putem exprima vectorul de pozitie al piciorului unei bisectoare prin r A = b+c b r B + b+c c r C si prin permutari circulare pentru B si C. Scriind ecuatiile vectoriale ale dreptelor AA, BB, CC se obtine ca si in cazul medianelor ca bisectoarele interioare sunt concurente intr-un punct I avand vectorul de pozitie r I = a r A+b r B +c r C a+b+c. Apoi se demonstraza prin aceeasi metoda ca bisectoarele exterioare a doua unghiuri si bisectoarea interioara a celui de al treilea unghi ale unui triunghi ABC sunt 4

5 concurente intr-un punct, numit centrul cercului exinscris triunghiului dat. Obtinem puncte I A, I B, I C, cu r IA = a r A+b r B +c r C (p a), unde p este semiperimtrul triunghiului ABC. Verificati ca punctele I B, A, I C sunt coliniare. (La fel pentru celelalte triplete de puncte). 5) Fie triunghiul ABC si punctele M, N, P care impart segmentele orientate BC, CA si AB in rapoartele k, k si respectiv k. Atunci AM, BN, CP pot inchide un triunghi daca si numai daca k = k = k. Indicatii: folosim problema 6). 6) Numim mediana a unui tetraedru drepta (segmentul) care uneste un varf cu centrul de greutate al fetei opuse. Bimedianele unui tetraedru sunt dreptele (segmentele) ce unesc mijloacele a doua muchii opuse ale tetraedrului. Sa se demonstreze ca medianele si bimedianele unui tetraedru sunt concurente intr-un acelasi punct G, numit centrul de greutate al tetraedrului. Determinati raportul in care G imparte segmentul orientat atasat unei mediane a tetraedrului. Indicatii: analog cu medianele unui triunghi. Se obtine ca r G = 4 ( r A + r B + r C + r D ) si ca G se afla pe fiecare mediana la o patrime de baza si trei patrimi de varf. Apoi se verifica faptul ca G este mijlocul fiecarei bimediane. 7) Fie O, G, H respectiv centrul cercului circumscris, centrul de greutate si ortocentrul triunghiului ABC. Sa se arate ca: a) OA + OB + OC = OH; b) HA + HB + HC = HG. Indicatii: Se stie ca punctele O, G, H sunt coliniare, ele formand drepta lui Euler si OG = OH. b) Exprimam HA = OA OH, etc, apoi folosim ca HO = HG. 8) Intr-un cerc de centru O coardele AB si CD se intersecteaza ortogonal in P. Demonstrati ca PA + PB + PC + PD = PO. 9) In E se considera tetraedrul ABCD si bazele B = ( AB, AC, AD), B = ( GB, AC, AD) in V, unde G este centrul de greutate al tetraedrului. a) Motivati ca B si B sunt baze. b) Determinati matricea de trecere de la B la B. c) Scrieti ecuatiile planului vectorial P in raport cu cele doua baze, unde P = (DBC). d) Determinati coordonatele vectorului AC in cele doua baze. 0) Pentru fiecare vector ū se defineste aplicatia tū : E E, tū(a) = A AA = ū. Ea se numeste translatia de vector ū. a) Aratati ca aceasta aplicatie este bine definita si este o bijectie. 5

6 b) Verificati ca are loc relatia tū(a)tū(b) = AB, A,B. c) Multimea T a translatiilor formeaza un grup relativ la compunerea aplicatiilor. ) Se da triunghiul ABC. Sa se determine multimea punctelor M din planul (ABC) pentru care vectorul MA + MB + MC are aceeasi directie si acelasi sens cu vectorul AB. Indicatii: Fie D mijlocul lui (AB) si E mijlocul lui (CD). Se obtine ca MA + MB + MC = 4 ME. Vectorul ME are aceeasi directie si sens cu AB daca si numai daca M apartine semidreptei cu originea in E, paralela cu AB si situata in semiplanul determinat de CD caruia ii apartine punctul A. ) Demonstrati pe cale vectoriala teorema lui Menelaos si reciproca acesteia. Cu ajutorul ei demonstrati teorema lui Ceva. Indicatii: Teorema lui Menelaos: Fie un triunghi ABC si o drepta d care nu trece prin nici un varf si care taie dreptele AB, BC, CA respectiv in punctele M, N, P. Fie MA = λ MB, NB = µ NC, PC = ν PA. Atunci λµν =. Punctele M, N, P fiind coliniare, avem MN = αmp deci AM = λ( AB AM), AB AN = µ( AC AN), AC AP = ν AP, AN AM = α( AP AM). Rezulta AM = λ λab, AN = µ ( AB µ AC), AP = ν AC si ( α) AM AN +α AP = 0. Inlocuind in aceasta relatie toti termenii in functie de AB si ACsi folosind liniara independenta a acestor vectori, rezulta λ( α) λ + µ = 0, µ µ + ν α = 0. Eliminand pe α obtinem λµν =. Reciproc, presupunem ca avem punctele M, N, P pe laturile (sau prelungirile lor) unui triunghi ABC astfel incat MA = λ MB, NB = µ NC, PC = ν PA si λµν =. Vom demonstra ca punctele M, N, P sunt coliniare. Fie MN AC = {P }. Aplicand teorema directa pentru P C = ν P A, obtinem ca λµν =. Deci ν = ν si astfel rezulta ca P=P. ) Aratati ca un patrulater convex este trapez daca si numai daca punctul de intersectie al diagonalelor este punct interior unuia dintre segmentele ce uneste mijloacele a doua laturi opuse. Este paralelogram daca si numai daca punctul de intersectie al diagonalelor este punct interior fiecaruia dintre segmentele ce uneste mijloacele laturilor opuse. Indicatii: Fie AB CD in ABCD si O punctul de intersectie al diagonalelor (interior diagonalelor), M mijlocul lui (AB) si N mijlocul lui (CD). Avem OM = ( OA + OB), ON = ( OC + OD), AB = αcd. De asemenea OC = a OA si OD = b OB. Folosind liniara independenta a vectorilor OA, OB se obtine a = b = α, deci ON = α ( OA + OB) = α OM, deci punctele O, M, N sunt coliniare. In plus α < 0 M O N. Reciproc, fie ON = λ OM, λ < 0. Rezulta ( OC + OD) = λ ( OA + OB) a OA + b OB = λ OA + λ OB a = b = λ DC = λ AB, deci DC AB. ABCD este un patrulater convex deoarece AB si DC au acelasi sens, deci B si C nu sunt separate de AD. 6

7 4) Fie triunghiul ABC, vectorii x, ȳ, z si punctele M, N, P astfel incat AM = λ x, BN = λȳ si CP = λ z, λ R +. Se cere locul geometric al centrului de greutate Q al triunghiului (eventual degenerat) MNP cand λ variaza. Indicatii: Notam cu G centrul de greutate al triunghiului ABC si fie O un punct arbitrar (nu neaparat in planul (ABC)). Se obtine ca OQ = OG+ λ ( x+ȳ+ z) GQ = λ ( x + ȳ + z). Daca x + ȳ + z = 0 rezulta Q=G, deci locul geometric cautat este format doar din {G}. Daca x + ȳ + z 0 atunci, deoarece G este punct fix si vectorul λ ( x + ȳ + z) este dat, rezulta ca locul geometric este semidreapta cu originea in G, paralela cu directia vectorului x + ȳ + z si avand acelasi sens cu acesta: {M/ GM = a( x + ȳ + z), a > 0}. 5) Fie ABC un triunghi echilateral de centru O, iar P un punct in interiorul triunghiului. Se noteaza cu P, P, P proiectiile lui P pe laturi si cu A, B, C mijloacele laturilor. Sa se arate ca P A + P B + P C = PO. Indicatii: Se verifica imediat ca OA + OB + OC = 0. O alta relatie utila in demonstrarea problemei este PP + PP + PP = PO. Ducem prin P paralele la laturile triunghiului, si acestea taie pe AB in S si R, pe AC in N si T iar pe BC in M si Q, astfel incat ST BC, RQ AC, NM AB. Triunghiul PMQ astfel obtinut este echilateral, deci PP este mediana, rezulta PP = PM + PQ. Analog PP = PT + PN si PP = PS + PR. Astfel se obtine ( P A + P B + P C ) = PA + PB + PC = ( OA + OB + OC) OP = PO. Am demonstrat deci ca PP + PP + PP = PO. Scriind PO = PP + P A + A O si celelalte doua relatii analoage obtinem PO = ( PP + PP + PP )+( P A + P B + P C ) ( OA + OB + OC ) P A + P B + P C = PO. 7

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

prof. Busuioc Gianina Elena

prof. Busuioc Gianina Elena Şcoala Gimnazială Nr. 6 Vaslui prof. Busuioc Gianina Elena 1 La realizarea acestui proiect au colaborat elevii: Baciu Dragoş, Barbu Călina, Burdujanu Robert, Cobzaru Albert, Epure Mălina, Fuşneică Angel,

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Structura matematicii

Structura matematicii Structura matematicii Oana Constantinescu March 21, 2014 Contents 1 Teorie deductiva. Generalitati 1 2 Geometria plana bazata pe notiunea de distanta 4 2.1 Motivatie............................... 4 2.2

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI

Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI Capitolul 6 DINAMICA FRÂNĂRII AUTOVEHICULELOR CU ROŢI 61 ECUAŢIA GENERALĂ A MIŞCĂRII RECTILINII A AUTOVEHICULULUI FRÂNAT Se consideră un autovehicul care se deplasează cu viteză variabilă pe un drum cu

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

2 Variabile aleatoare

2 Variabile aleatoare Variabile aleatoare În practică, variabilele aleatoare apar ca funcţii ce depind de rezultatul efectuării unui anumit experiment. Spre exemplu, la aruncarea a două zaruri, suma numerelor obţinute este

Διαβάστε περισσότερα

PROBLEME DE ELECTRICITATE

PROBLEME DE ELECTRICITATE PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predare-învăţare-evaluare pentru

Διαβάστε περισσότερα

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs

Aritmetică în domenii de integritate şi teoria modulelor. Note de curs Aritmetică în domenii de integritate şi teoria modulelor Note de curs În prima parte a cursului, vom prezenta câteva clase remarcabile de domenii de integritate şi legăturile dintre acestea A doua parte

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache

PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ. Radu Gologan, Tania-Luminiţa Costache PROBLEME PENTRU EXAMENUL DE ANALIZĂ MATEMATICĂ Radu Gologan, Tania-Luminiţa Costache 2 * Prefaţă Textul de faţă este construit pe scheletul subiectelor date la examenul de Analiză Matematică în perioada

Διαβάστε περισσότερα

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3

Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3 Concurs Phi: Setul 1 - Clasa a VII-a Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a VII-a» Attempt 1 1 Pentru a deplasa uniform pe orizontala un corp de masa m = 18 kg se actioneaza asupra lui

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Tehnici de Optimizare

Tehnici de Optimizare Tehnici de Optimizare Cristian OARA Facultatea de Automatica si Calculatoare Universitatea Politehnica Bucuresti Fax: + 40 1 3234 234 Email: oara@riccati.pub.ro URL: http://riccati.pub.ro Tehnici de Optimizare

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M CLASA A XI-A Filiera teoretic`, profilul real, specializarea ]tiin\ele naturii (TC + CD) Filiera tehnologic`, toate calific`rile

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

MATEMATICI SPECIALE. Viorel PETREHUŞ, Narcisa TEODORESCU. Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB

MATEMATICI SPECIALE. Viorel PETREHUŞ, Narcisa TEODORESCU. Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB MATEMATICI SPECIALE Viorel PETREHUŞ, Narcisa TEODORESCU Lecţii introductive pentru studenţii din anul al 2-lea din cadrul UTCB Mai există erori care vor fi corectate în versiunea finală) Capitolul Introducere

Διαβάστε περισσότερα

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE 1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE REZISTOARELOR 1.2. MARCAREA REZISTOARELOR MARCARE DIRECTĂ PRIN

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!#$ %&'$!&!(!)%*+, -$!!.!$(-#$&%- !"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Clasa a X-a, Producerea si utilizarea curentului electric continuu

Clasa a X-a, Producerea si utilizarea curentului electric continuu 1. Ce se întămplă cu numărul de electroni transportaţi pe secundă prin secţiunea unui conductor de cupru, legat la o sursă cu rezistenta internă neglijabilă dacă: a. dublăm tensiunea la capetele lui? b.

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &

Διαβάστε περισσότερα

Verificarea ipotezelor statistice 1 de I.Văduva

Verificarea ipotezelor statistice 1 de I.Văduva Verificarea ipotezelor statistice 1 de I.Văduva Notaţii si noţiuni preliminare Variabila aleatoare: X,Y,U,V,etc., descrisă de funcţie de repartiţie. Variabila aleatoare este asaociată unei populaţii statistice;

Διαβάστε περισσότερα

x ax by c y a x b y c

x ax by c y a x b y c Γεωμετρία Affine - Εφαρμογές Δόρτσιος Κων/νος, Μαθηματικός mail:kdortsi@sch.gr Τσίντσιφας Γεώργιος, Μαθηματικός mail :gtsintsifas@yahoo.com Εισαγωγή Η Γραμμική Γεωμετρία περιέχει τρία είδη Μετασχηματισμών

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

DESEN TEHNIC. Suport electronic de curs

DESEN TEHNIC. Suport electronic de curs DESEN TEHNIC Suport electronic de curs 2011 CUPRINS 1. NOŢIUNI INTRODUCTIVE. STANDARDE GENERALE UTILIZATE ÎN DESENUL TEHNIC 1.1. NOŢIUNI INTRODUCTIVE 1.1.1.Scopul, obiectul şi importanţa desenului tehnic

Διαβάστε περισσότερα

LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII

LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII LUCRAREA NR. 9 STUDIUL POLARIZĂRII ROTATORII A LUMINII Tema lucrării: 1) Determinarea puterii rotatorii specifice a zahărului 2) Determinarea concentraţiei unei soluţii de zahăr 3) Determinarea dispersiei

Διαβάστε περισσότερα

1. Elemente de bază ale conducţiei termice

1. Elemente de bază ale conducţiei termice 1. 1.1 Ecuaţiile diferenţiale ale conducţiei termice Calculul proceselor de schimb de căldură necesită cunoaşterea distribuţiei temperaturii în spaţiu şi timp. Distribuţia temperaturii se obţine prin rezolvarea

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Seminar electricitate. Seminar electricitate (AP)

Seminar electricitate. Seminar electricitate (AP) Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =

Διαβάστε περισσότερα

Tema I FORMAREA IMAGINII

Tema I FORMAREA IMAGINII Tema I FORMAREA IMAGINII Nevoia de imagini a omului modern creste de la zi la zi. In general, functiile imaginilor sunt urmatoarele : - functia documentara - prezinta concret, imaginea unor termeni si

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

Προσωπική Αλληλογραφία Επιστολή

Προσωπική Αλληλογραφία Επιστολή - Διεύθυνση Andreea Popescu Str. Reşiţa, nr. 4, bloc M6, sc. A, ap. 12. Turnu Măgurele Jud. Teleorman 06102. România. Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας,

Διαβάστε περισσότερα

Elemente de mecanică şi aplicaţii în biologie

Elemente de mecanică şi aplicaţii în biologie Biofizică Elemente de mecanică şi aplicaţii în biologie Capitolul II. Elemente de mecanică şi aplicaţii în biologie Acest capitol are drept scop familiarizarea cititorului cu cele mai importante noţiuni

Διαβάστε περισσότερα

Calculul funcţiilor de matrice Exponenţiala matriceală

Calculul funcţiilor de matrice Exponenţiala matriceală Laborator 3 Calculul funcţiilor de matrice Exponenţiala matriceală 3.1 Tema Înţelegerea conceptului de funcţie de matrice şi însuşirea principalelor metode şi algoritmi de calcul al funcţilor de matrice.

Διαβάστε περισσότερα

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare..

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare.. I. Modelarea funcţionării diodei semiconductoare prin modele liniare pe porţiuni În modelul liniar al diodei semiconductoare, se ţine cont de comportamentul acesteia atât în regiunea de conducţie inversă,

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme Capitolul Diode semiconductoare 3. În fig. 3 este preentat un filtru utiliat după un redresor bialternanţă. La bornele condensatorului

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Exercitii : Lecţia 1,2,3

Exercitii : Lecţia 1,2,3 Exercitii : Lecţia 1,2,3 1.Notarea câmpurilor Tabla de şah are 64 de pătrăţele numite câmpuri. Fiecare câmp poate fi identificat de coloana şi linia pe care se află, orice câmp se află la intersecţia dintre

Διαβάστε περισσότερα

Emil Budescu. BIOMECANICA GENERALã

Emil Budescu. BIOMECANICA GENERALã Emil Budescu BIOMECANICA GENERALã IASI 03 C U P R I N S pag. I. Introducere în biomecanica 3. Obiectul de studiu 3. Terminologie 7 3. Aspecte de baza ale biomecanicii 4. Aspecte de baza ale anatomiei si

Διαβάστε περισσότερα

De exemplu multimea oamenilor care cintaresc de kg nu are nici un element.

De exemplu multimea oamenilor care cintaresc de kg nu are nici un element. 1.Multimi Definitie Multimea este o colectie de obiecte/simboluri. Fiecare obiect dintr-o multime este un element al multimii si este scris/specificat o singura data. Mutimile se noteaza, de obicei cu

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude

Διαβάστε περισσότερα

Hydraulic network simulator model

Hydraulic network simulator model Hyrauc ntwor smuator mo!" #$!% & #!' ( ) * /@ ' ", ; -!% $!( - 67 &..!, /!#. 1 ; 3 : 4*

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură

Διαβάστε περισσότερα

4. POLARIZAREA TRANZISTOARELOR BIPOLARE

4. POLARIZAREA TRANZISTOARELOR BIPOLARE 4 POLAZAA ANZSOALO POLA ircuitul de polarizare are rolul de a poziţiona într-un punct de pe caracteristica statică, numit Punct Static de uncţionare (PS) ezultă că circuitul de polarizare trebuie să asigure

Διαβάστε περισσότερα

Capitolul 5 DINAMICA TRACŢIUNII AUTOVEHICULELOR CU ROŢI

Capitolul 5 DINAMICA TRACŢIUNII AUTOVEHICULELOR CU ROŢI Capitolul 5 DINAMICA TRACŢIUNII AUTOEHICULELOR CU ROŢI 5.1 ECUAŢIA GENERALĂ A MIŞCĂRII RECTILINII A AUTOEHICULELOR ŞI CONDIŢIA DE ÎNAINTARE A ACESTORA Se consideră cazul general al unui autovehicul care

Διαβάστε περισσότερα

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU Cuprins CAPITOLUL 4 AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU...38 4. Introducere...38 4.2 Modelul la foarte joasă frecvenţă al amplficatorului operaţional...38 4.3 Amplificatorul neinversor.

Διαβάστε περισσότερα

&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B

&,'-- #- > #'$,/'3&)##3!0'0#!0#/# 0'0';&'$8 ''#&$'!&0-##-#;-# B !"#"# $%"&$' ('#')#''$# * +,-""&$'.-,-"#!&"!##/'#')#''$# ** '$#/0'!0#'&!0"#"/#0"## * 1--'/''00#&'232232223#24 *5 ##-'"-&1-$6'#76#!$#0"$8&9-1$" * '$#&$'!&&1:"-#;6"/'-#

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

DETERMINAREA CONSTANTEI RYDBERG

DETERMINAREA CONSTANTEI RYDBERG UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA SI FIZICA NUCLEARA BN-03A DETERMINAREA CONSTANTEI RYDBERG DETERMINAREA CONSTANTEI RYDBERG. Scopul lucrării Determinarea

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

Electronică Analogică. Redresoare -2-

Electronică Analogică. Redresoare -2- Electronică Analogică Redresoare -2- 1.2.4. Redresor monoalternanţă comandat. În loc de diodă, se foloseşte un tiristor sau un triac pentru a conduce, tirisorul are nevoie de tensiune anodică pozitivă

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1ο ΔΙΑΝΥΣΜΑΤΑ ΚΕΦΛΙΟ ο ΙΝΥΣΜΤ Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Ορισμός του ιανύσματος Πότε ένα μέγεθος καλείται βαθμωτό ή μονόμετρο και πότε διανυσματικό ; Τα μεγέθη ( όπως πχ η μάζα, ο όγκος, η πυκνότητα, η θερμοκρασία κτλ) τα

Διαβάστε περισσότερα

Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric

Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric Subiectul I Pentru fiecare dintre cerinţele de mai jos scrieţi pe foaia de examen, litera corespunzătoare răspunsului corect. 1.

Διαβάστε περισσότερα

ΤΑ ΑΡΙΘΜΗΤΙΚΑ. 2. Τακτικά αριθμητικά

ΤΑ ΑΡΙΘΜΗΤΙΚΑ. 2. Τακτικά αριθμητικά ΤΑ ΑΡΙΘΜΗΤΙΚΑ Σύμφωνα με τη Γραμματική της Ρουμανικής Γλώσσας, τα αριθμητικά διακρίνονται σε: 1. Απόλυτα αριθμητικά α. Απλά: unu, doi, trei... (ένα, δύο, τρία) κ.λπ. β. Σύνθετα: doisprezece, treizeci...

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

PVC. D oor Panels. + accessories. &aluminium

PVC. D oor Panels. + accessories. &aluminium PVC &aluminium D oor Panels + accessories 1 index panels dimensions accessories page page page page 4-11 12-46 48-50 51 2 Η εταιρία Dorland με έδρα τη Ρουμανία, από το 2002 ειδικεύεται στην έρευνα - εξέλιξη

Διαβάστε περισσότερα

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

AMPLIFICATOARE DE MĂSURARE. APLICAŢII

AMPLIFICATOARE DE MĂSURARE. APLICAŢII CAPITOLL 4 AMPLIFICATOAE DE MĂSAE. APLICAŢII 4.. Noţiuni fundamentale n amplificator este privit ca un cuadripol. Dacă mărimea de ieşire este de A ori mărimea de intrare, unde A este o constantă numită

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

È http://en.wikipedia.org/wiki/icosidodecahedron

È http://en.wikipedia.org/wiki/icosidodecahedron À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016

APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR. Călinici Tudor 2016 APLICAȚIILE MEDICALE ALE CALCULULUI PROBABILITĂŢILOR Călinici Tudor 2016 OBIECTIVE EDUCAŢIONALE Prezentarea conceptelor fundamentale ale teoriei calculului probabilitaţilor Evenimente independente Probabilități

Διαβάστε περισσότερα