ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝΣΤΑ ΟΡΙΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝΣΤΑ ΟΡΙΑ"

Transcript

1 ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΑ ΟΡΙΑ. α. Αν στην δοθείσα σέση θέσω =ψ=0 θα έω ƒ(0) = (ƒ(0)) ƒ(0)(ƒ(0) ) = 0 ƒ(0) = αφού δίδεται ότι ƒ(0) 0 β. θέτω = h = + h οπότε ƒ() = ƒ( + h) = [ƒ( ) ƒ(h)] = ƒ( ) ƒ(h) = ƒ( ) ƒ(0) = ƒ( ) h h h 2. Θέτοντας στην αρική =ψ= έω ƒ() = ƒ() + ƒ() ƒ() = 0 Θέτω = h = h Άρα 3. ƒ() = ƒ( h) = [ƒ( ) + ƒ(h)] = ƒ( ) + ƒ(h) = h h h = ƒ( ) + ƒ() = ƒ( ) + 0 = ƒ( ) Ισύει ότι 0 ƒ () ƒ () + g () 0 Από κριτήριο παρεμβολής έω ƒ () = 0 ƒ () = 0 ƒ() = 0 Αλλά ισύει ƒ() ƒ() ƒ() και από κριτήριο παρεμβολής έω ότι ƒ() = 0 Παρόμοια και g() = 0 Από την σέση ƒ 2 () + g 2 () 2ημƒ() ƒ 2 () + g 2 () 2ημƒ() + ημ 2 ημ 2 (ƒ() ημ) + g () ημ οπότε όπως και προηγουμένως έω επειδή 0 (ƒ() ημ) + g () ημ και ημ = 0 και 0 (ƒ() ημ) (ƒ() ημ) + g () και [(ƒ() ημ) + g ()] = 0

2 (ƒ() ημ) = 0 (ƒ() ημ) = 0 (ƒ() ημ) = 0 και ƒ() ημ ƒ() ημ ƒ() ημ έουμε από κριτήριο παρεμβολής ότι Παρόμοια για την g() 4. [ ƒ() ημ] = 0 θέτοντας g() = ƒ() ημ ƒ() = g() + ημ ƒ() = [ g() + ημ] = g() + ημ = 0 Προσθέτω και αφαιρώ στον αριθμητή το ƒ() και έω ƒ() ƒ() + ƒ() ƒ() ƒ() ƒ() ( = ) ( + )( ) ƒ()( ) ( + )( ) = = ( + ) ƒ() ƒ() ƒ() ( + ) = 2 l 2 ƒ() = (l ƒ()) ( ) = 0 και 2( ) = 0 Άρα από κριτήριο παρεμβολής και ƒ() = 0 για = αν θέσω στη δοθείσα έω 0 ƒ() 0 άρα ƒ() = 0 Αν > τότε ->0 οπότε διαιρώντας την δοθείσα έω ƒ() ( ) 3( + ) ƒ() 2( + + ) και 3( + ) = 0 και 2( + + ) = 6 Άρα από κριτήριο παρεμβολής έω ότι ƒ() = 6 Παρόμοια όταν < τότε -<0 Άρα ƒ() ( ) 3( + ) ƒ() 2( + + ) Άρα ƒ() = 6 Άρα και ƒ() = 6 2

3 ιν. Διαιρώ με το - και έω ƒ() () = = 6 ƒ() διότι = 6 και θέτοντας -=ν του τότε ν 0 Άρα 6. ημ( ) ημν = ν = ( 2ημ(4) ) = 0 και ( 8 + ) = 0 Άρα από κριτήριο παρεμβολής ƒ() = 0 Αν >0 τότε 2ημ(4) ƒ() 8 + 2ημ(4) 2ημ(4) Αλλά = = 8 και ƒ() = 8 και = 0 7. Θα πρέπει ƒ() = ƒ() ( 2ημ) = 2 = α + β + γ () Επίσης ƒ() = 0 = α + β + γ (2) ƒ() (αημ + β + γ) συν = (αημ + β + γ) Από τις σέσεις (),(2) αφαιρώντας κατά μέλη έω 2α = 2 α = και για α = έω β + γ =. Ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία +ψ=- 3

4 8. Θέτω g() = ƒ() ƒ(x) g(x) + g(x) l = ƒ(x) l ƒ() ƒ(x)(g(x) ) = l( g(x) ) ƒ(x) = (()) () l( g(x) ) l( 0 ) ƒ(x) = = = l g(x) 0 9. Αφού η ƒ είναι άρτια τότε ƒ( ) = ƒ()και έω αν θέσω = u τότε = u και όταν το u ƒ() = l ƒ( ) = l ƒ(u) = l ƒ() = l Αν η ƒ είναι περιττή τότε ƒ( ) = ƒ()και έω αν θέσω = u τότε = u και όταν το u ƒ() = l ƒ( ) = l ƒ(u) = l ƒ(u) = l ƒ() = l x x x x0 2 2 x x Διαιρώντας με θα έω 4

5 ημ + εφ ημ + εφ = διότι ημ = ημ ημ και επειδή 2 ( ) = = 0 από κριτήριο παρεμβολής και ημ = 0 Παρόμοια και ημ = ημ = εφ = β. Θέτω -π=ν τότε =π+ν και έω π έω -π 0 και ν 0 ημ (π + ν) ( ημ(ν)) (ημ(ν)) ημν = = = ημν ν ν ν ν = 0 = 0 γ. Θέτω 2=ν και έω 0 και ν 0 τότε ημημ(ημ2) = ημημ(ημν) Θέτω ημν=ω και έω ν 0 και ημν 0 και ω 0 τότε ημημ(ημν) = ημ(ημω) Θέτω ημω=ψ και έω ω 0 και ημω 0 και ψ 0 τότε ημ(ημω) = ημψ = 0. 5

6 ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝΣΤΑ ΟΡΙΑ 2x 2 2x 2 2x + 2 ƒ(x) ƒ(x) (x 2) (x 2) 2x + 2 2x 4 (x 2) 2x ƒ(x) (x 2) 2x + 2 ƒ(x) 2(x 2) ƒ(x) (x 2) 2x ƒ(x) ( 2x + 2) x 2 ƒ(x) ( ) = 2 Άρα ƒ() = 2. α = 2 (α ) = (4α + 4) ( ) 2 α αν α > = απροσδ. αν α = + αν α < για α=- έω α ( 2)( + ) = = = (x + ) = x + β + 2 ημ( 2) = x + β ημ( 2) 2 x + β + 2 = = (2β + 6)(+ ) 2 και έω x + β αν β > 3 = απροσδιο. αν β = 3 αν β < 3 για β=-3 έω x + β = x = ( ) = 6

7 Αν α<- και β>-3 έει όριο το + και αν α>- και β<-3 έει όριο το - 3. διότι α = 0 όταν α > e = = β = = = = 3 γ = = = 3 δ. Διακρίνουμε τις περιπτώσεις για την τιμή της παραμέτρου α αν α>2, αν α=2 και αν α<2 Αν α>2 τότε θα έω Αν α<2 τότε θα έω α + 2 α + 2 = α 2 α α α α α = α α α = 0 α + 2 α + 2 = α α α α α = 2 α = 2 Αν α=2 τότε έω 4. α + 2 α + 2 = = = 7

8 (2 + )ƒ() 3 + (2 + )ƒ() (2 + )ƒ() ƒ() Επειδή = 3 και 2 + = 3 και ƒ() = 3 διότι ƒ()ημ ƒ()ημ = = ƒ() ημ = 3 5.Από την δοθείσα έω ημ,, ημu u = α. ƒ () ƒ() + > ƒ () ƒ() > 0 ƒ()(ƒ() 2) > 0 που ισύει διότι το σύνολο τιμών της ƒ είναι (2,+ ) δηλ ƒ()>2 β.από την δοθείσα έω Αλλά και ƒ () 3ƒ() + 3 = + 2 ƒ() για κάθε > 0 ƒ () 3ƒ () + 3ƒ() 2 = (ƒ() 2)(ƒ () ƒ() + ) = > 0 ƒ() 2 = 0 < ƒ () ƒ() + < ƒ () ƒ() + διότι > 0 και ƒ () ƒ() + > 0 άρα ισύει Αλλά < ƒ() 2 < ( ) ( ƒ() 2) ( ) = 0 και = 0 άρα και ( ƒ() 2) = 0 ƒ() =

9 Αν στη δοθείσα θέσω α=β= θα έω ƒ(2) = ƒ () + Από την ƒ() = θέτω g() = ƒ() g() + = ƒ()και επομένως 0 θέτω -=u τότε το u 0 και =u+ ƒ() = [g() + ] = 0 + = 2 ƒ() ƒ() (u + ) 2 ƒ(u + ) ƒ() = 7 u 0 u (u + ) [ƒ(u) ƒ() + u] ƒ() = 7 u = 7 (u + ) ƒ(u) ƒ() + u(u + ) ƒ() = 7 u [(u + ) ƒ(u) )]ƒ() + u(u + ) = 7 u [u ƒ(u) + 2uƒ(u) + ƒ(u) ]ƒ() + (u + ) = 7 u uƒ(u) + 2ƒ(u) + ƒ(u) ƒ() +(u + ) = 7 u ƒ(u) ƒ() + = 7 3ƒ() = 6 ƒ() = 2 u Από την ƒ(2) = ƒ () + ƒ(2) = 2 + = 5 7. ƒ(2 + ) ƒ(2 ) ημ2 = = ƒ(2 + ) ƒ(2) ƒ(2 + ) ƒ(2) ƒ(u) ƒ(2) = u 2 ƒ(2 + ) ƒ(2) ƒ(2) + ƒ(2 ) ημ2 4 ημ2 ƒ(2 ) ƒ(2) = 3 aφού αντικαταστήσουμε u = + 2 = u 2 και 0 το u 2 Παρομοίως αν αντικαταστήσω 2 = u τότε = 2 u και όταν 0 το u 2 και Αρα ƒ(2 ) ƒ(2) ƒ(u) ƒ(2) ƒ(u) ƒ(2) = = = 3 2 u u 2 = 9

10 ƒ(2 + ) ƒ(2) ƒ(2 ) ƒ(2) ημ2 = = Άρα 9. Θέτω ƒ(3) ƒ( ) ƒ(3) = 3 3 = 3 ƒ(u) u ƒ( ) = = ƒ(u) u ƒ(3) + ƒ( ) ημ(α) 4 ημ = 7 9 3α 4 = 9 αντικαταστήσαμε 3 = u = 3 αντικαταστήσαμε = u ƒ(3) + ƒ( ) ημ(α) 4 ημ = 7 = 7 9 3α = 2 3α = 2 α = 4 ƒ() () = g()και έω g() = 8 και έω ƒ() = ( 2) g() συν π 4 4 συν π 4 2 = συν = ( 2) g() + 4 ( 2)g() = 4 π(u + 2) 4 u συν π 4 4 = = 0 ( 2)g() = πu συν 4 + π 2 πu ημ 4 = = u u συν π 4 2 = π ƒ() = 0 π 4 4 = π Από την δοθείσα για α=β= έω ƒ()=ƒ()+ƒ() ƒ()=0 Άρα ƒ() ƒ() ƒ() = = 2 Θέτω = u τότε = uξ και όταν ξ το u Επιπλέον αφού το (ξ,ƒ(ξ)) είναι σημείο της ψ= τότε ƒ(ξ)=ξ. Επομένως ƒ() ƒ(ξ) ƒ(uξ) ξ uƒ(ξ) + ξƒ(u) ƒ(ξ) = = = ξ uξ ξ uξ ξ ξƒ(u) ƒ(ξ)(u ) ƒ(u) + = ξ(u ) ξ(u ) (u ) + ƒ(ξ) = 2 + = 3 αφού ƒ(ξ) = ξ ξ 2. 0

11 Θέτω h() = ƒ () () ƒ () + () ƒ () () ƒ () () ƒ () () ƒ () ƒ () + () = ƒ () συν + () ημ () ƒ () () ƒ() + g() Άρα ƒ() g() h() ƒ() + g() και ( ƒ() g() ) = 0 και ( ƒ() + g() ) = 0 και απο κριτήριο παρεμβολής h() = Επειδή ( α) = α < 0 και α < 0 κοντα στο 0 Επειδή ( + α) = α > 0 και + α > 0 κοντά στο 0 α + α + α α Αρα = = 2 που 2 = λ ( ) = λ και = + και λ = λ ( ) ( ). αν -λ>0 >λ τότε το όριο είναι + 2. αν -λ<0 <λ τότε το όριο είναι - 3. αν λ= τότε έω θέτοντας όπου λ το στην αρική ( ) = ( ) ( + ) = ( ) + = (± ) άρα δεν υπάρει το ( ) 23. Από τη δοθείσα έω α β 4 2 = ƒ() ( 5 + 6) Επειδή ƒ() = 0 και ( 5 + 6) = 0 έουμε και (α β 4 2) = 0 5α + β 2 = 0 β = 2 5α κοντά στο 3 σε κατάλληλη περιοή το + 2 > 0 και 4 < 0 άρα Άρα ƒ() = α( + 2) + (2 5α)( + 4) 2 = ( 3)( 2) 6α 2 ƒ() = 2 = 6α 8α (6α 2)( 3) = ( 3)( 2) ( 3)( 2) = 6α 2 2 (6α 2) = 0 6α 2 = 0 α = 2 και από την β = 2 5α β = 8

12 24. I. Πρέπει ƒ() g() π. < = 0 και ( ) = 0 ΙΙ. Πρέπει να υπάρουν τα ƒ() και g() ΙΙΙ. Δεν αληθεύει ο ισυρισμός αφού μπορεί να μην υπάρει το ƒ() π. Για ƒ() = είναι ƒ() = 5 ενώ δεν υπάρει το ƒ() Ιν. Πρέπει g() ƒ() h() κοντά στο 2 και όι όταν ε, 6 όπου δεν ανήκει το Ι.Είναι αληθής διότι και δεν ξενάμε ότι το αποτέλεσμα έρεται μετά τη μάη ƒ() = ƒ() = ƒ() = L ΙΙ. Είναι ψευδής αν 0 διότι π. ƒ() = τότε ƒ() = 0 2 αν = 0 ΙΙΙ. Είναι ψευδής διότι π. = 0 με = 0 Ιν. Είναι ψευδής,όι για κάθε σύνολο κοντά αλλά σε κατάλληλο σύνολο κοντά στο π. ( 2) = > 0 όμως όταν ϵ(,3) (3,5) το -2<0 όταν ϵ(,2) 2

13 νι Θα ήταν σωστό αν υπήρε το όριο το όριο της ƒ() 26. Διαιρώντας τη δοθείσα με ημ 2 ημ έω = = ημ ημ 4 διότι ημ = 0 και επειδή η παράσταση 4 + ημ 4 + ημ > 0 θα έω = 4 ημ + + = = 0 και + ημ 2 = 2 και + 2 ημ 4 + ημ 4 = ƒ() = 2 +2 ημ ημ ( ημ + 2) Αλλά = = 0 g() = συν4 2 + ημ 2 + ημ2 2 Αλλά + + ημ2 2 = 0 28 Θέτω h() = ƒ() εφ ƒ() = h() εφ και t() = 2 g() συν () g() = Αρα 2 ƒ() g() = h() εφ t() συν εφ συν = h()t() = h()t() ημ 2 2 Αλλά 3

14 ημ = ημ και ημ Απο κριτήριο παρεμβολής και = 0 ημ(ƒ()) ημ(g()) = κ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝΣΤΑ ΟΡΙΑ ημ(ƒ()) ƒ() ƒ() g() διότι θέτοντας ƒ() = w τότε w = 0 και 29. = = 0 g() ημ(g()) = κ = κ ημ(ƒ()) ημw = ƒ() w w = Από την ƒ () + ƒ() = ƒ()(ƒ () + ) = ƒ() = 0 < ƒ () < ƒ () + ƒ() = 0 < ƒ() < 0 < ƒ() ƒ() από κριτήριο παρεμβολής το = 0 Από την ƒ () + ƒ() = ƒ() = ƒ() Αρα < οπότε ƒ() ƒ > 0 όταν (0, + ) () + ƒ() = = 0 Αρα ƒ() = 0 ƒ() = ƒ() ƒ() = = 30. f() = ( + β + ) = α + β + και f() = (2) = 2α. Για να υπάρει τον f() θα πρέπει f() = f() α + β + = 2α α + β + 2α = 0 (α ) + β = 0 α = και β = 0 3. με μ και κ θα έω (μ ) + (κ 2) 4 (μ ) (κ ) = = + 3 (κ ) μ κ = μ κ = μ κ (+ ) Και διακρίνουμε τις περιπτώσεις Α) με κ έω μ > 0 (κ )(μ ) > 0 (κ > και μ > ) ή (κ < και μ < ). Τότε το ζητούμενο κ 4

15 όριο είναι + μ < 0 (κ )(μ ) < 0 (κ > και μ < ) ή (κ < και μ > ). Τότε το ζητούμενο κ όριο είναι και αν μ (κ 2) 4 = 0 μ =. Για μ = η αρική γίνεται κ (κ ) + 3 = κ 2 κ = = κ 2 (+ ) με κ 2. Οπότε διακρίνουμε τις εξής περιπτώσεις κ Α) κ 2 > 0 (κ 2)(κ ) > 0 κ (, )U(2, + )τότε το ζητούμενο κ όριο είναι + Α2) κ 2 < 0 (κ 2)(κ ) < 0 κ (,2) τότε το ζητούμενο κ 4 Α3) αν κ = 2 τότε έουμε Β) Αν κ = τότε το αρικό όριο γίνεται + = μ 3 = μ 3 Β) αν μ 3 Β2) αν μ 3 Β3) αν μ = 2 = 0 (μ ) (+ ) με μ και διακρίνουμε περιπτώσεις > 0 μ > τότε το όριο είναι + < 0 μ < τότε το όριο είναι 3 (μ ) 4 = = + 3 (μ ) = 0 μ = οπότε το = =

ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΜΕ ΣΟΝ ΟΡΙΜΟ ΣΗ ΠΑΡΑΓΩΓΟΤ

ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΜΕ ΣΟΝ ΟΡΙΜΟ ΣΗ ΠΑΡΑΓΩΓΟΤ ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΣΟ ΚΕΥΑΛΑΙΟ ΣΩΝ ΠΑΡΑΓΩΓΩΝ ΑΚΗΗ 1 Αφού η ςυνάρτηςη είναι παραγωγίςιμη ςτο 0 1 θα ιςύει Επομένωσ ƒ ƒ(1) 1 1 1 ƒ ƒ 1 1 1 ƒ ƒ 1 + + 1 1 1 ƒ ƒ(1) 1 + + 1 6 xf x f(1) f x ƒ 1 + ƒ 1 f(1) ƒ ƒ 1

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΟΡΙΑ ΑΣΚΗΣΗ 1. Λύση. α. lim. χ 0 χ. χ χ χ = 2 lim limg(χ) = 2 και. = 2. Θέτω g(χ) = οπότε έχω: χ 1. χ 1. = g(χ)(χ 1). Επομένως.

ΑΣΚΗΣΕΙΣ ΣΤΑ ΟΡΙΑ ΑΣΚΗΣΗ 1. Λύση. α. lim. χ 0 χ. χ χ χ = 2 lim limg(χ) = 2 και. = 2. Θέτω g(χ) = οπότε έχω: χ 1. χ 1. = g(χ)(χ 1). Επομένως. ΑΣΚΗΣΗ Αν 0 f() 0 f() =, να βρείτε τα όρια f() = f() g() = και f() και f() 0 f( ) =. Θέτω g() = = g()( ). Επομένως = [g()( )] = g() f() οπότε έω: ( ) = ( ) = f( ) = f( ) ( ) ( ) Θέτω = u και έω ότι όταν

Διαβάστε περισσότερα

ΔΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΑΣΚΗΣΕΙΣ Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( x. 2 lim χ + χ 5χ. χ 5χ+ lim. χ χ. lim.

ΔΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΑΣΚΗΣΕΙΣ Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( x. 2 lim χ + χ 5χ. χ 5χ+ lim. χ χ. lim. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ o ΑΣΚΗΣΕΙΣ R Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( ) ( Α ) Να υπολογίσετε τα όρια α) + 5 4 + 9 + 5 + 8 4 γ) 4 4 α, α > α α ε) + 8 + ζ) 5 + 4 6 η) + θ) + + 7 ι) + 5 4 ια) + 6 + ι + 4 ιγ) + + + 5+

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ ROLLE

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ ROLLE 1 ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ ROLLE ΑΣΚΗΣΗ 1. f () f () + σφ = 0 f() f() + συν = 0 ημf () + f()συν = 0 ημ ημf () + f()(ημ) = 0 ημf() = 0 Θεωρώ τη συνάρτηση g() = ημf() η οποία είναι συνεής στο [0,

Διαβάστε περισσότερα

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Όταν το χ τότε το. στο,µπορούµε να θεωρήσουµε ότι το

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Όταν το χ τότε το. στο,µπορούµε να θεωρήσουµε ότι το ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΟΥ Όταν στα µαθηµατικά λέµε ότι το τείνει στο και συµβολίζεται, εννοούµε ότι οι τιµές προσεγγίζουν την τιµή, είτε µε από τιµές µικρότερες του δηλ από αριστερά του, είτε από τιµές µεγαλύτερες

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Ενότητες Κριτήριο Παρεμβολής - Τριγωνομετρικά Όρια - Όριο Σύνθετης

Διαβάστε περισσότερα

ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 1 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ Έστω συνάρτηση f, ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεής στο Δ f ()=0 για κάθε εσωτερικό σημείο του Δ τότε η f είναι σταθερή στο Δ. ΠΑΡΑΤΗΡΗΣΗ Ισύει

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

Κριτήριο παρεµβολής Βοηθητική συνάρτηση. R R τέτοια, ώστε να ισχύει. f(x) x. lim. ii) x 0. lim f (x) = 0. x 0. lim. ( x + x + 4) = 4. x 0.

Κριτήριο παρεµβολής Βοηθητική συνάρτηση. R R τέτοια, ώστε να ισχύει. f(x) x. lim. ii) x 0. lim f (x) = 0. x 0. lim. ( x + x + 4) = 4. x 0. ΜΑΘΗΜΑ 8.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ Κριτήριο παρεµβολής Βοηθητική συνάρτηση R ΑΣΚΗΣΕΙΣ Κριτήριο παρεµβολής. 4 f () Να βρείτε το i) i) ( 4 ) ( 4 ) R R τέτοια, ώστε να ισχύει f () 0 4 0 0 4 για κάθε κοντά στο

Διαβάστε περισσότερα

. lim [2f (x) + 3g (x)] = 13

. lim [2f (x) + 3g (x)] = 13 Ερωτήσεις πολλαπλής επιλογής. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι Α. f () = 4 B. f () = Γ. f () =. f ( ) = 4 E. f () = 4. * Για τη συνάρτηση f,

Διαβάστε περισσότερα

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ του ορίου συνάρτησης όταν χ χ Για να έχει νόημα το όριο συνάρτησης f με πεδίο

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Ενότητες Κριτήριο Παρεμβολής - Τριγωνομετρικά Όρια - Όριο Σύνθετης

Διαβάστε περισσότερα

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο. ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ 1) Να βρεθεί το Π.Ο. των συναρτήσεων : α) f ( ) β) f ( ) + 5 + 6 ln( + 1) γ) f ( ) δ) 1 f( ) 4 ) Να βρεθεί

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Άσκηση i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ Έστω συνάρτηση f για την οποία ισύουν είναι συνεής στο κλειστό [α,β] είναι παραγωγίσιμη στο (α,β) Τότε υπάρει τουλάιστον ένα σημείο ξ του (α,β), τέτοιο ώστε να είναι : f (ξ) = ΑΠΟΔΕΙΞΗ

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ. (ii) f (x) = π. f (x)

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ. (ii) f (x) = π. f (x) I Παράγωγος συνάρτησης σε σηµείο Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Να βρείτε ( αν υπάρχει ) την παράγωγο της συνάρτησης f στο σηµείο (i) f () = +, = (ii) f () =, = (iii) f () = + 6, = (iv) f () = συν, = Να βρείτε

Διαβάστε περισσότερα

lim f ( x ) 0 gof x x για κάθε x., τότε

lim f ( x ) 0 gof x x για κάθε x., τότε Μαθηματικά Προσανατολισμού Γ Λυκείου, ο Κεφάλαιο-Συναρτήσεις ΓΕΝΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΚΕΦΑΛΑΙΟ ο ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση f είναι «-» στο πεδίο ορισμού της Α (Μονάδες7)

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ 9 ο ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ Α. ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΟΥ. f(x) lim με g(x ) 0 Γ. ΜΟΡΦΗ Ι. ΟΡΙΟ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ. x α. x α.

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ 9 ο ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ Α. ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΟΥ. f(x) lim με g(x ) 0 Γ. ΜΟΡΦΗ Ι. ΟΡΙΟ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ. x α. x α. Α. ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΟΥ. Η γραφική παράσταση της συνάρ τησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) + - + f () β) f () - - - f () δ) f () f () στ) f () f () +

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..: Κανόνες Παραγώγισης του

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Σάββατο Νοεμβρίου 7 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Να διατυπώσετε το θεώρημα του Bolzano και να δώσετε τη γεωμετρική

Διαβάστε περισσότερα

4. Αν η συνάρτηση f είναι συνεχής στο, να αποδειχθεί ότι η συνάρτηση. Αν t = a ή u = x - a και αν t = b ή u = x -b. x ς ς.

4. Αν η συνάρτηση f είναι συνεχής στο, να αποδειχθεί ότι η συνάρτηση. Αν t = a ή u = x - a και αν t = b ή u = x -b. x ς ς. ΚΕΦΑΛΑΙΟ 4. Αν η συνάρτηση f είναι συνεή στο, να αποδειθεί ότι η συνάρτηση Θέτουμε - t = u ή - dt = du ή dt = -du Αν t = ή u = και αν t = ή u = F = + tχf ( -t) Χ dt = + ( -u) Χf ( u) Χ( -du) 5. Αν για

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ 04--07 (ενδεικτικές λύσεις) ΘΕΜΑ A Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 99 Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 3 Α3. α) Ο ισχυρισμός είναι Ψ (ψευδής). β)

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x 8 Συνέχεια συνάρτησης Ορισμός της συνέχειας 8. α) Πότε μια συνάρτηση f :A λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού της; β) Έστω η συνάρτηση:, αν < f() =, αν i) Να αποδείξετε ότι f() = 7 και να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ. 2.1: Έννοια της Παραγώγου του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ. 2.1: Έννοια της Παραγώγου του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ 1: Έννοια της Παραγώγου του σχολικού βιβλίου] ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1 ΘΕΜΑ Β Να βρείτε την παράγωγο της συνάρτησης

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2016 5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120 ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΝΑΓΩΓΗ ΣΤΟ 1 ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΜΝΗΜΟΝΙΚΟΣ ΚΑΝΟΝΑΣ 1. Χωρίς να λάβουμε υπόψη το πρόσημο: Αν οι δυο γωνιές έουν άθροισμα ή διαφορά, 18, 6 μοίρες τότε ο τριγωνομετρικός αριθμός δεν αλλάζει: ημ

Διαβάστε περισσότερα

(2 x) ( x 5) 2(2x 11) 1 x 5

(2 x) ( x 5) 2(2x 11) 1 x 5 ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 Ο ΑΝΑΛΥΣΗΣ 1. ίνεται η συνάρτηση ƒ µε τύπο, + 5 6 < + + 7 5 f( ) = < < 5 ( ) ( 5) 006 ( 11) 1 5 Υπολογίστε τα παρακάτω όρια της συνάρτησης, Α) Β) f ( ) f ( ) 1 Γ) f ( ) + και f ( )

Διαβάστε περισσότερα

Ασκήσεις. g x α β συν α β x, α,β 0. Αν οι. π π Α f g 3 4. α) Να βρείτε την μέγιστη και την ελάχιστη τιμή της f καθώς και την περίοδο της f.

Ασκήσεις. g x α β συν α β x, α,β 0. Αν οι. π π Α f g 3 4. α) Να βρείτε την μέγιστη και την ελάχιστη τιμή της f καθώς και την περίοδο της f. wwwaskisopolisgr Ασκήσεις 1 Δίνεται η συνάρτηση fx ημ x 5συνx 1 α) Να αποδείξετε ότι είναι περιοδική με περίοδο π β) Να βρείτε τα σημεία τομής της με τους άξονες γ) Να λύσετε την εξίσωση f x συν x 8 f

Διαβάστε περισσότερα

f (x o ) g (x o ) = 0 f (x o ) = g (x o ).

f (x o ) g (x o ) = 0 f (x o ) = g (x o ). Ερωτήσεις κατανόησης κεφ. σελίδων 95-99 Ι Σε καθεµιά από τις παρακάτω περιπτώσεις να κυκλώστε το γράµµα, αν ο ισχυρισµός είναι αληθής και το γράµµα, αν ο ισχυρισµός είναι ψευδής αιτιολογώντας συγχρόνως

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β ΑΠΑΝΤΗΣΕΙΣ-ΥΠΟΔΕΙΞΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΟΥ ΒΙΒΛΙΟΥ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ η Έκδοση, Ιανουάριος 7 Γιάννης Καραγιάννης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Εµβαδά Θέµα 1 ίνεται η συνάρτηση x e e, x< 1 (x) = l nx, x 1 x Να δείξετε ότι η είναι συνεχής και να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από την C, τον άξονα

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο ΕΚΦΩΝΗΣΕΙΣ Οι απαντήσεις βρίσκονται μετά τις εκφωνήσεις Εξετάστε αν είναι αληθείς ή ψευδείς οι παρακάτω προτάσεις και αιτιολογήστε.

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

1 ο Διαγώνισμα περιόδου στις Συναρτήσεις και τα Όρια

1 ο Διαγώνισμα περιόδου στις Συναρτήσεις και τα Όρια ο Διαγώνισμα περιόδου 7-8 στις Συναρτήσεις και τα Όρια Θέμα Α Α Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [, ] Αν η f είναι συνεχής στο [, ] και f() f(), να αποδείξετε ότι, για

Διαβάστε περισσότερα

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x O ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f ) Εντοπίζω τα σημεία που συναντώνται οι δύο καμπύλες ) Η τεταγμένη y αυτού του σημείου είναι το όριο της f και η τετμημένη η θέση y lim f Πλευρικά όρια lim f λ lim

Διαβάστε περισσότερα

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΟΡΙΣΜΟΙ Πότε μια συνάρτηση λέγεται : α Παραγωγίσιμη στο σύνολο Α β Παραγωγίσιμη στο ανοικτό διάστημα αβ γ Παραγωγίσιμη στο κλειστό διάστημα [ αβ ] Β δ Τι ονομάζουμε

Διαβάστε περισσότερα

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ Οι µιγαδικοί αριθµοί και w συνδέονται µε την σέση a β w =, όπου γ α,β,γ R Όταν =0 τότε w= και όταν =-i τότε w=- i Να βρείτε τις σταθερές α,β,γ α Αν το άθροισµα και το γινόµενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η δύο φορές παραγωγίσιμη συνάρτηση f: (, + ) R με f (), για κάθε > για την οποία ισχύει η σχέση: u f() ( ) + f(t) dt du, για κάθε >. () i. Να δείξετε ότι η f

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο ΜΑΘΗΜΑ 9.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ο R Θεωρία Σχόλια - Ασκήσεις ΘΕΩΡΙΑ. Ορισµός f ( ) ο σηµαίνει ότι οι τιµές f ( ) της συνάρτησης f γίνονται µεγαλύτερες από κάθε θετικό αριθµό Μ, καθώς.. Ορισµός f ( )

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΑΠΡΙΛΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΤΕΚΑ (11) ΘΕΜΑ Α Α1. Σχολικό

Διαβάστε περισσότερα

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ. Νδο ηµ α Α) = εφα +συνα Β) π συνα εφ α = +ηµ α Γ) ηµ α= ηµ α συνα+ συν α ηµα ) συν α+ηµ α εφα= + εφα εφα Ε) ( + συνα) εφα=ηµ α Ζ) =εφα εφα+σφα. Νδο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Έστω (z) = z iz, z. α) Να λύσετε την εξίσωση : (z) = i. β) Αν (z) = να βρείτε το z. γ) Αν z = να δείξετε ότι ο γεωμετρικός τόπος των εικόνων του w=(z) είναι κύκλος

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης Γ Λυκείου ( ) ( ) ( ) α β, παραγωγίσιμη στο ( ) β με. β α β α. f β f α. g ( ξ ) = 0, δηλαδή

Μαθηματικά Κατεύθυνσης Γ Λυκείου ( ) ( ) ( ) α β, παραγωγίσιμη στο ( ) β με. β α β α. f β f α. g ( ξ ) = 0, δηλαδή Κεφάλαιο: ιαφορικός Λογισμός Το θεώρημα μέσης τιμής αποτελεί γενίκευση του θεωρήματος Rolle Λόγω όμως των πολλών και σημαντικών εφαρμογών του θεωρείται ένα από τα πλέον θεμελιώδη θεωρήματα της ανάλυσης

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ

ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ? Εύρεση πεδίου ορισμού σε συνθέσεις.. Δίνεται η γν. αύξουσα συνάρτηση :[ -, ] R. Α. Να βρεθεί το πεδίο ορισμού της g () = ( + ) + ( + ). Β. Να βρεθεί η μονοτονία

Διαβάστε περισσότερα

47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα

47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ 43 Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις είναι f g Στις περιπτώσεις που είναι f g να προσδιορίσετε το ευρύτερο δυνατό υποσύνολο του στο οποίο ισχύει f g α) β) γ) f και f +

Διαβάστε περισσότερα

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2 Κριτήριο Παρεμβολής Υποθέτουµε ότι κοντά στο µια συνάρτηση f εγκλωβίζεται ανάµεσα σε δύο συναρτήσεις h και g. Αν, καθώς το τείνει στο, οι g και h έχουν κοινό όριο l, τότε όπως φαίνεται και στο σχήµα, η

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο 1 Ιανουαρίου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Για κάθε γωνία ω, να αποδείξετε την ταυτότητα ημ ω συν ω

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται

Διαβάστε περισσότερα

Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.

Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια. ΑΠΑΝΤΗΣΕΙΣ ΠΡΟΣΟΜΟΙΗΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 76 Α. α. Ψ β. Σχολικό

Διαβάστε περισσότερα

3. Παράγωγοι. f(χ) f(χ. χ χ. + χ χ. 2. Παρατηρήσεις f(χ0 h) f(χ 0) h Πολλές φορές το χ χ0. συμβολίζεται με Δx ενώ το f(χ0 h) f(χ

3. Παράγωγοι. f(χ) f(χ. χ χ. + χ χ. 2. Παρατηρήσεις f(χ0 h) f(χ 0) h Πολλές φορές το χ χ0. συμβολίζεται με Δx ενώ το f(χ0 h) f(χ . Η έννοια της Παραγώγου. Παράγωγοι. Παραγωγίσιμη συνάρτηση Παράγωγος Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού της, αν () ( ) υπάρει το lim και είναι πραγματικός αριθμός.

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2 Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ 9.6.7 ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f ()

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R ΠΕΡΙΣΤΕΡΙΟΥ Α. ΠΕΔΙΟ ΟΡΙΣΜΟΥ. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους 4 ι) () = 6 + 6 iv) () = log ( log4(- )) v) () = ii) () = iii) () = log ( + ) 5 log 4 vii) () = 5 + 4 viii) ()

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ Από προηγούμενες τάξεις γνωρίζουμε τις παρακάτω ιδιότητες

Διαβάστε περισσότερα

1. Συναρτήσεις. R όπου για κάθε χ Α, υπάρχει ένα μόνο y Β

1. Συναρτήσεις. R όπου για κάθε χ Α, υπάρχει ένα μόνο y Β . Συναρτήσεις. Η έννοια της Συνάρτησης. Ορισμός Συνάρτησης Η απεικόνιση (αντιστοίιση) : A B, A,B τέτοιο ώστε () D Α R όπου για κάθε Α, υπάρει ένα μόνο Β, λέγεται πραγματική συνάρτηση πραγματικής μεταβλητής.

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία και ώρα εξέτασης: Τρίτη, 3/5/ 8:3 :3 ΜΕΡΟΣ Α d.. Να ρείτε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 f (χ) = 3χ + 2χ + λ με Δ = 4 12λ οπότε αν Δ > 0 λ θα έχω ότι

ΑΣΚΗΣΗ 4 f (χ) = 3χ + 2χ + λ με Δ = 4 12λ οπότε αν Δ > 0 λ θα έχω ότι ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΗ ΜΟΝΟΤΟΝΙΑ ΑΣΚΗΣΗ f (χ) συνχ 0 αλλά συνχ 0 συνχ συνχ συν0 χ κπ, κϵz τα οποία δεν αποτελούν διάστημα άρα η f είναι γνησίως αύξουσα ΑΣΚΗΣΗ Αν χ, χ ϵ[0,]τότε f(χ ) f(χ )αφού η f (χ)

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός ὁ γιγνώσκων γιγνώσκει τὶ ἢ οὐδέν;

ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός ὁ γιγνώσκων γιγνώσκει τὶ ἢ οὐδέν; ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός ὁ γιγνώσκων γιγνώσκει τὶ ἢ οὐδέν; gkarras@gmail.com o ΛΥΚΕΙΟ ΓΕΡΑΚΑ - ΚΑΡΡΑΣ 1. Να βρεθεί το: 5 1 + 4) 5. Να βρεθεί το: π π 1 + 4) 1 + 4 5 5 1)

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΑΣΥΜΠΤΩΤΕΣ DE L HOSPITAL Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΑΣΥΜΠΤΩΤΕΣ DE L HOSPITAL Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ ΜΑΘΗΜΑ 35.9 ΑΣΥΜΠΤΩΤΕΣ DE L HOSPITAL Θεωρία Σχόλια Μέθοδοι Ασκήσεις. ος κανόνας d L Hospital f ( 0 g( 0 f ( g ( εφόσον υπάρχουν. ος κανόνας d L Hospital f ( ± g( ± f ( g ( εφόσον υπάρχουν ΣΧΟΛΙΑ.

Διαβάστε περισσότερα

f '(x 0) lim lim x x x x

f '(x 0) lim lim x x x x Α Θ Ε Μ Α A Θ Ε Ω Ρ Η Μ Α ( F e r m a t ) Έστω μια συνάρτηση ορισμένη σ ένα διάστημα Δ και ένα εσωτερικό σημείο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιμη στο σημείο αυτό, τότε:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών

Διαβάστε περισσότερα

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ. Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ 6 Γ Τ Α Ξ Η Β. Ρ. Θ Ε Μ Α ο Α. Έστω μια συνάρτηση f ορισμένη στο Δ. Αν η f είναι συνεχής στο Δ και f (χ)= για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα Θέμα Α Α1. Θεωρήστε τον παρακάτω ισχυρισμό: 1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα 018-19 «Για κάθε ζεύγος πραγματικών συναρτήσεων,g :, 0 ή g 0» ισχύει ότι g 0 αν και μόνο αν α) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι

Διαβάστε περισσότερα

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

Τ ρ α π ε ζ α Θ ε μ α τ ω ν Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Γ ρ α μ μ ι κ α Σ υ σ τ η μ α τ α 16950 16954

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων . Ασκήσεις σχολικού βιβλίου σελίδας 8 4 A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων 7 i ( 4 6 ii ( ln 4 iii ( 4 iv ( συν i Για κάθε R είναι ( 7 6 4 6 ii Για κάθε (, είναι ( 6 iii Για κάθε R είναι

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ Στα παρακάτω γίνεται μία προσπάθεια, ομαδοποίησης των ασκήσεων επίλυσης εξισώσεων και ανισώσεων, συναρτησιακών μορφών, συνεχών συναρτήσεων,

Διαβάστε περισσότερα

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ Λυμένα θέματα στους Μιγαδικούς αριθμούς. Δίνονται οι μιγαδικοί z, w και u z w. α) Να αποδείξετε ότι ο μιγαδικός z είναι φανταστικός αν και μόνο αν ισχύει z z. β) Αν για τους z και w ισχύει: z + w z w,

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ 5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Λογαριθµική συνάρτηση µε βάση α Όταν α > f() = log α Έχει πεδίο ορισµού το (0, + ) Έχει σύνολο τιµών το R Είναι γνησίως αύξουσα Τέµνει τον άξονα των στο σηµείο (, 0) Είναι

Διαβάστε περισσότερα