Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9"

Transcript

1 Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak eta diamagnetikoak... 7 Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak... 8 Elektroimana... 8 Unitate magnetikoak... 9 Fluxu magnetikoa (ΦΦ):... 9 ndukzio magnetikoa (B):... 9 Korronte lerrozuzen mugagabeak sortutako eremu magnetikoa. Biot-Savarten Legea:...10 Korronte zirkular batek bere zentrotik perpendikularki pasatzen den zuzen baten puntuan sorturiko eremu magnetikoa:...12 Solenoide batek bere ardatzeko puntu batean sorturiko Eremu Magnetikoa...13 ndar magneto-eragilea (F)...14 Eremu magnetikoaren intentsitatea ():...15 ragazkortasuna (μ):...15 Absolutua (μ):...16 utsarena (μ0):...16 Erlatiboa (μ r ):...16 Erreluktibitatea (ν):...17 Erreluktantzia (R):...17 Permeantzia (P):...17 isteresi magnetikoa...18 Foucault korronteak...20 Unitate elektrikoak eta magnetikoen arteko konparaketa...20 Ariketak

2 Magnetismoa manak eta imanen teoriak manaren definizioa: mana bere inguruan efektu magnetikoak sortzen dituen metala da. Efektu horiek beste metalekin sortzen dituen elkarrekintzetan (interakzioetan) eta karga elektrikoetan sortzen dituen indarretan agertzen dira. manak naturalak eta artifizialak izan daitezke eta praktikan erabiltzen diren imanen %100 artifizialak dira. man naturala beheko irudian agertzen den magnetita da. Naturan dagoen metala da. man artifizialak elektrizitatez lagunduta magnetizatzen diren eta magnetismo hori betiko gordetzen duten material ferromagnetikoak dira. 2

3 man batek bi polo ditu parra eta egoa eta horien hurbil agertzen dira efektu magnetikorik handienak. Bi poloen artean efektu horiek desagertzen dira eta eremu neutroa da. Efektu magnetikoak agertzen diren eremuari eremu magnetikoa deitzen zaio eta, esan bezala, beste gauzen artean poleekiko distantziarekin zerikusirik dauka. Beheko irudian agertzen den moduan eremu magnetikoan lerro magnetikoak daude. Lerro magnetiko horiek ikusezinak dira eta zirkuitu itxi bat osatzen dute. par polotik hego polora abiatzen dira eta barnetik joan ondoren berriz ipar polotik ateratzen dira. 3

4 manen arteko interakzioak (elkarrekintzak) Polo ezberdinen artean elkarrarazten (erakartzen) dute eta berdinen artean aldarazten dute man bat zatitzen badugu, zati bakoitzean bi polo agertuko dira eta aipaturiko efektu magnetikoak ere. manen teoria molekularra Gaur egun jakin badakigu iman efektua atomoen partikula subatomikoek daukaten spinari esker agertzen dela. Spina aipaturiko partikulen momentu angeluarra da. ala eta guztiz ere, imanen konportamendua erraz azal daiteke material guztiak (metalak gure kasuan) milioika imanez osaturik daudela onartzen badugu. man horiek erabat ordenatuak eta noranzko berean egongo dira imanetan eta erabat desordenaturik ez imanetan. Aipaturikoa dela eta, imanetan iman txikien artean iman indartsua lortzen dute eta, aldiz, ez imanetan iman txikien artean deuseztatzen diote elkarri daukaten efektu magnetikoa. manaren potentzia iman txikiek hartzen duten posizio edo angeluaren araberakoa izango da. 4

5 5 MAN POTENTEA MAN EZ AN POTENTEA EZ MANA Metal batzuei iman bat hurbiltzen zaienean iman txikitxoak biratzen zaizkie. oriek erakarriak izango dira. oriei metal ferromagnetikoak deitzen zaizkie (burdina, Nikela, kobaltoa). orien artean batzuei hurbildutako imana kentzen zaienean mantentzen zaie aipaturiko biraketa eta, beraz, kontserbatzen dute imana. Egun Lur arraroez egiten dira imanak. Aleazio batzuk, adibidez, NdFeB aleazioak (neodimioa, burdina eta boroa ditu) mota horietakoak dira eta iman iraunkorrak egiteko erabiltzen dira. Ferritaz ere egiten dira baina honekin egindakoak baino 6 aldiz indartsuagoak dira Beste aleazio batzuk ere erabiltzen dira iman iraunkorrak egiteko: Nikel+Aluminioa; Burdina+ Kromoa edo Kobalto edo tungstenoa edo Molibdenoa.

6 man artifizialak Aipatu dugun moduan erabiltzen diren iman guztiak artifizialak dira eta metal ferromagnetikoaz egiten dira. oriek egiteko korronte zuzeneko intentsitate handiaz zeharkatutako haril baten barruan imantatu nahi dugun metala jartzen da. Bobinak sorturiko elektroimanaz imantatzen da metala eta ateraz gero imantazioa mantentzen zaio. Beroaz galdu egingo du imantazioa. iparra 6

7 Material ferromagnetikoak, paramagnetikoak eta diamagnetikoak Ferromagnetikoak ndar lerroak zeharkatzen hoberen uzten duten materialak Ferromagnetikoak dira. ndar lerroak material ferromagnetiko bat aurrean topatzen dutenean kontzentratzen dira berau zeharkatzeko. ferromagnetikoa Paramagnetikoak ndar lerroek material paramagnetiko bat aurrean topatzen dutenean zeharkatzen dute arazo barik eta beren ibilbidea jarraitzen dute aldaketa barik. Airea, aluminioa, magnesioa, titanioa eta wolframio dira material paramagnetiko batzuk. paramagnetikoa 7

8 Diamagnetikoak Material diamagnetiko batek ez ditu uzten pasatzen indar lerroak. Bismutoa, hidrogenoa, helioa eta gainontzeko gas nobleak, ClNa, Kuprea, Urrea, Silizioa, Germanioa, Grafitoa eta Sufrea dira material diamagnetiko batzuk. diamagnetikoa Elektroimana Aurretik ikusitakoan, imantazioa mantentzen ez duen metal ferromagnetikoa sartzen badugu elektroimana izango dugu. ariletik intentsitatea pasatzen bada imana izango dugu eta intentsitatea mozterakoan imana desagertuko da. Poloak eta indarra ere alda daitezke intentsitatearen noranzkoa eta intentsitatea aldatuz, hurrenez hurren. 8

9 Unitate magnetikoak Fluxu magnetikoa (ΦΦ): par polotik hego polora abiatzen diren lerro magnetikoei indar lerroak deitzen zaizkie. ndar lerro kopuruari Fluxu magnetikoa deitzen zaio. ΦΦ letraz adierazten da. Sistema cegesimalean (CGS) Maxwelletan eta MKS edo nternazionalean Weberretan neurtzen da. 1 weber = edo 10 8 maxwell B ndar lerroak B B B B= indukzio magnetiko bektorea. Momentu oro ukitzailea da indar lerroekiko ndukzio magnetikoa (B): Azalera unitatea perpendikularki zeharkatzen duten lerro kopuruari ndukzio magnetikoa deitzen zaio. B letraz adierazten da. BB = ΦΦ SS Tesla Sistema cegesimalean (CGS) Gaussetan neurtzen da 1 gauss= 1maswell/cm 2 eta MKS sisteman Tesletan non 1 Tesla= 1 Weber/1 m 2 ndukzio magnetikoak fluxuaren dentsitatea ematen digu eta indar lerroekiko ukitzailea den bektore batez adierazten da. Bere norabidea eta tamaina neurtzen den tokiaren araberakoa da. Poloetatik gertu indar lerro kontzentrazioa handia dagoenez, handia izango da eta urruntzen garen neurrian txikiagoa. Aurreko formulan S Brekiko perpendikularra izan behar da, izan ere, fluxua edo indar lerro kopuru efektiboa horixe baita. S berarekiko perpendikularra den 9

10 bektore baten bitartez adierazten da. B beste bektorea da eta indar lerroen noranzkokoa da. S S (BB SS ) = θθ BB = ΦΦ SS = ΦΦ SS.cccccccc S B (BB SS ) = 0 BB = ΦΦ SS ΦΦ = BB. SS = BB. SS. cccccccc = WWWWWWWWWW Korronte lerrozuzen mugagabeak sortutako eremu magnetikoa. Biot-Savarten Legea: Korronte batek puntu batean sortzen duen indukzio magnetikoaren balioa ntentsitatearen balioaren, puntura dagoen distantziaren eta indar lerroak mugitzen diren medioaren mendekoa da. ^uu dd ddbb = KK mm uu ll dddd (Biot-Savarten legea) dd 22 Zehazki B, ntentsitatearen balioaren () zuzenki proportzionala, puntura dagoen distantziaren (d) alderantziz proportzionala eta indar lerroak mugitzen diren medioaren (Km=Konstantea) zuzenki proportzionala da. B-ren norabidea ateratzeko irudietako araudia erabiltzen da 10

11 Korronte lerrozuzen batean eroalean zehar zati bakoitzean dagoen intentsitateak sorturiko indukzio magnetikoa kalkulatu behar da, ondoren eroale osoaren intentsitateak P puntuan eragiten duen indukzioa kalkulatzeko. P puntuan sorturiko indukzio magnetikoa kalkulatzeko kablearen zati diferentzial bakoitzak sorturikoa kalkulatu behar da hasieran, ondoren zati guztiek sorturikoa batzeko. ori integratuz lortzen da. ddbb = KK mm ^uu ll dd dddd dd 22 + BB = KK mm ^uu ll dd μ 0 4π dddd = dd 22 + ssssssss dddd = μ 0 dd 22 2π rr + ^uu dd KK mm uu ll dddd = dd 22 11

12 B bektorea bat da: bere balioa B = μ 0 Tesla eta bere norabidea 2π rr ikusitako eskuineko arauak emandakoak dira. K m = μ 0 (K 2π m medioaren araberako Konstantea eta μμ 00 hutsaren iragazkortasun magnetikoak dira.) Korronte zirkular batek bere zentrotik perpendikularki pasatzen den zuzen baten puntuan sorturiko eremu magnetikoa: Aurrekoan erabilitako Biot- Savarten lege bera aplikatuko dugu db = K m u ^u l d dl d 2 u ^u l d Bektore perpendikularrak dira beti eta beraz, beraien arteko sin 90=1 db = K m 1 d 2 dl B = db. sinθ 12

13 + B = db. sinθ = K m sinθ d 2 dl = = μ 0 4π sinθ + d 2 dl = μ 0 4π 2πrsinθ d 2 μ 0 r 2 = B = 2( x 2 + r 2 ) 3 + K m sinθ d 2 dl Espiraren zentroan X=0, d=r BB = μμ 00 N espirak egongo balira 2222 BB = NN. μμ 00 22rr = μμ 00 NN 22rr Tesla Solenoide batek bere ardatzeko puntu batean sorturiko Eremu Magnetikoa Solenoide batek bere ardatzeko P puntu batean sorturiko Eremua kalkulatuko dugu. orretarako N espiretako bakoitzak P puntuan sortutako eremu guztiak gainezarriko ditugu. rudian solenoidea luzetara moztuta ikusten da: L luzera du, N espira, denak berdinak eta r erradiodunak. 13

14 Aurreko orrian, r erradiodun espira bakar batek sorturiko eremu magnetikoa kalkulatzen da, bere ardatzeko P puntu batean, espiraren zentrotik x distantziara. Solenoide bateko espira guztiek P puntuan sortzen dituzten eremu magnetikoek norabide eta noranzko bera daukate, baina modulu ezberdina, P punturainoko x distantziaren araberakoa. Solenoidearen tarte batean, x eta x+dx artean, dagoen espira-kopurua hau da: dn=n dx/l Espira hauek P puntuan sortzen duten eremua honakoa izango da: espira bakar batek sortzen duena bider espira-kopurua, dn. ntegratzeko, aldagai-aldaketa bat egin daiteke: r=x tanθ, eta honako erlazioa kontutan izanda, 1+tan 2 θ =1/cos 2 θ, integrala asko sinplifikatzen da. Solenoidea oso luzea bada, bere r erradioarekin konparatuta, eta P puntua ardatzean bertan badago: Orduan indukzioak hauxe balio du: ndar magneto-eragilea (F) aril batek, zirkuitu magnetikoan, indar-lerroak sortzeko duen ahalmena da. Bere unitatea "ampere-buelta" da (AV): F = N (AV) N=arilaren espira (buelta) kopurua eta =zirkulatzen duen intentsitatea 14

15 Eremu magnetikoaren intentsitatea (): () arilak sortutako eremu magnetikoaren intentsitatea adierazten du. ndar magneto-eragilearen eta harilaren luzeraren menpeko balioa du. Bere unitatea "AV/m" da. = F / L=N./L (A.V/m) F=ndar magneto-eragilea L=arilaren luzera kus daitekeenez bobina baten zentroan sorturiko indukzio magnetikoa da NNNN BB = μμ 00 utsean bada eta beste medioan BB = μμ LL LL B eta ren arteko diferentzia bakarra da Bren kalkuluetarako indar lerroak zein mediotan mugitzen diren kontuan hartu behar dela eta kalkulatzeko, aldiz, ez. Sistema cegesimalean Oesterd-etan neurtzen da ragazkortasuna (μ): ragazkortasunak indar lerroak material bat zeharkatzeko adierazten digun ezaugarria da. ragazkortasuna kalkulatzeko bi kalkulatu egin behar dira: Batean, bobina baten barruan material bat sartzen dugu eta kalkulatzen dugu B. Bestean, N, i eta L jakinez gero kalkulatzen dugu. Bien arteko erlazioari iragazkortasuna deitzen zaio NNNN 15

16 μμ = BB = TTTTTTTTTT AA.VV mm = WWWWWWWWWW mm 22 AA.VV mm = WWWWWWWWWW AA. VV. mm iru iragazkortasun ezberdin ditzakegu: Absolutua (μ): aurreko formulak emandako balioa da. utsarena (μ0): utsa edo airearen iragazkortasuna da. Sistema Cegesimalean 1 balio du (Gauss/Oesterd) Sistema internazionalean μ 0= 4Π.10-7 Weber/AVm Erlatiboa (μ r ): Aurrekoen bien arteko erlazioa da. μ r= μ/ μ 0 Ez dauka unitaterik eta edozein material hutsarekin konparatzeko balio izango digu. kus dezagun ondorengo B grafikoan nola agertzen diren iragazkortasunen kurbak material ferromagnetikoetan, paramagnetikoetan, hutsean eta diamagnetikoetan. 16

17 Erreluktibitatea (ν): ragazkortasunaren alderantzizkoa da. νν = 11 μμ (AVm/Weber) Erreluktantzia (R): ndar lerroak pasatzen uzteko materialak aurkezturiko erresistentzia. Elektrizitatean erresistentziarekin gertatzen den moduan, erreluktantzia materialaren luzera, zabalera eta material motaren mendekoa da: RR = L μ.s (A.V/Weber) L=materialaren azalera; S= azalera eta μ=iragazkortasun magnetikoa Permeantzia (P): Erreluktantziaren alderantzizkoa da eta bere esanahia material batek indar lerroak pasatzeko jartzen duen erraztasuna da PP = 11 RR (Weber/ A.V) 17

18 isteresi magnetikoa Material batek kanpoko estimulu jaso eta desagertu ondoren, estimulu horretatik kontserbatzen duen parteari histeresia esaten zaio. Magnetismoari dagokionez, material ferromagnetiko batek eremu magnetiko baten ondoan jarriz gero eta desagertzean, mantentzen zaion magnetizazio parteari esaten zaio histeresia. Adib: bihurkin bati iman bat hurbilduz gero eta kentzerakoan, mantenduko zaio denbora batean, gutxienez, magnetismoa. pin dezagun bobina baten barruan material ferromagnetiko bat (burdina adib.) eta konekta diezaiogun korronte alterno bat. B grafikoan kusi ahal izango dugu materialaren magnetizazioaren bilakaera 18

19 Azalpena:0 puntuan hasten da intentsitatea sartzen bobinan. Eremu magnetikoa handitzen doa eta, era berean, materialaren magnetizazioa ere. nterpreta dezakegu materialaren molekulak orientatzen ari direla. eltzen da momentu bat non molekulak ezin diren gehiago orientatu nahiz eta bobinan intentsitate gehiago sartu(saturazioa). Kurba horizontal bihurtzen da eta 1 puntuan amaitzen da. Orain intentsitatea hasten da jaisten baina materialak magnetizazio apur bat mantentzen duenez, jaitsiera ez da egiten igoera egin duen toki beretik. Bobinari 0 Ampere sartzen diogunean 2 puntuan aurkitzen gara, hots, magnetizazioa mantentzen dela. Mantentzen duen magnetizazio apur horri ondar-magnetismoa deitzen zaio. Kontrako zeinuko intentsitatea (3. puntua) eman behar zaio bobinari hondarmagnetismoa anulatzeko. Eman behar den intentsitate horri (ri) ndar koertzitiboa deitzen zaio. Material bakoitzak badauka beren histeresi grafikoa eta erabileraren arabera horren araberako bat ala beste material aukeratuko dugu. man iraunkorrak, magnetoen poloak egiteko indar koertzitibo oso handia daukan material bat erabiliko dugu (Tungsteno, Kobalto edo Kromo Nikel altzairuak.) Bobinaz imantaturiko dinamoen poloetan (Fluxu ktea) hondarmagnetismoa handia dukaten materiala erabiliko ditugu. Altzairu gozoa da horietako bat Fluxu aldakorra erabiltzen den nukleoetan, transformadoreak, motor asinkronoen estatoreetan dinamoen induzituetan hondar magnetiko ahalik eta txikien daukaten materiala erabili behar dira (Silizioz nahasturiko altzairua). isteresi grafikoak ematen digu materialean kontzeptu honengatik sortzen diren energia galerak. 19

20 Foucault korronteak Material bati, fluxu aldakor baten eraginpean jartzen dugunean, korronte induzitu batzuk sortzen zaizkio (espirak bailitzan). Espira horiek kortozirkuitatuta daude eta, beraz, korronte elektrikoak sortzen dira horietan (Foucault Korronteak). Korronte horiek Joulen efektuaz (beroaz) energia galerak sortzen ditu. Energia galerak ekiditeko materiala xafla mehez eta isolatuez egiten dira (0,35 mm-koak makina estatikoetan eta 0,5 mm-koak biragarrietan, horren bitartez korronte horien bideak mozten direlako. B Foucault korronteak V aldakorra i Unitate elektrikoak eta magnetikoen arteko konparaketa Unitate elektrikoak Tentsioa (fem)= E edo V (Volt) Erresistentzia= R (ohm)=ρ.l/s Konduktantzia G=1/R Eroankortasuna ϒ=1/ ρ ntentsitatea= (Ampere)=V/R ntentsitate dentsitatea= /S Eremu elektrikoaren intentsitatea= E= V/m Unitate magnetikoak (ime)= F=N. (AV) Erreluktantzia= R = L μ.s (A.V/Weber) Permeantzia= PP = 11 (Weber/ A.V) RR ragazkortasuna= µ ( WWWWWWWWWW AA.VV.mm ) Fluxua= ɸ (Weber)= F/ R Fluxu dentsitatea)=b= ɸ/S (Tesla) Eremu magnetikoaren intentsitatea= = F/L (AV/m) 20

21 Ariketak 21

22 22

23 23

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):...

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):... Makina Elektrikoak MAKINA ELEKTRIKOAK... 3 Motak:... 3 Henry-Faradayren legea... 3 ALTERNADOREA:... 6 DINAMOA:... 7 Ariketak generadoreak (2010eko selektibitatekoa):... 8 TRANSFORMADOREAK:... 9 Ikurrak...

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du. Korronte zuzena 1 1.1. ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu

Διαβάστε περισσότερα

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

Solido zurruna 2: dinamika eta estatika

Solido zurruna 2: dinamika eta estatika Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

1 GEOMETRIA DESKRIBATZAILEA...

1 GEOMETRIA DESKRIBATZAILEA... Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa ELEKTROTEKNIA Makina elektriko estatikoak eta birakariak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION

Διαβάστε περισσότερα

0.Gaia: Fisikarako sarrera. ARIKETAK

0.Gaia: Fisikarako sarrera. ARIKETAK 1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako

Διαβάστε περισσότερα

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a 1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: OPTIKA

SELEKTIBITATEKO ARIKETAK: OPTIKA SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu

Διαβάστε περισσότερα

Jose Miguel Campillo Robles. Ur-erlojuak

Jose Miguel Campillo Robles. Ur-erlojuak HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak

Διαβάστε περισσότερα

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz.

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. - 1-1. JARDUERA. LAN PROPOSAMENA. 1 LAN PROPOSAMENA Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. BALDINTZAK 1.- Bai memoria (txostena),

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

1. Oinarrizko kontzeptuak

1. Oinarrizko kontzeptuak 1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili

Διαβάστε περισσότερα

EIB sistemaren oinarriak 1

EIB sistemaren oinarriak 1 EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema

Διαβάστε περισσότερα

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu

Διαβάστε περισσότερα

1. MATERIAREN PROPIETATE OROKORRAK

1. MATERIAREN PROPIETATE OROKORRAK http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen

Διαβάστε περισσότερα

Oinarrizko mekanika:

Oinarrizko mekanika: OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue

Διαβάστε περισσότερα

Ordenadore bidezko irudigintza

Ordenadore bidezko irudigintza Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK

Διαβάστε περισσότερα

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana 6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak

Διαβάστε περισσότερα

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia 1. MAKROEKONOMIA: KONTZEPTUAK ETA TRESNAK. 1.1. Sarrera Lehenengo atal honetan, geroago erabili behar ditugun oinarrizko kontzeptu batzuk gainbegiratuko ditugu, gauzak nola eta zergatik egiten ditugun

Διαβάστε περισσότερα

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK 2005 V. IOL 6. Errodamenduak 1.1. ESKRIPEN ET SILKPENK Errodamenduak biziki ikertu eta garatu ziren autoak, abiadura handiko motorrak eta produkzio automatikorako makineria agertu zirenean. Horren ondorioz,

Διαβάστε περισσότερα

Oxidazio-erredukzio erreakzioak

Oxidazio-erredukzio erreakzioak Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen Arkitektura eta Teknologia saila KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA KTL'2000-2001 Oinarrizko dokumentazioa lehenengo

Διαβάστε περισσότερα

5. GAIA Mekanismoen Analisi Dinamikoa

5. GAIA Mekanismoen Analisi Dinamikoa HELBURUAK: HELBURUAK: sistema sistema mekaniko mekaniko baten baten oreka-ekuazioen oreka-ekuazioen ekuazioen planteamenduei planteamenduei buruzko buruzko ezagutzak ezagutzak errepasatu errepasatu eta

Διαβάστε περισσότερα

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien

Διαβάστε περισσότερα

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak

Διαβάστε περισσότερα

BIZIDUNEN OSAERA ETA EGITURA

BIZIDUNEN OSAERA ETA EGITURA BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK

Διαβάστε περισσότερα

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK 4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK GAI HAU IKASTEAN GAITASUN HAUEK LORTU BEHARKO DITUZU:. Sistema ireki eta itxien artea bereiztea. 2. Masa balantze sinpleak egitea.. Taula estekiometrikoa

Διαβάστε περισσότερα

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua.

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua. Elektronika Analogikoa 1 ELEKTRONIKA- -LABORATEGIKO TRESNERIA SARRERA Elektronikako laborategian neurketa, baieztapen eta proba ugari eta desberdinak egin behar izaten dira, diseinatu eta muntatu diren

Διαβάστε περισσότερα

9. GAIA: ZELULAREN KITZIKAKORTASUNA

9. GAIA: ZELULAREN KITZIKAKORTASUNA 9. GAIA: ZELULAREN KITZIKAKORTASUNA OHARRA: Zelula kitzikatzea zelula horretan, kinada egokiaren bidez, ekintza-potentziala sortaraztea da. Beraz, zelula kitzikatua egongo da ekintza-potentziala gertatzen

Διαβάστε περισσότερα

Laborategiko materiala

Laborategiko materiala Laborategiko materiala Zirkuitu elektronikoak muntatzeko, bikote bakoitzaren laborategiko postuan edo mahaian, besteak beste honako osagai hauek aurkituko ditugu: Mahaiak berak dituen osagaiak: - Etengailu

Διαβάστε περισσότερα

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak ELEKTRIZITATEA D.B.H. 1 Joseba Arruabarrena 2007ko Otsaila ren atalak: 1. Karga elektrikoa 2. Korronte elektrikoa 3. Zirkuitu elektrikoa 4. Magnitudeak: : Ohmen legea 5. Irudikapena eta ikurrak 6. Korronte

Διαβάστε περισσότερα

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da.

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. 1. GAIA PNEUMATIKA Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. Pneumatika hitza grekoek arnasa eta haizea izendatzeko erabiltzen zuten. Pneumatikaz

Διαβάστε περισσότερα

KOSMOLOGIAREN HISTORIA

KOSMOLOGIAREN HISTORIA KOSMOLOGIAREN HISTORIA Historian zehar teoria asko garatu dira unibertsoa azaltzeko. Kultura bakoitzak bere eredua garatu du, unibertsoaren hasiera eta egitura azaltzeko. Teoria hauek zientziaren aurrerapenekin

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa PROGRAMAZIO-TEKNIKAK Programazio-teknikak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION PROFESIONAL Hizkuntz

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Lana eta energia

FISIKA ETA KIMIKA 4 DBH Lana eta energia 5 HASTEKO ESKEMA INTERNET Edukien eskema Energia Energia motak Energiaren propietateak Energia iturriak Energia iturrien sailkapena Erregai fosilen ustiapena Energia nuklearraren ustiapena Lana Zer da

Διαβάστε περισσότερα

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein MRRZKET TEKNIKO atxilegoa 1 Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein Eusko Jaulaitzako Hezkuntza, Unibetsitate eta Ikeketa sailak onetsia (2003-09-25) zalaen diseinua: Itui

Διαβάστε περισσότερα

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK]

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK] 1. Partzialeko ariketak 1 ARIKETAK (1) : KNPSATU RGANIKEN EGITURA KIMIKA [1 3. IKASGAIAK] 1.- ndorengo konposatuak kontutan hartuta, adierazi: Markatutako atomoen hibridazioa. Zein lotura diren kobalenteak,

Διαβάστε περισσότερα

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago:

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: Dokumentua I Iruzkin orokorrak 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: 1. BOE. 1467/2007ko azaroaren 2ko Errege Dekretua. (Batxilergoaren

Διαβάστε περισσότερα

Teknologia Elektrikoa I Laborategiko Praktikak ISBN:

Teknologia Elektrikoa I Laborategiko Praktikak ISBN: Teknologia Elektrikoa I Laborategiko Praktikak ISBN: 978-84-9860-669-0 Agurtzane Etxegarai Madina Zigor Larrabe Uribe EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ZINEMATIKA KONTZEPTUAK: 1. Marraz itzazu txakurraren x/t eta v/t grafikoak, txakurrraren higidura ondoko taulan ageri diren araberako higidura zuzena dela

Διαβάστε περισσότερα

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia)

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) 1.- Proiektuaren zergatia eta ezaugarri orokorrak Indarrean dagoen curriculumean zehazturiko Batxilergoko zientzietako jakintzagaiei dagozkien lanmaterialak

Διαβάστε περισσότερα

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J.

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J. ENERGIA ARIKETAK OINARRIZKO KONTZEPTUAK 1.- 1000 Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z=385.802,47 J.) 2.- 500Kg.tako eta 10m-tara zintzilik dagoen masa

Διαβάστε περισσότερα

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 1. DISOLUZIOAK Disoluzioa (def): Substantzia baten partikulek beste substantzia baten barnean egiten duten tartekatze mekanikoa. Disolbatzaileaz eta solutuaz

Διαβάστε περισσότερα

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ 2006-VI-19 J.R. Etxebarria Gure inguruko hizkuntzetan, neurri-izenen eta neurri-esamoldeen normalizazioa XIX. mendearen bigarren erdialdean abiatu zela esan

Διαβάστε περισσότερα

KIMIKA UZTAILA. Ebazpena

KIMIKA UZTAILA. Ebazpena KIMIKA 009- UZTAILA A1.- Hauspeatze-ontzi batean kobre (II) sulfatoaren ur-disoluzio urdin bat dugu, eta haren barruan zink-xafla bat sartzen dugu. Kontuan hartuta 5 C-an erredukzio-- potentzialak E O

Διαβάστε περισσότερα

Lan honen bibliografia-erregistroa Eusko Jaurlaritzako Liburutegi Nagusiaren katalogoan aurki daiteke: http://www.euskadi.net/ejgvbiblioteka ARGITARATUTAKO IZENBURUAK 1. Prototipo elektronikoen garapena

Διαβάστε περισσότερα

6. GAIA: Txapa konformazioa

6. GAIA: Txapa konformazioa II MODULUA: METALEN KONFORMAZIO PLASTIKOA 6. GAIA: Txapa konformazioa TEKNOLOGIA MEKANIKOA INGENIARITZA MEKANIKO SAILA Universidad del País s Vasco Euskal Herriko Unibertsitatea 6. Gaia: Txapa konformazioa

Διαβάστε περισσότερα

Makroekonomiarako sarrera

Makroekonomiarako sarrera Makroekonomiarako sarrera Galder Guenaga Garai Segundo Vicente Ramos EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA Aurkibidea Hitzaurrea. 1. GAIA: Makroekonomiaren ikuspegi orokorra. 1.1. Makroekonomia:

Διαβάστε περισσότερα

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz 4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA hh hik hasi 193 20 urte euskal hezkuntza ospatuz REGGIO EMILIAKO ESPERIENTZIA JESUS MARI MUJIKA LOMCE-RI EZ ANTZERKHIZKUNTZA PROIEKTUA HIK HASI OSPAKIZUNETAN

Διαβάστε περισσότερα

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK,

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK, Ikasgaia: KIMIKA GANIKAEN INAIAK, Urte Akademikoa: 2008-09 Titulazioa: Licenciatura en Química, Ingeniero Químico. Irakaslea: Jose Luis Vicario, (Kimika rganikoa II Saila) Ezaugarriak: Ikasgai honetan

Διαβάστε περισσότερα

INGURUGIRO TEKNOLOGIA. Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar

INGURUGIRO TEKNOLOGIA. Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar INGURUGIRO TEKNOLOGIA Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar OCW 2013 6. ISURI GASEOSOEN TRATAMENDUA II: PARTIKULA ELIMINAZIOA GARBITZAILE ETA JAULKITZAILE ELEKTROSTATIKOEN

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 8: Μαγνητισμός. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 8: Μαγνητισμός. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 8: Μαγνητισμός Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εξοικείωση με τις έννοιες του μαγνητισμού και του μαγνητικού πεδίου Κινούμενο φορτίο σε μαγνητικό

Διαβάστε περισσότερα

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1)

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) Altitudea 600 km 80 km 50 km 12 km -100 C -50 C 0 C 50 C 100 C NOLAKOA DA LIBURU HAU? Unitateen egitura Unitatearen hasiera 3 Elikadura Elikadura osasuntsua

Διαβάστε περισσότερα

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Informatika Fakultatea / Facultad de Informática ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Ikaslea: Hurko Mendiguren Quevedo Zuzendaria: Txelo Ruiz Vázquez Karrera Amaierako Proiektua, 2013-ekaina

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika I

Giza eta Gizarte Zientziak Matematika I Gia eta Giarte Zietiak Matematika I. eta. ebaluaioak Zue erreala Segida errealak Ekuaio espoetialak Logaritmoak Ekuaio lieale sistemak ESTATISTIKA Aldagai diskretuak eta jarraiak Parametro estatistikoak

Διαβάστε περισσότερα

Mikroekonomia I. Gelan lantzeko ikasmaterialak.

Mikroekonomia I. Gelan lantzeko ikasmaterialak. Mikroekonomia I. Gelan lantzeko ikasmaterialak. Egilea(k) Andoni Maiza Larrarte* * Eduki gehienak Zurbanok (1989), eta Ansa, Castrillón eta Francok (2011) prestatutako ikasmaterialetatik hartu dira. Egileak

Διαβάστε περισσότερα

Enbriologia Orokorra eta Bereziko buruxka

Enbriologia Orokorra eta Bereziko buruxka Enbriologia Orokorra eta Bereziko buruxka Medikuntzako Ikasleen Elkartea Irakasgaieko irakaslea: Amale Caballero Lasquibar Ikasle-egilea: Adrian H. Llorente Aginagalde Oharra Apunte buruxka hau AEM/MIB

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e

Διαβάστε περισσότερα

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ eman ta zabal zazu Universidad del País Vasco Euskal Herriko Unibertsitatea BILBOKO INGENIARIEN GOI ESKOLA TEKNIKOA KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ I EGILEA: Jesus-Mari Romo Uriarte (hirugarren

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 10: Ηλεκτρομαγνητική επαγωγή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 10: Ηλεκτρομαγνητική επαγωγή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 10: Ηλεκτρομαγνητική επαγωγή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της μαγνητικής ροής και ορισμός του μαθηματικού τύπου της

Διαβάστε περισσότερα

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano KIMIKA 008 Ekaina A-1.- Formazio-enta pia estandar hauek emanda (kj/mol-etan): C (g) =-393,5 ; H 0 (l) = -85,4 ; C 4 H 10 (g) = -14,7 a) Datu hauek aipatzen dituzten erreakzioak idatzi eta azaldu. b) Kalkulatu

Διαβάστε περισσότερα

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK Ikasmaterialen Aholku Batzordea Estilo-liburuaren seigarren atala 22 Euskara Zerbitzua Hizkuntza Prestakuntza ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #9: Σύστημα ης τάξης: Χρονική Απόκριση και Χαρακτηριστικά Μεγέθη (Φυσικοί Συντελεστές) Δημήτριος

Διαβάστε περισσότερα

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik:

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: BBVA Fundazioa Bilbao Bizkaia Kutxa BBK Gipuzkoa Donostia Kutxa

Διαβάστε περισσότερα

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

Προσομoίωση Απόκρισης Συστήματος στο MATLAB Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 3: Μηχανικές δυνάμεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Περιγραφή και παρουσίαση μηχανικών δυνάμεων Βαρύτητα Τριβή (στατική και ολίσθησης) Τάση

Διαβάστε περισσότερα

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων

Διαβάστε περισσότερα

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 1: Ηλεκτρικό φορτίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 1: Ηλεκτρικό φορτίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 1: Ηλεκτρικό φορτίο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στις έννοιες του φορτίου και της φόρτισης Θετικοί και αρνητικοί φορείς φορτίου.

Διαβάστε περισσότερα

Πηγές μαγνητικού πεδίου Νόμος Ampere. Ιωάννης Γκιάλας 21 Μαίου 2014

Πηγές μαγνητικού πεδίου Νόμος Ampere. Ιωάννης Γκιάλας 21 Μαίου 2014 Πηγές μαγνητικού πεδίου Νόμος Ampere Ιωάννης Γκιάλας 21 Μαίου 214 Στόχοι διάλεξης Να κατανοηθεί πως προκαλείται το μαγνητικό πεδίο Νόμος Biot-Savart Μαγνητικό πεδίο ευθύγραμμου ρευματοφόρου αγωγού Μαγνητική

Διαβάστε περισσότερα

XX. mendeko olerkari greziarrak

XX. mendeko olerkari greziarrak XX. mendeko olerkari greziarrak R Ko l d o Ru i z d e Az u a Matónoo aditzak odolustu esan nahi du grekoz. Odolustu egin zen Grezia ia bi mendez. Lehenik, mende bat baino gehiago iraun zuen independentzia

Διαβάστε περισσότερα

Φυσική Ι. Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Ι. Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική Ι Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Επανάληψη θεωρίας διανυσμάτων Εξοικείωση με τη χρήση τους στην περιγραφή

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika II

Giza eta Gizarte Zientziak Matematika II Giza eta Gizarte Zietziak Matematika II 3. ebaluazioa Probabilitatea Baaketa Normala eta Biomiala Lagi estatistikoak Iferetzia estatistikoa Hipotesiak Igacio Zuloaga B.H.I. (Eibar) 1 PROBABILITATEA Igazio

Διαβάστε περισσότερα

ENERGIA EOLIKOA. UEU. 2008ko Uztailak 11

ENERGIA EOLIKOA. UEU. 2008ko Uztailak 11 ENERGIA EOLIKOA UEU. 2008ko Uztailak 11 Sarrera - Definizioa - Erabilerak Teknologia - Aerosorgailuak AURKIBIDEA Abantailak eta desabantailak Energia eolikoa munduan Euskal Herria - Energetikoak - Ingurumenerako

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #7: Άλγεβρα Βαθμίδων (μπλόκ) Ολική Συνάρτηση Μεταφοράς Δημήτριος Δημογιαννόπουλος Τμήματος

Διαβάστε περισσότερα

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua 2009 PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA II. Itemen adibideak irakasleak erabiltzeko 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua w w www.pisa.oecd.org ISEI-IVEIk argitaratuta: Irakas-Sistema

Διαβάστε περισσότερα

2 Lanaren etekinak. Gipuzkoako Foru Aldundia

2 Lanaren etekinak. Gipuzkoako Foru Aldundia 2 Lanaren etekinak 2.1 Zer dira lanaren etekinak? 2.1.1 Zein prestazio sartzen dira lan etekinen barruan? 2.2 Joan-etorriko dietak eta bidai gastuak lan etekinak al dira? 2.2.1 Arau orokorrak 2.2.2 Arau

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας Μετασχηματισμός Laplace και

Διαβάστε περισσότερα

Από τις (1) και (2) έχουμε:

Από τις (1) και (2) έχουμε: ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΚΑΝΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ 3 ΣΤΟ ΜΑΘΗΜΑ «ΔΙΗΛΕΚΤΡΙΚΕΣ, ΟΠΤΙΚΕΣ, ΜΑΓΝΗΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ» ΤΟΥ ΠΑΤΡΙΚ ΑΣΕΝΟΒ (OR STEVE HARRIS FOR MY FRIENDS FROM THE SHMMY FORUM) Θέμα ον : Έχουμε ιοντικό

Διαβάστε περισσότερα

Απόκριση σε Αρμονική Διέγερση

Απόκριση σε Αρμονική Διέγερση Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία του ηλεκτρικού δυναμικού στις 3 διαστάσεις μέσω:

Διαβάστε περισσότερα

Επίλυση Δυναμικών Εξισώσεων

Επίλυση Δυναμικών Εξισώσεων Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Επίλυση Δυναμικών Εξισώσεων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Επίλυση Δυναμικών Εξισώσεων του καθ. Ιωάννη Αντωνιάδη και υπόκειται σε

Διαβάστε περισσότερα