Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7"

Transcript

1 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : abeligia/linearalgebrai/lai.html Ασκηση 1. Εστω η γραµµική απεικόνιση f : R 3 R 3 η οποία ορίζεται από τη σχέση : f(x, y, z) (x + 2y, y z, 2x + 4y) Να υπολογιστεί µια ϐάση του πυρήνα Ker(f) και µια ϐάση της εικόνας Im(f) της f. Λύση. Εστω (x, y, z) R 3. Τότε : (x, y, z) Ker f αν και µόνον αν : f(x, y, z) (0, 0, 0) (x + 2y, y z, 2x + 4y) (0, 0, 0) x 2y και y z Συνεπώς ο πυρήνας της f είναι Ker f (x, y, z) R 3 f(x, y, z) (0, 0, 0)} (x, y, z) R 3 x 2y και y z} ( 2y, y, y) R 3 y R} y( 2, 1, 1) R 3 y R} ( 2, 1, 1) και αφού ( 2, 1, 1) (0, 0, 0) έπεται ότι το διάνυσµα ( 2, 1, 1) είναι γραµµικά ανεξάρτητο. Εποµένως το σύνολο ( 2, 1, 1)} αποτελεί ϐάση του Ker f. Επειδή το σύνολο B e 1 (1, 0, 0), e 2 (0, 1, 0), e 3 (0, 0, 1) }, ως ϐάση του R 3, παράγει τον R 3, έπεται ότι το σύνολο f(b) f( e 1 ), f( e 2 ), f( e 3 ) } παράγει την εικόνα Im f της f. Ετσι : και Συνεπώς Im f f(1, 0, 0), f(0, 1, 0), f(0, 0, 1) (1, 0, 2), (2, 1, 4), (0, 1, 0) Γ 2 Γ 2 2Γ Γ 3 Γ 3 +Γ Im f (1, 0, 2), (2, 1, 4), (0, 1, 0) (1, 0, 2), (0, 1, 0) ιαφορετικά: εξετάζουµε αν τα παραπάνω διανύσµατα είναι γραµµικά ανεξάρτητα. Εστω κ(1, 0, 2) + λ(2, 1, 4) + µ(0, 1, 0) (0, 0, 0) κ + 2λ 0 και λ µ 0 Το σύστηµα αυτό έχει ως γενική λύση : ( 2λ, λ, λ) και εποµένως, για λ 1, ϑα έχουµε µια σχέση γραµµικής εξάρτησης : 2(1, 0, 2) + (2, 1, 4) + (0, 1, 0) (0, 0, 0) από την οποία ϐλέπουµε ότι (2, 1, 4) (1, 0, 2), (0, 1, 0) και άρα όπως και παραπάνω έχουµε : Im f (1, 0, 2), (2, 1, 4), (0, 1, 0) (1, 0, 2), (0, 1, 0). Εύκολα διαπιστώνουµε ότι τα διανύσµατα (1, 0, 2), (0, 1, 0) είναι γραµµικά ανεξάρτητα. (1, 0, 2), (0, 1, 0)} αποτελεί ϐάση της εικόνας Im f της f. Αρα το σύνολο Ασκηση 2. Να εξεταστεί αν η γραµµική απεικόνιση είναι ισοµορφισµός. f : R n R n, f(x 1,, x n ) (x 1, x 1 + x 2,, x 1 + x x n )

2 2 Λύση. Για να είναι η γραµµική απεικόνιση f ισοµορφισµός πρέπει να είναι µονοµορφισµός και επιµορφισµός. ηλαδή πρέπει Ker f 0} και Im f R n. Εχουµε : Ker f (x 1,, x n ) R n f(x 1,, x n ) (0,, 0)} (x 1,, x n ) R n (x 1, x 1 + x 2,, x 1 + x x n ) (0, 0,, 0)} (x 1,, x n ) R n x 1 0, x 1 + x 2 0,, x 1 + x x n 0} (x 1,, x n ) R n x 1 x 2 x n 0} (0,, 0)} και άρα η γραµµική απεικόνιση f είναι µονοµορφισµός. Εστω (y 1, y 2,, y n ) R n. Τότε υπάρχει το διάνυσµα (y 1, y 2 y 1, y 3 y 2,, y n y n 1 ) R n έτσι ώστε f(y 1, y 2 y 1, y 3 y 2,, y n y n 1 ) (y 1, y 1 + y 2 y 1,, y 1 + y 2 y 1 + y 3 y 2 + y n y n 1 ) (y 1, y 2,, y n ) και άρα η f είναι επιµορφισµός. Συνεπώς, η γραµµική απεικόνιση f είναι ισοµορφισµός. Παρατήρηση 1. Εστω E και F δυο K-διανυσµατικοί χώροι πεπερασµένης διάστασης και έστω f : E F µια γραµµική απεικόνιση. Τότε έχουµε την Θεµελιώδη Εξίσωση των ιαστάσεων: dim K E dim K Ker f + dim K Im f Ας υποθέσουµε ότι dim K E dim K F. Τότε έχουµε τα ακόλουθα : (1) Αν η f είναι µονοµορφισµός, τότε η f είναι ισοµορφισµός. Αφού η f είναι µονοµορφισµός έχουµε Ker f 0} και άρα dim K Ker f 0. Εποµένως από την εξίσωση των διαστάσεων έχουµε ότι dim K E dim K Im f. Αρα έχουµε dimk F dim K Im f Im f F f : επιµορφισµός Im f : υπόχωρος του F Συνεπώς η γραµµική απεικόνιση f είναι ισοµορφισµός. (2) Αν η f είναι επιµορφισµός, τότε η f είναι ισοµορφισµός. Αφού η f είναι επιµορφισµός έχουµε Im f F και άρα dim K Im f dim K F. Αρα από την εξίσωση των διαστάσεων έχουµε ότι dim K E dim K Ker f + dim K F και dim K E dim K F. Εποµένως dim K Ker f 0, δηλαδή Ker f 0}. Αρα η f είναι µονοµορφισµός και άρα ισοµορφισµός. Εποµένως στην προηγούµενη άσκηση αρκεί να δείξουµε ότι η f είναι είτε µονοµορφισµός ή επιµορφισµός. Τότε έπεται ότι η f είναι ισοµορφισµός. Ασκηση 3. Εστω f : E E µια γραµµική απεικόνιση, όπου ο K-διανυσµατικός χώρος E έχει πεπερασµένη διάσταση. (1) Να δείξετε ότι η f είναι µονοµορφισµός αν και µόνον αν η f στέλνει γραµµικά ανεξάρτητα σύνολα διανυσµάτων σε γραµµικά ανεξάρτητα σύνολα διανυσµάτων : C e 1, e k } : γραµµικά ανεξάρτητο σύνολο f(c) f( e 1 ), f( e k )} : γραµµικά ανεξάρτητο σύνολο (2) Να δείξετε ότι η f είναι ισοµορφισµός αν και µόνον αν η f στέλνει τυχούσα ϐάση του E σε ϐάση του E: B e 1, e n } : ϐάση του E f(b) f( e 1 ), f( e n )} : ϐάση του E

3 3 Λύση. (1) () Υποθέτουµε ότι η γραµµική απεικόνιση f είναι µονοµορφισµός και έστω C e 1, e k } ένα σύνολο γραµµικά ανεξάρτητων διανυσµάτων. Θα δείξουµε ότι το σύνολο f(c) f( e 1 ), f( e k )} είναι γραµµικά ανεξάρτητο. Εστω λ 1 f( e 1 ) + + λ k f( e k ) 0 f(λ 1 e λ k e k ) 0 f : γραµµική λ 1 e λ k e k Ker f 0} f : µονοµορφισµός λ 1 e λ k e k 0 e 1,, e k }: γραµµικά ανεξάρτητο λ 1 λ k 0 Αρα το σύνολο f(c) f( e 1 ), f( e k )} είναι γραµµικά ανεξάρτητο. ( ) Υποθέτουµε ότι η f στέλνει γραµµικά ανεξάρτητα σύνολα διανυσµάτων σε γραµµικά ανεξάρτητα σύνολα διανυσµάτων, δηλαδή αν C e 1, e k } είναι ένα σύνολο γραµµικά ανεξάρτητων διανυσµάτων τότε το σύνολο f(c) f( e 1 ), f( e k )} είναι γραµµικά ανεξάρτητο. Θα δείξουµε ότι η f είναι µονοµορφισµός. Εστω x Ker f, δηλαδή f( x) 0. Αν το διάνυσµα x 0 τότε το σύνολο x} είναι γραµµικά ανεξάρτητο και άρα από την υπόθεση έπεται ότι το σύνολο f( x)} είναι γραµµικά ανεξάρτητο και άρα f( x) 0. Αυτό όµως είναι άτοπο διότι το διάνυσµα x Ker f. Αρα δείξαµε ότι αν x Ker f τότε x 0. Συνεπώς Ker f 0}, δηλαδή η f είναι µονοµορφισµός. (2) () Υποθέτουµε ότι η γραµµική απεικόνιση f είναι ισοµορφισµός, δηλαδή η f είναι µονοµορφισµός και επιµορφισµός. Εστω B e 1,, e n } µια ϐάση του E. Θα δείξουµε ότι το σύνολο f(b) f( e 1 ),, f( e n )} είναι ϐάση του E. Αφού η f είναι µονοµορφισµός, έπεται από το (1) παραπάνω ότι το σύνολο f(b) είναι γραµµικά ανεξάρτητο. Εστω y E. Τότε αφού η f είναι επιµορφισµός υπάρχει ένα x E έτσι ώστε f( x) y. Το σύνολο B e 1,, e n } είναι ϐάση του E, άρα το x γράφεται x λ 1 e λ n e n. Τότε y f(λ 1 e λ k e k ) λ 1 f( e 1 ) + + λ n f( e n ) y f( e 1 ),, f( e n ) E f( e 1 ),, f( e n ) f(b) και άρα δείξαµε ότι το σύνολο f(b) παράγει τον E. Εποµένως το σύνολο f(b) είναι ϐάση του E. ιαφορετικά: έχοντας δείξει ότι το σύνολο f(b) είναι γραµµικά ανεξάρτητο, ϑα µπορούσαµε να δείξουµε ότι το σύνολο f(b) είναι ϐάση του E ως εξής : Επειδή f είναι ισοµορφισµός, έπεται ότι : n dim K E dim K F. Από την άλλη πλευρά f(b) n (διότι διαφορετικά υπάρχουν 1 i j n έτις ώστε : f( e i ) f( e j ). Τότε όµως e i e j επειδή η f είναι µονοµορφισµός, κάτι το οποίο είναι άτοπο διότι το B είναι ϐάση του E). Από γνωστό Θεώρηµα : f(b) γραµµικά ανεξάρτητο και f(b) dim K F f(b) είναι ϐάση του F. ( ) Υποθέτουµε ότι αν B e 1, e n } είναι µια ϐάση του E τότε το σύνολο f(b) f( e 1 ), f( e n )} είναι ϐάση του E. Θα δείξουµε ότι η f είναι ισοµορφισµός. f µονοµορφισµός: Εστω x Ker f και x λ 1 e λ n e n. Τότε : f( x) 0 f(λ 1 e λ n e n ) 0 λ 1 f( e 1 ) + + λ n f( e n ) 0 f : γραµµική λ 1 λ n 0 f( e 1 ),, f( e n )}: γραµµικά ανεξάρτητο x 0 Ker f 0 f : µονοµορφισµός f επιµορφισµός: Εστω y E. Αφού το σύνολο f(b) f( e 1 ), f( e n )} είναι ϐάση του E, τότε y λ 1 f( e 1 ) + + λ n f( e n ) f(λ 1 e λ n e n ) f( x) όπου x λ 1 e λ n e n E. Συνεπώς η f είναι επιµορφισµός.

4 4 Εποµένως έχουµε ότι η f είναι ισοµορφισµός. ιαφορετικά: έχοντας δείξει ότι η f είναι µονοµορφισµός, ϑα µπορούσαµε να δείξουµε ότι η f είναι επιµορφισµός ως εξής : Επειδή το σύνολο f(b) είναι ϐάση του F έπεται ότι : n dim K E dim K F. Από την άλλη πλευρά η Θεµελιώδης Εξίσωση ιαστάσεων δίνει ότι : n dim K E dim K Im f. Επειδή Im f είναι υπόχωρος του F και dim K Im f dim K F, από γνωστό Θεώρηµα έπεται ότι Im f F, δηλαδή η f είναι επιµορφισµός. Ασκηση 4. Να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της γραµµικής απεικόνισης : f : R 3 R 3, f(x, y, z) (x + 2y, y x, x + 2z) Λύση. Εστω (x, y, z) R 3. Τότε : (x, y, z) Ker f αν και µόνον αν : f(x, y, z) (0, 0, 0) (x + 2y, y x, x + 2z) (0, 0, 0) x y z 0 Συνεπώς Ker f 0} και άρα η f είναι µονοµορφισµός και άρα το κενό σύνολο } είναι ϐάση του πυρήνα Ker f της f. Επειδή το σύνολο B e 1 (1, 0, 0), e 2 (0, 1, 0), e 3 (0, 0, 1) }, ως ϐάση του R 3, παράγει τον R 3, έπεται ότι το σύνολο f(b) f( e 1 ), f( e 2 ), f( e 3 ) } παράγει την εικόνα Im f της f. Ετσι : και Im f f(1, 0, 0), f(0, 1, 0), f(0, 0, 1) (1, 1, 1), (2, 1, 0), (0, 0, 2) και άρα τα διαµύσµατα (1, 1, 1), (2, 1, 0), (0, 0, 2) είναι γραµµικά ανεξάρτητα. Εποµένως, το σύνολο των διανυσµάτων (1, 1, 1), (2, 1, 0), (0, 0, 2)} αποτελεί ϐάση της εικόνας Im f της f. Να σηµειώσουµε ότι από την Παρατήρηση 1 έπεται ότι η f είναι ισοµορφισµός. Ασκηση 5. Θεωρούµε τη γραµµική απεικόνιση : f : R 4 R 3, f(x, y, z, w) (x z + 2w, 2x + y + 2z, y + 4w) (1) Να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της f. (2) Να δειχθεί ότι το διάνυσµα (1, 3, κ) Im f κ 5. (3) Ποια συνθήκη πρέπει να ικανοποιούν τα a, b R έτσι ώστε (1, a, 1, b) Ker f; Λύση. (1) Εστω (x, y, z, w) R 4. Τότε : (x, y, z, w) Ker f αν και µόνον αν : f(x, y, z, w) (0, 0, 0) (x z + 2w, 2x + y + 2z, y + 4w) (0, 0, 0) και Γ 2 Γ 2 +2Γ Γ 3 Γ 3 Γ x z + 2w 0 2x + y + 2z 0 y + 4w και άρα καταλήγουµε στο σύστηµα : x z + 2w 0 y + 4w 0 x z 2w y 4w

5 5 Συνεπώς ο πυρήνας της f είναι Ker f (x, y, z, w) R 4 f(x, y, z, w) (0, 0, 0)} (x, y, z, w) R 4 x z 2w και y 4w} (z 2w, 4w, z, w) R 4 z, w R} z(1, 0, 1, 0) + w( 2, 4, 0, 1) R 4 z, w R} (1, 0, 1, 0), ( 2, 4, 0, 1) Εστω λ 1 (1, 0, 1, 0) + λ 2 ( 2, 4, 0, 1) (0, 0, 0, 0). Τότε (λ 1 2λ 2, 4λ 2, λ 1, λ 2 ) (0, 0, 0, 0) λ 1 λ 2 0 και άρα τα διανύσµατα (1, 0, 1, 0), ( 2, 4, 0, 1) είναι γραµµικά ανεξάρτητα. Εποµένως το σύνολο (1, 0, 1, 0), ( 2, 4, 0, 1)} αποτελεί ϐάση του Ker f. Επειδή το σύνολο B e 1 (1, 0, 0, 0), e 2 (0, 1, 0, 0), e 3 (0, 0, 1, 0), e 4 (0, 0, 0, 1) }, ως ϐάση του R 4, παράγει τον R 4, έπεται ότι το σύνολο f(b) f( e 1 ), f( e 2 ), f( e 3 ), f( e 4 ) } παράγει την εικόνα Im f της f. Ετσι : Im f f(1, 0, 0, 0), f(0, 1, 0, 0), f(0, 0, 1, 0), f(0, 0, 0, 1) (1, 2, 0), (0, 1, 1), ( 1, 2, 0), (2, 0, 4) (1, 2, 0), (0, 1, 1), (2, 0, 4) Εστω κ(1, 2, 0) + λ(0, 1, 1) + µ(2, 0, 4) (0, 0, 0). Τότε κ + 2µ 0 (κ + 2µ, 2κ + λ, λ + 4µ) (0, 0, 0) 2κ + λ 0 λ + 4µ 0 κ 2µ και λ 4µ Το σύστηµα αυτό έχει ως γενική λύση : ( 2µ, 4µ, µ) όπου µ R και εποµένως, για µ 1, ϑα έχουµε µια σχέση γραµµικής εξάρτησης : Συνεπώς 2(1, 2, 0) 4(0, 1, 1) + (2, 0, 4) (0, 0, 0) (2, 0, 4) (1, 2, 0), (0, 1, 1) Im f (1, 2, 0), (0, 1, 1) και εύκολα διαπιστώνουµε ότι τα διανύσµατα (1, 2, 0), (0, 1, 1) είναι γραµµικά ανεξάρτητα. Αρα το σύνολο (1, 2, 0), (0, 1, 1)} αποτελεί ϐάση της εικόνας Im f της f. (2) Από το προηγούµενο ερώτηµα γνωρίζουµε ότι το σύνολο (1, 2, 0), (0, 1, 1)} αποτελεί ϐάση της εικόνας Im f της f. Συνεπώς το διάνυσµα (1, 3, κ) Im f αν και µόνο αν υπάρχουν λ 1, λ 2 R έτσι ώστε λ 1 (1, 2, 0) + λ 2 (0, 1, 1) (1, 3, κ) (λ 1, 2λ 1 + λ 2, λ 2 ) (1, 3, κ) Αρα έχουµε λ 1 1, λ 2 κ και 2λ 1 + λ 2 3 λ λ 1 5 κ 5 Εποµένως δείξαµε ότι (1, 3, κ) Im f αν και µόνο αν κ 5. (3) Από το ερώτηµα (1) γνωρίζουµε ότι το σύνολο (1, 0, 1, 0), ( 2, 4, 0, 1)} αποτελεί ϐάση του Ker f. Εποµένως το διάνυσµα (1, a, 1, b) Ker f αν και µόνο αν υπάρχουν λ 1, λ 2 R έτσι ώστε λ 1 (1, 0, 1, 0) + λ 2 ( 2, 4, 0, 1) (1, a, 1, b) (λ 1 2λ 2, 4λ 2, λ 1, λ 2 ) (1, a, 1, b) Αρα για a b 0 το διάνυσµα (1, a, 1, b) Ker f. a b 0

6 6 Ασκηση 6. Εστω f : E E µια γραµµική απεικόνιση, όπου dim K E <. Εστω ότι f n 0 και f n 1 0. Αν x E, να δείξετε ότι f n 1 ( x) 0 αν και µόνο αν το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο. Λύση. Αν το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο τότε έχουµε ότι f n 1 ( x) 0. Εστω x E έτσι ώστε f n 1 ( x) 0. Θα δείξουµε ότι το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο. Εστω λ 0 x + λ 1 f( x) + + λ n 1 f n 1 ( x) 0. Εφαρµόζοντας διαδοχικά την f στην παραπάνω σχέση και λαµβάνοντας υπ όψιν ότι f n 0 και f n 1 ( x) 0, ϑα έχουµε :. λ 0 x + λ 1 f( x) + + λ n 1 f n 1 ( x) 0 λ 0 f( x) + λ 1 f 2 ( x) + + λ n 2 f n 1 ( x) + λ n 1 f n ( x) 0 λ 0 f( x) + λ 1 f 2 ( x) + + λ n 2 f n 1 ( x) λ 0 f 2 ( x) + λ 1 f 3 ( x) + + λ n 3 f n 1 ( x) + λ n 2 f n ( x) 0 λ 0 f 2 ( x) + λ 1 f 3 ( x) + + λ n 3 f n 1 ( x) λ 0 f 3 ( x) + λ 1 f 4 ( x) + + λ n 4 f n 1 ( x) + λ n 3 f n ( x) 0 λ 0 f 3 ( x) + λ 1 f 4 ( x) + + λ n 4 f n 1 ( x) λ 0 f n 2 ( x) + λ 1 f n 1 ( x) + λ 2 f n ( x) 0 λ 0 f n 2 ( x) + λ 1 f n 1 ( x) λ 0 f n 1 ( x) + λ 1 f n ( x) 0 λ 0 f n 1 ( x) λ 0 f n 1 ( x) 0 λ 0 0 αφού f n 1 ( x) 0 ( ) Αρα από τη σχέση ( ) έχουµε λ 1 f( x) + + λ n 1 f n 1 ( x) 0 και αν επαναλάβουµε ξανά την παραπάνω διαδικασία τότε λ1 f n 1 ( x) 0 f n 1 ( x) 0 λ 1 0 Συνεχίζοντας µε τον ίδιο τρόπο έπεται ότι λ 1 λ n 1 0 και άρα το σύνολο x, f( x),, f n 1 ( x) } είναι γραµµικά ανεξάρτητο. Ασκηση 7. Θεωρούµε τον 2 2 πίνακα πραγµατικών αριθµών ( ) A 1 1 και έστω η γραµµική απεικόνιση f : M 2 2 (R) M 2 2 (R), f(m) AM MA Να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της f.

7 ( ) Λύση. Εστω M M c d 2 2 (R). Τότε ( ) f(m) AM MA f( ) c d ( ) Τότε : M Ker f αν και µόνον αν : c d ( f(m) 0 b 0 a + d b ( ) ( ) ( ) ( ) 1 1 c d c d 1 1 ( ) ( ) a b b a + c b + d c d d ( ) b 0 a + d b ) ( ) b 0 a d 7 και άρα ο πυρήνας της f είναι ( ) ( ) ( ) } Ker f M c d 2 2 (R) f( ) c d ( ) } M c d 2 2 (R) b 0 και a d ( ) } a 0 M c a 2 2 (R) a, c R ( ) ( ) } 1 0 a + c M (R) a, c R ( ) ( ) 1 0, 0 1 ( ) ( ) Θέτουµε A και B. Εύκολα διαπιστώνουµε ότι τα διανύσµατα A, B είναι γραµµικά 0 1 ανεξάρτητα και άρα το σύνολο A, B} είναι ϐάση του πυρήνα Ker f της f. Για την εικόνα της f έχουµε : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) f( ), f( ), f( ), f( ) και άρα ( ) ( ) ( ) ( ) ( ) Im f,,, ( ) ( ) Θέτουµε Γ και. Τότε αφού τα διανύσµατα Γ, είναι γραµµικά ανεξάρτητα, έπεται 0 1 ότι το σύνολο Γ, } είναι ϐάση της εικόνας Im f της f. Ασκηση 8. Θεωρούµε τη ϐάση του R 2 [t] και τα διανύσµατα B : e 1 1, e 2 t, e 3 t 2 } w t, w 2 3 t 2, w t 3t 2 του R 2 [t]. Να προσδιορισθεί η µοναδική γραµµική απεικόνιση f : R 2 [t] R 2 [t] έτσι ώστε : f( e i ) w i, 1 i 3. Ακολούθως να εξετασθεί αν η f είναι ισοµορφισµός. Αν η f δεν είναι ισοµορφισµός να ϐρεθούν ϐάσεις για τον πυρήνα Ker f και την εικόνα Im f της f.

8 8 Λύση. Εστω P (t) a + bt + ct 2 R 2 [t]. Τότε έχουµε Εποµένως η f ορίζεται ως ακολούθως : f(a + bt + ct 2 ) af(1) + bf(t) + cf(t 2 ) a(1 + t) + b(3 t 2 ) + c(4 + 2t 3t 2 ) a + at + 3b bt 2 + 4c + 2ct 3ct 2 (a + 3b + 4c) + (a + 2c)t + ( b 3c)t 2 f : R 2 [t] R 2 [t], a + bt + ct 2 f(a + bt + ct 2 ) (a + 3b + 4c) + (a + 2c)t + ( b 3c)t 2 Εστω P (t) a + bt + ct 2 R 2 [t]. Τότε : P (t) Ker f αν και µόνον αν : f(p (t)) 0 (a + 3b + 4c) + (a + 2c)t + ( b 3c)t t + 0t 2 a + 3b + 4c 0 a + 2c 0 b 3c 0 Τότε b 3c, a 2c και άρα 2c + 3( 3c) + 4c 0 c 0. Εποµένως έχουµε a b c 0. Συνεπώς ο πυρήνας της f είναι Ker f 0} και άρα η γραµµική απεικόνιση f είναι µονοµορφισµός. Από την εξίσωση των διαστάσεων έχουµε : dimr Im f 3 dim R R 2 [t] dim R Ker f + dim R Im f dim R Im f Im f : υπόχωρος του R 2 [t] Im f R 2 [t] Εποµένως η γραµµική απεικόνιση f είναι ισοµορφισµός. f : επιµορφισµός

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Κανονική Μορφή Fitting Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 26 5. Κανονική Μορφή Fitting Εστω A M n

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 5 Γραµµικες Απεικονισεις Στην άλγεβρα, και γενικότερα στα Μαθηµατικά,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαιο 7 ιασκοντες: Ν. Μαρµαρίης - Α. Μπεληγιάννης Βοηθοι Ασκησεων: Χ. Ψαρουάκης Ιστοσελια Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii.html - - Ασκηση.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Γραµµικη Ανεξαρτησια, Βασεις και ιασταση Στο

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Βαθµίδα Πίνακα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 8 Βαθµιδα Πινακα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϐαθµίδα ενός πίνακα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Το Θεώρηµα των Cayley-Hamilton Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 15 3. Το Θεώρηµα των Cayley-Hamilton

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ισοµετρίες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 78 12 Ισοµετρίες 121 Χαρακτηρισµός Ισοµετριών Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό Κεφάαιο 3 Εεύθερα Πρότυπα 3.1 Εεύθερα Πρότυπα Έστω Μ ένα R-πρότυπο. Μια οικογένεια Μ αν ) το σύνοο { Λ} τρόπο ως άθροισµα της µορφής πεπερασµένο πήθος από τα ( e ) στοιχείων του Μ καείται βάση του e παράγει

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 11 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 26 Μαίου 2016 Ασκηση 1. Να

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Γραµµικές απεικονίσεις Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 ιανυσµατικοι Υποχωροι και Κατασκευες Το παρόν

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Εφαρµοσµένων Μαθηµατικών Παν/µίου Κρήτης Εξεταστική περίοδος εαρινού εξαµήνου Πέµπτη, 2 Ιούνη 28 Γραµµική Αλγεβρα II ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n

A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ III ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN 1 Εστω f : V V γραμμική απεικόνιση Εστω A = ker(f i ) και B = ker(f i+1 ) Δείξτε ότι (i) A B και (ii) f(b) A Αποδ: (i) Εστω x ker(f i ) Τότε f i (x)

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Κεφάλαιο 6 Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Στο παρόν Κεφάλαιο ϑα µελετήσουµε τις ϐασικές ιδιότητες της οµάδας πηλίκο µιας οµάδας ως προς µια κανονική υποµάδα, ϑα αποδείξουµε τα ϐασικά ϑεωρήµατα

Διαβάστε περισσότερα

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 ) Συνέχεια Συνάρτησης Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 1 εκεµβρίου 013 1 Ορισµός Ορισµός 1.1 Μια πραγµατική συνάρτηση f : A R λέµε ότι είναι συνεχής στο x 0 A αν και µόνο αν : x x 0 fx

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 8 Ιουνίου 005 Από τα κάτωι Θέµατα καλείσε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 00 Θέμα 1 ο Έστω U ο υπόχωρος του που παράγεται από τα στοιχεία (1-11α) (10β) (5-γ) και (-δ) (I) Να προσδιορίσετε τις αναγκαίες

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια. Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο

Διαβάστε περισσότερα

Απλές επεκτάσεις και Αλγεβρικές Θήκες

Απλές επεκτάσεις και Αλγεβρικές Θήκες Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικοί Μετασχηματισμοί Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικοί Μετασχηματισμοί Γραμμικός Μετασχηματισμός ή

Διαβάστε περισσότερα

Η ιδέα της χρήσης διατεταγµένων Ϲευγών πραγµατικών αριθµών για την περιγραφή

Η ιδέα της χρήσης διατεταγµένων Ϲευγών πραγµατικών αριθµών για την περιγραφή Κεφάλαιο 4 Ευκλείδιοι Χώροι 4 Ευκλείδιοι Χώροι Η ιδέα της χρήσης διατεταγµένων Ϲευγών πραγµατικών αριθµών για την περιγραφή των σηµείων στο επίπεδο και διατεταγµένων τριάδων πραγµατικών αριθµών για την

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµοµορφισµοί Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 287 13. Οµοµορφισµοί Οµάδων Στην παρούσα ενότητα

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικοί Μετασχηματισμοί Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικοί Μετασχηματισμοί Γραμμικός Μετασχηματισμός ή

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

) ( ) Μάθηµα 3 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 4.18). είναι ορθοκανονικά

) ( ) Μάθηµα 3 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 4.18). είναι ορθοκανονικά Γραµµική Άλγεβρα ΙΙ Σελίδα από Μάθηµα ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 48) Λυµένες Ασκήσεις Άσκηση Αν {,,, } και {,,, } σύνολα διανυσµάτων του p p p ν q q q

Διαβάστε περισσότερα

i. f(v + u) = f(v) + f(u),

i. f(v + u) = f(v) + f(u), Κεφάλαιο 4 Γραµµικές Συναρτήσεις Στο κεφάλαιο αυτό ϑα µελετήσουµε µία ειδική κατηγορία συναρτήσεων µεταξύ των k- διανυσµατικών χώρων Θα δούµε ότι οι συναρτήσεις αυτές καθορίζονται πλήρως από τις τιµές

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου Μαθηµατικών Προσαναταισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός ποαπασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2015-2016 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2015/ringtheory2015.html 4 εκεµβρίου 2015 2 Περιεχόµενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2016-2017 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2016/ringtheory2016.html 15 Φεβρουαρίου 2017 2 Περιεχόµενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις

Διαβάστε περισσότερα

ΚΕΦ. 7: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΚΕΦ. 7: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΚΕΦ 7: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ Έστω V και W διανυσματικοί υπόχωροι Θεωρούμε συνάρτηση F: V W για την οποία ισχύει ότι: (ι) Fu ( + v) = Fu ( ) + Fv ( ) για όλα τα διανύσματα, και (ιι) F( κu) = κf( u) για

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Τελική Εξέταση 5 Ιουνίου 00 Απαντήστε όλα τα κάτωθι ερωτήµατα, παρέχοντας επεξηγηµατικά σχόλια όπου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα