Maxima: οδηγίες χρήσης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Maxima: οδηγίες χρήσης"

Transcript

1 Maima: οδηγίες χρήσης Αλέξιος Ταμπαρόπουλος aleis[dot]maima[at]gmail[dot]com Περιεχόμενα Εισαγωγή Αριθμητικές πράξεις Βασικές σταθερές και συναρτήσεις Θεωρία αριθμών Σύνολα Πολυώνυμα και ρητές παραστάσεις Όριο, παράγωγος και ολοκλήρωμα Συνήθεις διαφορικές εξισώσεις Γραμμική άλγεβρα Γραφήματα

2

3 Εισαγωγή Το Maima είναι ένα υπολογιστικό μαθηματικό σύστημα (computer algebra system), γραμμένο στην γλώσσα Lisp. Το Maima παρήχθη από το σύστημα Macsyma, το οποίο αναπτύχθηκε από το Αμερικανικό Πανεπιστήμιο MIT από το 1968 ως το 198 ως τμήμα του σχεδίου Project MAC. Το MIT έδωσε ένα αντίγραφο του πηγαίου κώδικα (source code) στο Τμήμα Ενέργειας (Department of Energy) το 198. Η εκδοχή αυτή είναι γνωστή ως DOE Macsyma. Ένα αντίγραφο του DOE Macsyma έγινε αντικείμενο εργασίας του William F. Schelter, καθηγητή του Πανεπιστημίου του Teas, από το 198 έως το θάνατό του το 001. Το 1998 ο Schelter εξασφάλισε την άδεια από το Τμήμα Ενέργειας να δημοσιοποιήσει τον πηγαίο κώδικα του DOE Macsyma υπό την άδεια GNU Public License, και το 000 ξεκίνησε το σχέδιο Maima (Maima project) στο SourceForge για την ανάπτυξη του DOE Macsyma, το καλούμενο τώρα Maima. Το Maima διατίθεται δωρεάν για Windows, Linu και Mac. Το Maima υποστηρίζει μαθηματικούς υπολογισμούς όπως: παραγώγιση, ολοκλήρωση, σειρές Taylor, μετασχηματισμούς Laplace, συνήθεις διαφορικές εξισώσεις, συστήματα γραμμικών εξισώσεων, πολυώνυμα, διανύσματα, μητρώα, τανυστές κ.λπ. Η επίσημη ιστοσελίδα του προγράμματος βρίσκεται στην ηλεκτρονική διεύθυνση: Ακολουθεί ένας οδηγός χρήσης του προγράμματος στα ελληνικά. Από τις εκατοντάδες εντολές -και αντίστοιχες δυνατότητες- παρουσιάζονται ορισμένες βασικές λειτουργίες, μέσα από παραδείγματα. Το κείμενο θα ανανεώνεται κάθε 3 μήνες. Η παρούσα έκδοση είναι η 1.1 (Ιανουάριος 008). 3

4 Αριθμητικές πράξεις Το Maima μπορεί να εκτελέσει απλές αριθμητικές πράξεις, αν και σπάνια θα το χρησιμοποιήσουμε για αυτόν τον σκοπό. Ο στόχος όμως είναι η εξοικείωση με το πρόγραμμα και τις εντολές. Όταν εκκινεί το πρόγραμμα, εμφανίζεται η συμβολοσειρά <%i1>. Το γράμμα i αντιστοιχεί στη λέξη input (είσοδος/στοιχείο εισόδου), ο αριθμός 1 στη διάταξη, αφού είναι το πρώτο στοιχείο. Μπορούμε να δώσουμε μία ή περισσότερες εντολές, τις οποίες χωρίζουμε με το (ελληνικό) ερωτηματικό <;>. Οι πράξεις συμβολίζονται ως εξής (χωρίς το <>): <+> η πρόσθεση <-> η αφαίρεση <*> ο πολλαπλασιασμός </> η διαίρεση <^> ή <**> η ύψωση σε δύναμη Αν δώσουμε (11-7)*(6/+5)^; 6 δηλαδή και πιέσουμε <Enter>, το πρόγραμμα θα επιστρέψει τη γραμμή: (%o1) 56 δηλαδή το o (output=αποτέλεσμα) είναι 56, ενώ πιο πάνω εμφανίζει τη γραμμή: (%i1) (11-7)*(6/+5)^; η οποία κρατάει την πληροφορία εισόδου, στην οποία μας επιτρέπει να αναφερθούμε ξανά στα επόμενα, αν θέλουμε. Χρησιμοποιώντας το σύμβολο <%> το πρόγραμμα μας επιτρέπει να αναφερθούμε στην αμέσως προηγούμενη γραμμή: (%i) % - 10; 4

5 Δίνουμε έτσι την εντολή στο πρόγραμμα να αφαιρέσει το 10 από το τελευταίο αποτέλεσμα που είχε δώσει. Επομένως, θα μας επιστρέψει τη γραμμή: (%o) 46 Αν γράψουμε: (%i3) %o1 / 8; δίνουμε την εντολή στο πρόγραμμα να αναφερθεί στο αποτέλεσμα %o1 και να το διαιρέσει δια 8: (%o3) 3 Το πρόγραμμα επιστρέφει το αποτέλεσμα μιας διαίρεσης ως ανάγωγο κλάσμα: (%i4) 15/95; (%ο4) 3 19 Γενικότερα, το πρόγραμμα εκτελεί τις ζητούμενες πράξεις κάνοντας ακριβείς υπολογισμούς, χειριζόμενο ακέραιους, κλάσματα και σύμβολα (όπως τα ριζικά). Αν θέλουμε το αποτέλεσμα σε δεκαδική μορφή, χρησιμοποιούμε την εντολή float, οπότε αυτό εξάγεται προσεγγιστικά, αν ο αριθμός των δεκαδικών ψηφίων του υπερβαίνει την προκαθορισμένη ακρίβεια του προγράμματος. (%i5) float(15/95); (%o5) Μπορούμε να δηλώσουμε ότι θέλουμε το αποτέλεσμα σε δεκαδικό εναλλακτικά και ως εξής: (%i6) 15/95.0; (%o6) (%i7) 15.0/95; (%o7) (%i8) 15/95,numer; (%o8) Το Maima είναι σε θέση να χειριστεί πολύ μεγάλους αριθμούς. Για να υπολογίσουμε το 33 παραγοντικό: (%i9) 33!; 5

6 (%o9) Με την εντολή float μπορούμε να μετατρέψουμε τον αριθμό σε τυποποιημένη εκθετική μορφή: (%i10) float(%); (%o10) Αν το αποτέλεσμα μιας δύναμης είναι άρρητος, το πρόγραμμα δίνει το αποτέλεσμα ως δόθηκε. (%i11) (1 + sqrt())^5; (%o11) 1 5 Αν όμως θέλουμε να αναπτύξουμε τη δύναμη, χρησιμοποιήσουμε την εντολή epand. (%i1) epand(%); (%o1) 9 41 Και για προσεγγιστικό υπολογισμό, όπως είδαμε και στη διαίρεση: (%i13) float(%); (%o13) ή (%i14) %i13,numer; (%o14)

7 Βασικές σταθερές και συναρτήσεις Μπορούμε να αναφερθούμε σε ορισμένες μαθηματικές σταθερές ως εξής: %e - ο αριθμός e του Euler (.7188 ) %pi - ο αριθμός π ( ) 5 1 %phi - ο χρυσός αριθμός %i - η φανταστική μονάδα i 1 inf - το (+) άπειρο minf - το (-) άπειρο Ορισμένες βασικές συναρτήσεις είναι οι εξής: sin (ημίτονο), cos (συνημίτονο), tan (εφαπτομένη), cot (συνεφαπτομένη), sec (τέμνουσα), csc (συντέμνουσα), atan το τόξο εφαπτομένης, sqrt (τετραγωνική ρίζα), log (φυσικός λογάριθμος), ep (εκθετική συνάρτηση). Οι συναρτήσεις πρέπει να διαχωριστούν εννοιολογικά από τις εντολές και τους τελεστές, όπως η εντολή float που είδαμε ήδη και ο τελεστής limit που θα δούμε παρακάτω, αντίστοιχα. Ας δούμε τις συναρτήσεις στην πράξη: (%i1) (sin(%pi/)+ cos(%pi/3))* sqrt(81); (%o1) 7/ (%i) ep(%pi*%i); (%o) -1 Μπορούμε να καθορίσουμε κάποιες παραμέτρους, τις οποίες σκοπεύουμε να χρησιμοποιήσουμε, με το σύμβολο <:> (%i3) a:3;b:5; (%o3) 3 (%o4) 5 Αυτό σημαίνει ότι στα επόμενα, όταν το πρόγραμμα συναντά τα γράμματα a και b, θα τα αντικαθιστά με τις τιμές 3 και 5 αντίστοιχα. 7

8 (%i5) sqrt(b^-a^); (%o5) 4 Με ανάλογο τρόπο, με το σύμβολο <:=> ορίζουμε και τις συναρτήσεις που θέλουμε: (%i6) f():=^-+1; (%o6) f ( ) : 1 (%i7) f(b)-f(a); (%o7) 14 Σημειώνεται ότι το πρόγραμμα δεν διαθέτει ως συνάρτηση τον λογάριθμο με βάση το 10, αλλά μπορούμε να ορίσουμε τη συνάρτηση εμείς και να τη χρησιμοποιούμε στα επόμενα: (%i8) log10():= log()/log(10); (%o8) log log10():= log 10 Για να υπολογίσουμε αθροίσματα μιας ακολουθίας χρησιμοποιούμε την εντολή sum. Ας υποθέσουμε ότι ζητούμε το άθροισμα των όρων 1/n όπου το n λαμβάνει τις ακέραιες τιμές από 1 ως 100: (%i9) sum(1/n,n,1,100); (%o9) και για δεκαδική μορφή: (%i10) %,numer; (%o10) Τα γινόμενα υπολογίζονται με την εντολή product: (%i11) product(1+1/n^,n,1,100),numer; (%o11)

9 Θεωρία αριθμών Η εντολή factor αναλύει έναν αριθμό σε γινόμενο πρώτων παραγόντων: (%i1) factor(30!); (%o1) Αν δώσουμε ένα ζεύγος αριθμών, η εντολές quotient και remainder μας επιστρέφουν το πηλίκο και το υπόλοιπο της διαίρεσης του πρώτου προς τον δεύτερο, αντίστοιχα: (%i) quotient(138,17); (%o) 8 (%i3) remainder(138,17); (%o3) Οι εντολές gcd (greatest common divisor) και lcm (least common multiple) δίνουν τον μέγιστο κοινό διαιρέτη και το ελάχιστο κοινό πολλαπλάσιο αριθμών. Προκειμένου να χρησιμοποιήσουμε την εντολή lcm πρέπει να φορτώσουμε πρώτα ένα σύνολο εντολών, δίνοντας την εντολή load("functs"): (%i4) gcd(18,30); (%o4) 6 (%i5) load("functs"); (%i6) lcm(18,30); (%o6) 90 Η εντολή gcd δέχεται ως όρισμα μόνο ένα ζεύγος αριθμών. Αν θέλουμε να βρούμε τον μκδ τριών ή περισσότερων αριθμών, μπορούμε να θυμηθούμε την ιδιότητα (a,b,c)=((a,b),c). Για τον μκδ(1,15,18): (%i7) gcd(gcd(1,15),18); (%o7) 3 Η εντολή primep ελέγχει αν ο δοσμένος αριθμός είναι ή όχι πρώτος και επιστρέφει την αληθοτιμή (true ή false): (%i8) primep( ); 9

10 (%o8) true Η εντολή divsum υπολογίζει το άθροισμα των διαιρετών ενός αριθμού: (%i9) divsum(10); (%o9) 18 Για να υπολογίσουμε το άθροισμα των k-δυνάμεων των διαιρετών ενός φυσικού n ( d / n d k ), δίνουμε στην εντολή divsum ως όρισμα ένα ζεύγος αριθμών, όπου ο πρώτος δηλώνει τον αριθμό n και ο δεύτερος την επιθυμητή δύναμη k: (%i10) divsum(10,3); (%o10) 1134 Η εντολή binomial δίνει τον διωνυμικό συντελεστή (%i11) binomial(10,4); n n! m m!( n m)! (%o11) 10 10

11 Σύνολα Το σύνολο δηλώνεται με την εντολή set, ή με άγκιστρα, αναγράφοντας τα στοιχεία του συνόλου. Αν δεν δώσουμε κανένα στοιχείο, αναφερόμαστε στο κενό σύνολο. (%i1) a:set(1,,3,4,5); (%o1) {1,,3,4,5} (%i) b:set(3,4,5,6,7); (%o) {3,4,5,6,7} Για να βρούμε την ένωση (union) ή την τομή (intersection) των a και b: (%i3) c:union(a,b); (%o3) {1,,3,4,5,6,7} (%i4) d:intersection(a,b); (%o4) {3,4,5} Με τις εντολές powerset και cartesian_product βρίσκουμε το δυναμοσύνολο ενός συνόλου και το καρτεσιανό γινόμενο δύο συνόλων αντίστοιχα: (%i5) powerset(d); (%o5) {{},{3},{3,4},{3,4,5},{3,5},{4},{4,5},{5}} (%i6) cartesian_product(a,d); (%o6) {[1,3],[1,4],[1,5],[,3],[,4],[,5],[3,3],[3,4],[3,5],[4,3],[4,4],[4,5],[5,3],[5,4],[5,5]} Η διαφορά συνόλων Α-Β ή Α\Β δηλώνεται με την εντολή setdifference: (%i7) setdifference(a,b); (%o7) {1,} Η εντολή cardinality δίνει τον πληθάριθμο ενός συνόλου, το πλήθος των στοιχείων του: (%i8) cardinality(c); (%o8) 7 11

12 Πολυώνυμα και ρητές παραστάσεις Ο τελεστής factor αναλύει ένα πολυώνυμο σε γινόμενο πρώτων παραγόντων. Η ανάλυση γίνεται στο Z[X]. Αυτό σημαίνει ότι μπορούμε να κάνουμε ανάλυση της μορφής: 6 3 αλλά όχι 1 i i ή Για να παραγοντοποιήσουμε την ακόλουθη παράσταση: (%i1) factor(3*^9-11*^8+*^7-38*^6+48*^5-48*^4+4*^3-6*^+13*-5); (%o1) Ο τελεστής epand λειτουργεί αντίστροφα. Αναπτύσσει δυνάμεις και γινόμενα πολυωνύμων: (%i) epand((-)^*(*+3)); (%o) Μπορούμε να αντικαταστήσουμε κάποιες μεταβλητές με άλλες, ή με αριθμητικές τιμές, ως εξής: (%i3) epand((+y+1)^); (%o3) y +y+y+ ++1 (%i4) %,=y,y=z,z=1; (%o4) z +yz+z+y +y+1 Με τη χρήση του τελεστή solve λύνουμε αλγεβρικές εξισώσεις. Στο όρισμα πρέπει να δώσουμε την εξίσωση (αν παραλείψουμε το =0, το πρόγραμμα θα το θεωρήσει δεδομένο) και να καθορίσουμε ποιος είναι ο άγνωστος της εξίσωσης. (%i5) solve(^-4=0,); (%o5) [=-,=] Το πρόγραμμα επιστρέφει τη λύση μιας εξίσωσης, εφόσον η τελευταία είναι επιλύσιμη με ριζικά. Είναι γνωστό ότι οι πολυωνυμικές εξισώσεις βαθμού 5 ή μεγαλύτερου δεν έχουν γενικά τέτοια κλειστή λύση, οπότε το πρόγραμμα δεν 1

13 θα επιστρέψει αποτέλεσμα. Το πρόγραμμα όμως θα εξετάσει από μόνο του την ύπαρξη ανάλυσης του πολυωνύμου σε γινόμενο παραγόντων (σύμφωνα με όσα συζητήθηκαν για την εντολή factor) και θα λύσει χωριστά τις εξισώσεις που προκύπτουν, δίνοντας τις ακριβείς τιμές των ριζών, όπου υπάρχουν. Αν, για παράδειγμα, ένα πολυώνυμο βαθμού 7 αναλύεται σε γινόμενο δύο αναγώγων πολυωνύμων βαθμού 4 και 3 αντίστοιχα, θα πάρουμε την πλήρη λύση. Αν όμως αναλύεται σε γινόμενο τριών αναγώγων πολυωνύμων, ενός βαθμού 5 και δύο πρωτοβάθμιων, θα πάρουμε μόνο ρίζες. Ένα τέτοιο παράδειγμα είναι η εξίσωση =0: (%i6) solve(^7-*^6-4*^5+13*^4-1*^3+5*^-3*+); (%o6) [=1,=, 0= ] Το πρόγραμμα μπορεί να λύσει και παραμετρικές εξισώσεις. Για την εξίσωση a 1 0: (%i7) solve(^-a*+1,); a 4 a a 4+a (%o7)[, ] Η εντολή nroots υπολογίζει το πλήθος των πραγματικών ριζών μιας πολυωνυμικής εξίσωσης σε ένα δοσμένο διάστημα της μορφής (, ]. Ας υπολογίσουμε το πλήθος των πραγματικών λύσεων της εξίσωσης στο διάστημα (-5,3]: 7 4 (%i8) p:^7-3*^4+1; 7 4 (%o8) (%i9) nroots(p,-5,3); (%o9) 3 Το Maima λύνει τις εξισώσεις στο C, δίνοντας πραγματικές και μιγαδικές ρίζες: (%i10) solve(^+*+5,); (%o10) [=-*%i-1,=*%i-1] Για να λύσουμε ένα σύστημα γραμμικών εξισώσεων, δίνουμε ένα όρισμα που αποτελείται από δύο ζεύγη αγκυλών. Στο πρώτο τοποθετούμε τις εξισώσεις, 13

14 χωρισμένες με κόμμα και στο δεύτερο τους αγνώστους, επίσης χωρισμένους με κόμμα. Αν οι εξισώσεις έχουν μόνο πρώτο μέλος, το δεύτερο μέλος τίθεται αυτόματα =0. Για το σύστημα: y 14 3y 9 θα γράψουμε: (%i11) solve([-*y=14,+3*y=9],[,y]); (%o11) [[=1,y=-1]] Για το παραμετρικό σύστημα: ay 1 b 3y (%i1) solve([+a*y=1,b*-3*y=],[,y]); a+3 b (%o1)[[, y ]] a b+3 ab 3 Θα λύσουμε και ένα μη-γραμμικό σύστημα: yz y z 0 y (%i13) +y*z=y-*z=0;+y= (%o13) yz (%o14) y z 0 (%o15) y (%i16) solve([%o14,%o15,%o16],[,y,z]); (%o16) [[=1,y=1,z=1],[=,y=0,z=0]] Η εντολή partfrac αναλύει μία ρητή παράσταση σε μερικά κλάσματα (partial fractions). Για να αναλύσουμε την παράσταση: a 5 6 (%i17) a:/(^-5*+6); 14

15 (%o17) 5 6 (%i18) partfrac(a,); (%o18) Με την εντολή ratsimp (rational + simplify) μπορούμε να κάνουμε το αντίστροφο. Ο τελεστής αυτός απλοποιεί μία ρητή παράσταση: (%i19) ratsimp(%); (%o19) 5 6 Η εντολή funcsolve επιχειρεί να λύσει μια αναδρομική εξίσωση, εφόσον υπάρχει πολυωνυμική ή ρητή λύση. Λύνουμε την (%i0) eqn:(n+1)*f(n)-(n+3)*f(n+1)/(n+1)=(n-1)/(n+); (%o0) n+3 f(n+1) n-1 (n+1)f(n)- = n+1 n+ (%i1) funcsolve(eqn,f(n)); n+3 n-1 (n+1)f(n)- f(n+1)= n+1 n+ ως εξής: Dependent equations eliminated: (4 3) (%o1) n f(n)= (n+1)(n+) Η εντολή gcd λειτουργεί και στην περίπτωση πολυωνύμων, δίνοντας τον μκδ δύο πολυωνύμων. Με την εντολή ezgcd, η οποία αναφέρεται σε έναν διαφορετικό αλγόριθμο υπολογισμού, δίνουμε μία n-άδα πολυωνύμων και το πρόγραμμα επιστρέφει μία (n+1)-άδα, όπου το πρώτο στοιχείο είναι ο μέγιστος κοινός διαιρέτης των n πολυωνύμων και τα υπόλοιπα n στοιχεία είναι οι λόγοι των πολυωνύμων προς τον μέγιστο κοινό διαιρέτη. Ένα παράδειγμα: (%i) ezgcd(^+3*+,+1); (%o) [+1,+,1] 3, 1 1, Δηλαδή 3, Ιδιαίτερο ενδιαφέρον παρουσιάζει η εντολή eliminate, με την οποία μπορούμε να κάνουμε απαλοιφή μιας ή περισσότερων μεταβλητών από ένα σύστημα 15

16 εξισώσεων. Ας υποθέσουμε ότι θέλουμε να βρούμε την καμπύλη κατά την οποία τέμνονται οι επιφάνειες: y z 3 y yz z 1 (%i3) a:^+y^+z^-3;b:*y+y*z+z*+1; (%o3) z y 3 (%o4) yz z y 1 0 (%i5) eliminate([a,b],[z]); (%o5)[y +y +(3-3)y +( -4)y ] 16

17 Όριο, παράγωγος και ολοκλήρωμα Τα όρια υπολογίζονται με τον τελεστή limit. Το όρισμα περιλαμβάνει τη συνάρτηση, την ανεξάρτητη μεταβλητή και το σημείο στο οποίο τείνει η ανεξάρτητη μεταβλητή. Για τον υπολογισμό του γνωστού (%i1) f():=sin()/; sin() (%o1) f():= (%i) limit(f(),,0); (%o) 1 sin lim 0 γράφουμε: Για το όριο της συνάρτησης y όταν 0, δηλώνουμε πρώτα ότι >0 με την εντολή assume και γράφουμε: (%i3) assume(>0); (%o3) [>0] (%i4) limit(/abs(),,o); (%o4) 1 Ένας άλλος τρόπος να βρούμε πλευρικά όρια είναι να δηλώσουμε το αριστερά και δεξιά του αριθμού με τα minus και plus. Πρώτα όμως πρέπει να αναιρέσουμε την εντολή %i3 που δώσαμε προηγουμένως: (%i5) forget(>0); (%o5) [>0] (%i6) limit(/abs(),,0,plus); (%o6) 1 (%i7) limit(/abs(),,0,minus); (%o7) -1 Για το γνωστό όριο 1 lim1 e : (%i8) h():=(1+1/)^; 17

18 (%o8) h 1 : 1 (%i9) limit(h(),,inf); (%o9) %e Η παράγωγος συμβολίζεται με τον τελεστή diff. Το όρισμα περιλαμβάνει την συνάρτηση, την ανεξάρτητη μεταβλητή και την τάξη παραγώγισης, η οποία αν παραληφθεί, τίθεται αυτόματα ίση με 1. (%i10) f:^; (%o10) (%i11) diff(f,); (%o11) (log()+1) Αν θέλουμε να εξετάσουμε αν η συνάρτηση -t y=e αποτελεί λύση της διαφορικής εξίσωσης y +y +y=0 γράφουμε: (%i1) y:ep(-t^); (%o1) %e -t (%i13)diff(y,t,)+*t*diff(y,t)+*y; (%o13) 0 Ο τελεστής integrate χρησιμοποιείται για τον υπολογισμό ολοκληρωμάτων. Το όρισμα περιλαμβάνει 4 θέσεις, τη συνάρτηση, την ανεξάρτητη μεταβλητή και τα άκρα του διαστήματος στο οποίο γίνεται η ολοκλήρωση. Αν τα τελευταία παραληφθούν, η ολοκλήρωση γίνεται αόριστα. Αν το πρόγραμμα δεν είναι σε θέση να υπολογίσει το αόριστο ολοκλήρωμα, επιστρέφει την πληροφορία εισόδου. Σημειώνεται ότι το πρόγραμμα δεν δίνει τη σταθερά c στο αποτέλεσμα της αόριστης ολοκλήρωσης. Για το ολοκλήρωμα 1 log : 1 (%i14) integrate(1/,,1,); (%o14) log() 18

19 Για το ολοκλήρωμα 1 1 d 4 tan c : 4 4 (%i15) integrate(/(^4+4),); atan (%o15) 4 Το πρόγραμμα υπολογίζει και μη-γνήσια (γενικευμένα) ολοκληρώματα. Για τον υπολογισμό του e d γράφουμε: 0 (%i16) integrate(ep(-^),,0,inf); (%o16) %pi 19

20 Συνήθεις διαφορικές εξισώσεις Η εντολή ode λύνει συνήθεις διαφορικές εξισώσεις πρώτης ή δεύτερης τάξης (ordinary differential equations - ODE). Το όρισμα αποτελείται από 3 στοιχεία: την διαφορική εξίσωση, την εξαρτημένη μεταβλητή και την ανεξάρτητη μεταβλητή. Στο αποτέλεσμα, το πρόγραμμα συμβολίζει με %c τη σταθερά (για τάξη-1) και με %k1, %k τις σταθερές (για τάξη-). Οι μέθοδοι που εφαρμόζει το Maima είναι: γραμμικές, χωριζόμενων μεταβλητών, ακριβείς, ομογενείς, Bernoulli για τάξη-1 και σταθερών συντελεστών, ακριβείς, γραμμικές ομογενείς που μετασχηματίζονται σε σταθερών συντελεστών, Euler για τάξη-, καθώς και μερικές ακόμη κατηγορίες. Με diff(y,) συμβολίζουμε την παράγωγο του y ως προς, dy/d. d Για παράδειγμα οι εξισώσεις 0 και y '' 3 y ' y 0 : dy y (%i1) ode('diff(y,)-/y=0,y,); y (%o1) = + %c (%i) ode('diff(y,,)-3*'diff(y,)+*y=0,y,); (%o) y= %k1 %e + %k %e 0

21 Γραμμική άλγεβρα Ας ορίσουμε ένα μητρώο (πίνακα) στο Maima, με την εντολή entermatri, καθορίζοντας την διάστασή του: (%i1) entermatri(,); Is the matri 1. Diagonal. Symmetric 3. Antisymmetric 4. General Answer 1,, 3 or 4 : Δηλώνουμε με τον αντίστοιχο αριθμό αν θα ορίσουμε διαγώνιο, συμμετρικό, αντισυμμετρικό ή τυχαίο μητρώο. Δίνουμε την απάντηση 4 και στη συνέχεια το πρόγραμμα μας ζητάει τα στοιχεία του μητρώου, αρχίζοντας από την πρώτη γραμμή (row) μέχρι να καλύψουμε όλες τις στήλες (column): Row 1 Column 1: 1; Row 1 Column : -; Row Column 1: -3; Row Column : 7; Matri entered. (%o1) Το πρόγραμμα δείχνει το μητρώο που δηλώθηκε. Με τις εντολές transpose, determinant και invert, βρίσκουμε το ανάστροφο, την ορίζουσα και το αντίστροφο. Ας συμβολίσουμε με m το μητρώο: (%i) m:%o1; (Αυτό θα μπορούσε εξ αρχής να δηλωθεί με την εντολή m:entermatri(,);) (%o) (%i3) transpose(m); (%o3)

22 (%i4) determinant(m); (%o4) 1 (%i5) invert(m); (%o5) Με την εντολή invert(m),detout; το πρόγραμμα δίνει το αντίστροφο μητρώο, κρατώντας έξω από το μητρώο τον όρο 1/det(m). Ο πολλαπλασιασμός μητρώων δηλώνεται με την τελεία. Μπορούμε να ορίσουμε ή περισσότερα μητρώα (ακολουθώντας την ανωτέρω διαδικασία) και να εκτελέσουμε πράξεις με αυτά. Σημειώνεται ότι η πρόσθεση μητρώου και αριθμού προσθέτει τον αριθμό σε κάθε στοιχείο του μητρώου. Με τις εντολές eigenvalues και eigenvectors βρίσκουμε ιδιοτιμές και ιδιοδυανύσματα. Όταν εφαρμοστεί η εντολή eigenvalues, το πρόγραμμα εξάγει n-άδες (n η διάσταση του τετραγωνικού πίνακα). Η πρώτη δηλώνει τις αριθμητικές τιμές των ιδιοτιμών και η δεύτερη την πολλαπλότητα της αντίστοιχης ιδιοτιμής. (%i6) eigenvalues(m); (%o6) 4 15, 15 4, 1,1

23 Γραφήματα Το Maima σχεδιάζει γραφήματα ή 3 διαστάσεων, με τις εντολές plotd και plot3d. Μέσα στην εντολή περιλαμβάνουμε το τμήμα του -άξονα που θα σχεδιαστεί. (%i1) plotd(^-+3,[,-10,10]); και με 3 διαφορετικές συναρτήσεις στο ίδιο γράφημα: (%i) plotd([^,^3,^4-+1],[,-10,10]); Για γράφημα σε 3 διαστάσεις: (%i3) f(,y):= sin()+cos(y); (%i4) plot3d(f(,y),[,-5,5],[y,-5,5]); 3

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Η Mathematica είναι ένα ολοκληρωμένο μαθηματικό πακέτο με πάρα πολλές δυνατότητες σε σχεδόν όλους τους τομείς των μαθηματικών (Άλγεβρα, Θεωρία συνόλων, Ανάλυση,

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές

Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές Μαθηματική Ανάλυση Ι Συνάρτηση μίας Μεταβλητής

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..

Διαβάστε περισσότερα

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Παρουσίαση του Mathematica

Παρουσίαση του Mathematica Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός

Διαβάστε περισσότερα

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 2 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 3 ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ 4 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 5 ΓΕΩΡΓΙΟΣ ΘΕΟΔΩΡΟΥ Καθηγητής Α.Π.Θ. ΧΡΙΣΤΙΝΑ ΘΕΟΔΩΡΟΥ Μαθηματικός ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ Β. Ολοκλήρωση κατά παράγοντες Γενικά η μέθοδος αυτή εφαρμόζεται όταν έχουμε γινόμενο δύο συναρτήσεων Εκφράζεται με τον τύπο της παραγοντικής ολοκλήρωσης: f()g ()d= f()g() - f ()g()d

Διαβάστε περισσότερα

Οι εντολές του MaLT+

Οι εντολές του MaLT+ Έλεγχος του χαρακτήρα Οι εντολές του MaLT+ Ελληνική Εντολή Αγγλική Εντολή Περιγραφή Παράδειγμα Κίνηση του χαρακτήρα Μπροστά/μ Πίσω/π fw/fd/forward bw/bk/backward προχωράει μπροστά τόσα βήματα όσο ο προχωράει

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

http://users.auth.gr/~ppi/mathematica

http://users.auth.gr/~ppi/mathematica http://users.auth.gr/~ppi/mathematica ΜΑΘΗΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΡΙΘΜΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Γλώσσες Προγραμματισμού Fortran, C++, Java,. ΑΛΓΕΒΡΙΚΟΙ ή ΣΥΜΒΟΛΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Computer Algebra Systems Mathematica,

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 1: Εισαγωγικά Μαθήματος & Κυριότερες Συναρτήσεις του Microsoft Excel 2010 Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN: 960-516-026-9 Copyright

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Βασικές Μεθοδολογίες για την επίλυση ασκήσεων

Βασικές Μεθοδολογίες για την επίλυση ασκήσεων ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Βασικές Μεθοδολογίες για την επίλυση ασκήσεων ΣΤΕΛΙΟΥ ΜΙΧΑΗΛΟΓΛΟΥ ΕΥΑΓΓΕΛΟΥ ΤΟΛΗ 5-6 Επιμέλεια : Νικόλαος Σαμπάνης Στο φυλλάδιο περιέχονται όλες οι βασικές Μεθοδολογίες

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή πρωτεύουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι,

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Αριθμητική Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Δεύτερο Πρόγραμμα 1 / * Second Simple Program : add 2 numbers * / 2

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα