4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal"

Transcript

1 4. HIDROMEHANIKA V grobem ločimo tri glana agregatna stanja snoi: trdno, kapljeinsko in plinsko. V trdni snoi so atomi blizu drug drugemu in trdno poezani med seboj ter ne spreminjajo sojega relatinega položaja dani atom ima edno iste sosede, ki se lahko le malo odmikajo ali približujejo. V kapljeinskem agregatnem stanju so atomi in molekule pra tako tesno skupaj, zato je gostota te faze zelo podobna gostoti trdne faze, endar se delci lahko gibljejo relatino eden na drugega, torej tečejo ko kapljeino pomešamo, dobi delec posem druge sosede. V plinski fazi so delci (molekule) relatino daleč narazen, npr. za ečkratnik lastne elikosti, in se gibljejo skoraj neodisno drug od drugega, sile med njimi so zelo majhne. Ker sno kapljeinski in plinski fazi lahko»teče«(delci se gibljejo relatino eden na drugega), oboje imenujemo tekočine. Sno kapljeinski fazi imenujemo kapljeina, ker lahko tori kapljice. Hidrostatika mirujoče tekočine. Tlak mirujočih tekočinah - mirujoča tekočina deluje na stene posode s silo. Po 3. Newtonoem zakonu stena posode deluje na tekočino z nasprotno silo. Daleč od gladine, kjer ni poršinskih učinko, ranoesju stena deluje na tekočino s silo praokotni smeri. Torej tudi tekočina na steno deluje praokotni smeri, kar opazimo, če na nekaj mestih preluknjamo balon, napolnjen z odo: tekočina na seh mestih brizga praokotno na steno (in se nato zakrii nazdol zaradi sile teže). Izkaže se, da je elikost sile na dano (majhno) ploske neki točki tekočini neodisna od tega, kam je ploske obrnjena, in da je sorazmerna z elikostjo ploske. Zato definiramo tlak kot razmerje med silo tekočine (df) in elikostjo ploske (ds), na katero tekočina pritiska: df p =. ds Tlak je torej definiran za sako točko tekočini kot količina, s katero je potrebno pomnožiti elikost (majhne) ploske, da dobimo silo, s katero tekočina pritiska na to poršino, smer te sile pa je edno praokotna na ploske. Enota za tlak je pascal: 1 Pa = 1 N/m. V praksi uporabljamo še enoto bar 1 bar = 10 5 Pa. 1 bar približno ustreza zračnemu tlaku na morski gladini. F 1 F S 1 S p 1 = p 1

2 Slika 4.1 Sili na bata hidralične stiskalnice. Tlak se skozi tekočino prenaša: če na tekočino pritisnemo na enem koncu npr. z batom, ki zapira posodo, in s tem po 3. Newtonoem zakonu poečamo tudi silo tekočine na bat (torej tlak ob batu), se za enako rednost poeča tlak po sej tekočini: tekočina tudi na preostale stene posode pritiska z ečjo silo. Poja izkoriščamo pri hidralični stiskalnici, ki je principu posoda, napolnjena s tekočino (ponaadi oljem), z dema različno elikima odprtinama, zaprtima s premičnima batoma (slika 4.1). Če pritisnemo na bat poršine S 1 s silo F 1 in torej poečamo tlak za p 1 = F 1 /S 1, se za toliko poeča tlak tudi ob drugem batu: p 1 = p = F /S, tako elja: F 1 F F = oz. 1 S = 1 S1 S F S Primer: Če je razmerje poršin bato S 1 : S = 100 : 1, je tudi razmerje sil na bata 100 : 1, kar izkoristimo za ustarjanje elikih sil: npr. atomobil s težo F 1 = 10 4 N lahko dignemo s silo F = 100 N, če je poršina bata na strani atomobila stokrat ečja. Hidrostatični tlak - zgornji sloji tekočine pritiskajo s sojo težo na spodnje, zato se tekočini tlak z globino poečuje. Majhen delec tekočine naj ima obliko kadra z odoranimi in napičnimi ploskami ter išino dh (slika 4. ). Sila na spodnjo ploske (F ) pa mora biti ečja od sile na zgornjo ploske (F 1 ), da uranoesi težo kadra tekočine (F g = dm g = ρs dh g): F 1 = p 1 S F g = ρ S dh g F = p S Slika 4. Hidrostatični tlak. Za nestisljio tekočino (gostota (ρ) je posod enaka, npr. odo) elja, da je sprememba tlaka sorazmerna z globino (h): p = ρgh. Primer: Če se odi potopimo za h = 1 m, tlak naraste za p = ρgh =1000 kg/m 3 9,8 m/s 1 m 10 4 Pa = 0,1 bar. Če je tlak na gladini 1 bar, je torej globini 1 m pod gladino tlak 1,1 bar, globini 10 m bar, 100 m pod gladino pa 11 bar. V redkejši tekočini, npr. zraku z eč kot 800 krat manjšo gostoto (~1, kg/m 3 ), se tlak na enem metru spremeni le za 1 Pa = 0,1 mbar, gostejšem žiem srebru (gostota kg/m 3 ) pa za poečanje tlaka za 1 bar zadošča že 0,75 m tekočine. V stisljii tekočini (npr. zraku) se gostota z išino spreminja, zato naš račun elja le za majhne spremembe išine, pri katerih lahko to spremembo zanemarimo. (Hitro lahko izračunamo, da bi bila zemeljska atmosfera isoka le okoli 8000 m, če bi bila gostota zraka po sej išini tolikšna kot na morski gladini, in npr. na rhu Himalaje sploh ne bi bilo zraka.)

3 Zračni tlak odisnosti od išine. h [km] p [bar] 0 1 0,8 0,93 1,5 0,85 3 0,75 5 0,5 10 0,1 0 0, , Slika 4.3 Tlak mirujoči tekočini je odisen le od išine tekočine in je na dnu seh štirih posod enak. Če je poršina dna seh posodah enaka, je seh posodah enaka tudi sila, s katero tekočina pritiska na dno, čepra se količine tekočine posodah razlikujejo. h p 1 p p' h p 0 Slika 4.4 Če natočimo ceko z dema napičnima krakoma (»U-ceka«) tekočino in tlaka nad tekočino obeh krakih nista enaka, opazimo, da gladini nista enako isoki. Označimo tlak spodnjem delu ceke s p 0. Tlak tekočini na poljubni išini h, ki je nižja od obeh gladin, je enak na obeh straneh in je enak p' = p 0 + ρgh. Tlak na išini nižje gladine je enak zunanjemu tlaku ob tem kraku, hkrati pa je enak kot na enaki išini na drugi strani in zato elja p = p 1 + ρ g h. Stari merilniki tlaka so elikokrat določali neznani tlak tako, da so merili razliko išin gladine glede na znani tlak (zunanji tlak, akuum ). Zato še sedaj časih naletimo na tlak podan išini stolpca tekočine. Po mednarodnem merskem sistemu je pogojno dooljena enota za merjenje krnega tlaka milimeter žiosrebrnega stolpca, ki je enak hidrostatičnemu tlaku 1 milimetra žiega srebra z gostoto ρ = kg/m 3 : p = ρgh = kg/m 3 9,8 m/s 10-3 m = 133 Pa: 1 mmhg = 1 torr = 133 Pa, torej elja: 3

4 1 bar = 10 5 Pa = 750 torr. Prepoedane enote, na katere še časih naletimo, pa so: - milimeter odnega stolpca 1 mmh O = 9,8 Pa 10 Pa, - fizikalna atmosfera: 1 atm = 1,013 bar = 760 torr, to je tlak na morski gladini pri normalnih pogojih (temperatura 0 o C, gostota zraka 1,9 kg/m 3, težni pospešek 9,80665 m/s ). - tehniška atmosfera: 1 atm = 1 kp/cm = 0,98 bar = 740 torr. Vzgon Napihnjeno žogo je težko držati pod odo; ko jo spustimo, skoči nazaj proti poršini; ko se umiri, plaa na poršini. Tekočina deluje na žogo smeri nazgor, tej sili praimo sila zgona: F zg = ρ tekočine V telesa g. Sila zgona je enaka teži izpodrinjene tekočine. Prijemališče sile zgona je težišču tekočine, ki bi napolnjeala izpodrinjeno prostornino. F gt = ρ t Vg F g = ρvg Slika 4.5 Okolna tekočina deluje na potopljeno telo silo, ki je nasprotno enaka teži tekočine, ki zazema enako prostornino kot telo. Na potopljeni predmet torej delujeta nasprotnih smereh teža predmeta in sila zgona, ki je po elikosti enaka teži izpodrinjene tekočine. Če ni drugih sil, je rezultanta sil enaka: F g - F zg = ρ telesa V telesa g - ρ tekočine V telesa g, - če je gostota telesa ečja od gostote tekočine, je sila nazdol ečja od sile nazgor, zato telo potone, - če je gostota telesa manjša od gostote tekočine, je sila nazdol manjša od sile nazgor; telo splaa na poršino, - če je gostota telesa enaka gostoti tekočine, je sota seh sil na telo enaka nič in telo lebdi tekočini. Primer: Lesena kocka z robom a = 10 cm in gostoto ρ 1 = 700 kg/m 3 plaa na odi z gostoto ρ = 1000 kg/m 3. Na kocko delujeta teža in sila zgona. Ker kocka miruje, sta sili nasprotno enaki. Teža kocke je F g = ρ 1 a 3 g = 7 N. Sila tekočine deluje le na potopljeni del kocke in sicer tako, kot bi deloala na odo s prostornino a h, kjer je h išina potopljenega dela: F zg = ρ a hg. Ker sila zgona uranoesi težo telesa, elja: h = aρ 1 /ρ = 7 cm. 4

5 h a Slika 4.6 Tekočina deluje na plaajoče telo s silo, ki je enaka teži izpodrinjene tekočine. Hidrodinamika gibanje tekočin. Za popolni opis bi morali poznati notranje sile med posameznimi deli tekočine, kar je težko. Idealne tekočine notranje sile zanemarimo. Prizamemo tudi, da je tekočina nestisljia. Vektorsko polje hitrosti saki točki določimo ektor hitrosti. Če se polje s časom ne spreminja (ob različnih časih imajo delci ne nekem mestu edno enako hitrost po elikosti in po smeri), je gibanje stacionarno. Pri takem gibanju lahko najdemo tokonice poti delce. Smer hitrosti saki točki je smeri tangente na tokonico. Tokonice se ne sekajo (delec ima smer hitrosti samo eno smeri). Tokonice lahko oklepajo tokono ce tekočina ostane cei (tokonice notranjih delce nikoli ne sekajo tokonic delce na obodu cei). Masni pretok: m Φ m = = ρ S = ρφ. t Pri stacionarnem gibanju je masni pretok skozi prečni prerez tokone cei stalen, pri V nestisljii tekočini (ρ = konst.) je tudi olumski pretok Φ = = S stalen. t Laminarno gibanje tokonice se ne mešajo (stacionarno gibanje je laminarno, obratno ne elja edno, saj se pri laminarnem gibanju lahko s časom spreminja elikost hitrosti). Laminarni tok ponaadi opazimo pri majhnih hitrostih. Lažje ga je doseči močno iskoznih tekočinah. Turbulentno gibanje nastajajo rtinci. Viskoznost primer: plošča se enakomerno giblje skozi mirujočo tekočino. Pri idealnih tekočinah za to ni potrebna sila, realnih tekočinah (glicerin, olje, med...) pa potrebujemo lečno silo, da uranoeša notranje trenje med plastmi. V bolj iskoznih tekočinah je potrebna sila ečja. Primer: med ploščama je tekočina, zgornjo ploščo lečemo, iskozna sila deluje nasprotno smer kot lečna sila F. Pri enakomernem lečenju plošče sta lečna in zairalna sila enaki. Izkaže se, da je sila iskoznosti sorazmerna gradientu hitrosti (= / x, časih gradient imenujemo tudi strižna hitrost), poršini plošče (S) in koeficientu iskoznosti (η): F = η S. x 5

6 x + F Slika 4.7 Viskoznost: Koeficient iskoznosti η pri kapljeinah pada s temperaturo; pri plinih je η zelo majhen in narašča s temperaturo. r x 0 Slika 4.8 Profil hitrosti tanki plasti, kjer ena stena miruje, druga se giblje (leo) in aljati cei (desno). Kontinuitetna enačba - elja za stacionarni tok nestisljie tekočine. Volumski pretok se ohranja: Φ, = S11 = S ožji presek, ečja hitrost. 1 S 1 S 1 S Slika 4.9 Kontinuitetna enačba. Bernoullijea enačba Velja za idealno, nestisljio tekočino in stacionaren tok; točki, ki ju opazujemo, ležita na isti tokonici. V realnih tekočinah ti pogoji niso popolnoma izpolnjeni, zato enačbo uporabljamo le za oceno količin; ocena je boljša, če sta točki bližje. Opazujemo del tekočine med dema presekoma tokone cei (sl. 4.10). 6

7 S, h,, p S 1, h 1, 1, p 1 Slika 4.10 Bernoullijea enačba. Velja: ρ1 ρ ρ p1+ + ρgh1 = p + + ρgh ali p + + ρgh = konst. p - statični tlak, ρ / gostota kinetične energije, ρgh gostota potencialne energije. Primer: Posoda ima luknjico globini h pod gladino. Izberemo točko 1 na gladini ( 1 0, h 1 = h, p 1 = p 0 ) in točko iztekajočem curku (izen posode: =, h = 0, p = p 0 ). Izračunamo: = gh. Volumski pretok iztekajoče tekočine je Φ = S, S je presek curka in ni enak ploščini odprtine S 0, ampak splošnem manjši: S = ks 0, k = 0,65 za okroglo odprtino z ostrimi roboi, k = 0,97 za lijakasto odprtino. h 1 = H, 1 = 0, p 1 = p 0, S 1 h = 0,, p = p 0, S S 0 Upor sredsta telo se giblje relatino na tekočino, nasprotni smeri relatine hitrosti deluje sila upora sredsta: a) Stokeso ali linearni zakon upora: zrok je iskoznost sredsta, zakon elja pri laminarnem toku: F u = η k d, 7

8 k odisen od oblike telesa, d prečna dimenzija telesa, hitrost. Za kroglo s polmerom r elja: F u = 6πrη. b) kadratni zakon upora: elja pri turbulentnem toku: F u = C ρ S /, C koeficient upora: 1,3 za žličko, 1,1 za rano ploščo, 0,3 za kroglo, 0,04 za ribjo obliko; ρ - gostota tekočine (ne telesa!), S prečni presek praokotno na smer hitrosti, hitrost. Reynoldsoo šteilo = razmerje kadratnega in linearnega upora brez konstant Re = ρ d/η, Re < 0,5 - elja linearni zakon upora Re > 1000 elja kadratni zakon upora Preglednica enačb tlak: df p = ds hidrostatični tlak: p = ρgh sila zgona: F zg =ρ tekočine V telesa g masni pretok: m Φ m = = ρ S = ρφ t olumski pretok: V Φ = = S t sila iskoznosti: F = η S x kontinuitetna enačba: Φ = S11 S = ρ1 ρ Bernoullijea enačba: p1+ + ρgh1 = p + + ρgh ρ p + + ρgh = konst. zožite curka: S = ks 0 linearni zakon upora: F u = η k d linearni zakon upora (krogla): F u = 6πrη kadratni zakon upora: F u = C ρ S / Reyndolsoo šteilo: Re = ρ d/η 8

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

3. MEHANIKA Telesa delujejo drugo na drugo s silami privlačne ali odbojne enake sile povzročajo enake učinke Enota za silo ( F ) je newton (N),

3. MEHANIKA Telesa delujejo drugo na drugo s silami privlačne ali odbojne enake sile povzročajo enake učinke Enota za silo ( F ) je newton (N), 3. MEHANIKA Telesa delujejo drugo na drugo s silami. Sile so lahko prilačne ali odbojne, lahko delujejo ob dotiku ali na daljao. Silo merimo po principu, ki prai, da enake sile pozročajo enake učinke.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Dinamika fluidov. Masne bilance Energijske bilance Bernoullijeva enačba

Dinamika fluidov. Masne bilance Energijske bilance Bernoullijeva enačba Dinamika fluido Masne bilance Energijske bilance Bernoullijea enačba Dinamika tekočin V šteilnih procesih se tekočine pretakajo. roblemi pretakanja tekočin se rešujejo z upošteanjem principo ohranite mase

Διαβάστε περισσότερα

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost.

Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. Mehanika fluidov Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. 1 Statika tekočin Če tekočina miruje, so vse sile, ki delujejo na tekočino v ravnotežju. Masne volumske sile: masa tekočine

Διαβάστε περισσότερα

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja.

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja. 6. ONOVE ELEKTROMAGNETIZMA Nosilci naboja so: elektroni, protoni, ioni Osnoni naboj: e 0 = 1,6.10-19 As, naboj elektrona je -e 0, naboj protona e 0, naboj iona je (pozitini ali negatini) ečkratnik osnonega

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

= 3. Fizika 8. primer: s= 23,56 m, zaokroženo na eno decimalno vejico s=23,6 m. Povprečna vrednost meritve izračuna povprečno vrednost meritve

= 3. Fizika 8. primer: s= 23,56 m, zaokroženo na eno decimalno vejico s=23,6 m. Povprečna vrednost meritve izračuna povprečno vrednost meritve Fizika 8 Merjenje Pojasniti namen in pomen meritev pri fiziki našteje nekaj fizikalnih količin in navede enote zanje, ter priprave s katerimi jih merimo Merska Merska enota Merska priprava količina Dolžina

Διαβάστε περισσότερα

Tokovi v naravoslovju za 6. razred

Tokovi v naravoslovju za 6. razred Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 29. avgust 2008 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 29. avgust 2008 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M087411* JESENSKI IZPITNI ROK MEHNIK NVODIL Z OCENJEVNJE Petek, 9. avgust 008 SPLOŠN MTUR RIC 008 M08-741-1- PODROČJE PREVERJNJ 1 Preračunajte spodaj

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Seinarska naloga iz fizike DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Maja Kretič VSEBINA SEMINARJA: - Delo sile - Kinetična energija - Potencialna energija - Zakon o ohraniti

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

Gasilska zveza Mežiške doline Tečaj za strojnike marec 2010 HIDROMEHANIKA. Mirko Paradiž

Gasilska zveza Mežiške doline Tečaj za strojnike marec 2010 HIDROMEHANIKA. Mirko Paradiž Gasilska zveza Mežiške doline Tečaj za strojnike marec 2010 HIDROMEHANIKA Mirko Paradiž 1 Vsebina tečaja 1.0. Aerostatika -Kaj je pritisk -Enote za pritisk -Naprave za merjenje pritiska -Kaj je podtlak

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

SILA VZGONA. ma = F V F g = m v g m g = ρ v V v g ρ V g ma = V g (ρ v ρ), kjer smo upoštevali, da je telo v celoti potopljeno, sicer V <> V v.

SILA VZGONA. ma = F V F g = m v g m g = ρ v V v g ρ V g ma = V g (ρ v ρ), kjer smo upoštevali, da je telo v celoti potopljeno, sicer V <> V v. 8 SILA VZGONA Sila vzgona F V = sili teže izpodrinjene tekočine: a F V = m v g = ρ v V v g, ρ kjer je ρ v gostota okolne (izpodrinjene) tekočine, V v ρ v pa njen volumen. Ko je telo v celoti potopljeno,

Διαβάστε περισσότερα

TEHNIŠKA FIZIKA VS Strojništvo, 1. stopnja povzetek

TEHNIŠKA FIZIKA VS Strojništvo, 1. stopnja povzetek TEHNIŠKA FIZIKA VS Srojnišo,. sopnja pozeek. KINEMATIKA Premo gibanje To je gibanje po premici. Na premici izberemo koordinano izhodišče (o je očko, ki ji pripišemo koordinao nič) in označimo poziino in

Διαβάστε περισσότερα

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6 Vsebina MERJENJE... 1 GIBANJE... 2 ENAKOMERNO... 2 ENAKOMERNO POSPEŠENO... 2 PROSTI PAD... 2 SILE... 2 SILA KOT VEKTOR... 2 RAVNOVESJE... 2 TRENJE IN LEPENJE... 3 DINAMIKA... 3 TLAK... 3 DELO... 3 ENERGIJA...

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t) Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Govorilne in konzultacijske ure 2014/2015

Govorilne in konzultacijske ure 2014/2015 FIZIKA Govorilne in konzultacijske ure 2014/2015 Tedenske govorilne in konzultacijske ure: Klemen Zidanšek: sreda od 8.00 do 8.45 ure petek od 9.40 do 10.25 ure ali po dogovoru v kabinetu D17 Telefon:

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost Fizikalne osnove Uvod V prvih dveh poglavjih ponovimo nekaj osnovnih fizikalnih pojmov, ki jih bomo kasneje srečevali pri obravnavi tako snovnih kot električnih in toplotnih tokov. V prvem poglavju obravnavamo

Διαβάστε περισσότερα

NARAVOSLOVJE - 7. razred

NARAVOSLOVJE - 7. razred NARAVOSLOVJE - 7. razred Vsebina Zap. št. ZVOK 7.001 Ve, da predmeti, ki oddajajo zvok zvočila, zatresejo zrak in da take tresljaje imenujemo nihanje. 7.002 Ve, da sprejemnik zvoka zazna tresenje zraka

Διαβάστε περισσότερα

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje.

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje. 2. Dinamika 2.1 Sila III. PREDNJE 2. Dinamika (sila) Grška beseda (dynamos) - sila Gibanje teles pod vplivom zunanjih sil 2.1 Sila Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica

Διαβάστε περισσότερα

Državni izpitni center *M * SPOMLADANSKI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sobota, 9. junij 2007 SPLOŠNA MATURA

Državni izpitni center *M * SPOMLADANSKI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sobota, 9. junij 2007 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M0774* SPOMLDNSKI ROK MEHNIK NVODIL Z OCENJEVNJE Sobota, 9. junij 007 SPLOŠN MTUR RIC 007 M07-74-- PODROČJE PREVERJNJ Navedene vrednosti veličin pretvorite

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo ENERGETSKI STROJI Uvod Pregled teoretičnih osnov Hidrostatika Dinamika tekočin Termodinamika Podobnostni zakoni Volumetrični stroji Turbinski stroji Energetske naprave Podobnostni zakoni Kriteriji podobnosti

Διαβάστε περισσότερα

6 Trdno in tekoče. 6.1 Tlak in gostota 6.2 Tekočine 6.3 Plavanje 6.4 Ozračje in vreme

6 Trdno in tekoče. 6.1 Tlak in gostota 6.2 Tekočine 6.3 Plavanje 6.4 Ozračje in vreme 6 Trdno in tekoče 6.1 Tlak in gostota 6.2 Tekočine 6.3 Plavanje 6.4 Ozračje in vreme Aprila 1912 se je Titanik podal na svojo prvo plovbo. Z dolžino treh nogometnih igrišč in višino Ljubljanskega nebotičnika

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Dinamika kapilarnega pomika

Dinamika kapilarnega pomika UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Goran Bezjak SEMINARSKA NALOGA Dinamika kapilarnega pomika Mentor: izr. prof. dr. Gorazd Planinšič Ljubljana, december 2007 1 Povzetek

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

MEHANIKA. Osnovni pojmi, principi in metode mehanike togega in trdnega telesa

MEHANIKA. Osnovni pojmi, principi in metode mehanike togega in trdnega telesa MEHANIKA Osnoni pojmi, principi in metode mehanike togega in trdnega telesa Mehanika je naraoslona eda, ki se ukarja s preučeanjem gibanj in gibalnih stanj teles, nastalih zaradi deloanja zunanjih zroko

Διαβάστε περισσότερα

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a:

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a: FIZIKA 1. poglavje: Mehanika - B. Borštnik 1 MEHANIKA(prvi del) Kinematika Obravnavamo gibanje točkastega telesa. Izberemo si pravokotni desni koordinatni sistem (sl. 1), to je takšen, katerega os z kaže

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA Š i f r a k a n d i d a t a : ržavni izpitni center *M0974* MEHNIK JESENSKI IZPITNI ROK NVOIL Z OCENJEVNJE Četrtek, 7. avgust 009 SPLOŠN MTUR RIC 009 M09-74-- POROČJE PREVERJNJ Pretvorite dane veličine

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

3.1 Površinska napetost

3.1 Površinska napetost 3 Tekočine Lastnosti tekočin so za fiziologijo pomembne, saj kar približno 70 % človeškega telesa sestavlja najpomembnejša tekočina voda. Osnovna lastnost tekočin je, da ohranjajo prostornino, ne pa tudi

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Termodinamika vlažnega zraka. stanja in spremembe

Termodinamika vlažnega zraka. stanja in spremembe Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar HIDRODINAMIKA OBALNIH VALOV Mateja Erjavec Mentor: prof. dr. Rudolf Podgornik Februar 2010 Povzetek V začetnem delu seminarja

Διαβάστε περισσότερα

NALOGE K PREDMETU DELOVNO OKOLJE -PRAH

NALOGE K PREDMETU DELOVNO OKOLJE -PRAH NALOGE K PREDMETU DELOVNO OKOLJE -PRAH 1. Kakšna je povprečna hitrost molekul CO 2 pri 25 C? 2. Kakšna je povprečna hitrost molekul v zraku pri 25 C, kakšna pri 100 C? M=29 g/mol 3. Pri kateri temperaturi

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

13. poglavje: Energija

13. poglavje: Energija 13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto,

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE. NALOGE IZ 8. in 9. razreda. + PREGLED NARAVOSLOVJA iz 7. razreda

PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE. NALOGE IZ 8. in 9. razreda. + PREGLED NARAVOSLOVJA iz 7. razreda PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE NALOGE IZ 8. in 9. razreda + PREGLED NARAVOSLOVJA iz 7. razreda Pregled za NPZ iz FIZIKE Stran 2 Fizikalna količina čas dolžina pot višina PREGLED FIZIKALNIH

Διαβάστε περισσότερα

ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA

ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA 1. Pod pojmom telo razumemo snov z dano velikostjo in obliko. Sistem točkastih teles so vsa tista telesa, ki so v naši okolici in katerih gibanje

Διαβάστε περισσότερα

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: objavljeno na vratih in na internetu pisarna: FS - 414 telefon: 01/4771-414

Διαβάστε περισσότερα

FIZIKA. Predavanje 1. termin. dr. Simon Ülen Predavatelj za fiziko. Študijska smer: Fizioterapija PREDSTAVITEV SPLETNE UČILNICE

FIZIKA. Predavanje 1. termin. dr. Simon Ülen Predavatelj za fiziko. Študijska smer: Fizioterapija PREDSTAVITEV SPLETNE UČILNICE Evropsko središče Maribor Študijska smer: Fizioterapija dr. Simon Ülen Predavatelj za fiziko FIZIKA Predavanje 1. termin 1. termin: Biomehanika 2. termin: Tekočine, Termodinamika; Nihanje Valovanje; Zvok

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα