ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής"

Transcript

1 ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασικά Στοιχεία Λογικής

2 2 Η Πριγκίπισσα και το Κάστρο Αν ρώταγα ένα μέλος της φυλής που δεν ανήκεις για το ποιον δρόμο πρέπει να πάρω για το κάστρο τι θα μου έλεγε; Μία πριγκίπισσα επισκέπτεται ένα νησί που κατοικείται από 2 φυλές. Τα μέλη της μίας φυλής λένε πάντα αλήθεια ενώ τα μέλη της άλλης πάντα ψέματα. Η πριγκίπισσα φτάνει σε δύο μονοπάτια. Θα πρέπει να ξέρει ποιο μονοπάτι θα ακολουθήσει έτσι ώστε να αποφύγει το δράκο που βρίσκεται στο ένα μονοπάτι και να σώσει τον πρίγκιπα από τον κακό μάγο στο κάστρο που βρίσκεται στο άλλο μονοπάτι. Στην αρχή των δύο μονοπατιών υπάρχει 1 μέλος από κάθε φυλή χωρίς όμως να ξέρει ποιος λέει αλήθεια και ποιος ψέματα. Ποια ερώτηση πρέπει να κάνει η πριγκίπισσα για να βρει το δρόμο προς το κάστρο;

3 Κάτι για να σκεφτόμαστε... 3 Κάτω από μία καρυδιά κάθονται 3 άνθρωποι. Ο Κωστίκας (Κ), ο Γιωρίκας (Γ) και ο Πανίκας (Π). Ας υποθέσουμε ότι καθένας από αυτούς μπορεί να λέει μόνο αλήθεια ή ψέματα. Ο Κ λέει, «Όλοι μας είμαστε ψεύτες» Ο Γ λέει «Ακριβώς ένας λέει αλήθεια» Ποιος από τους τρεις λέει ψέματα και ποιος αλήθεια; (μπορεί η πληροφορία να μην είναι αρκετή...)

4 Λογική 4 «Λογική είναι η επιστήμη των απαραίτητων κανόνων της σκέψης, χωρίς τους οποίους δεν είναι δυνατόν να υπάρξει κατανόηση ή συλλογισμός.» Immanuel Kant, 1785 «Αν ένα γεγονός είναι ενάντια στη κοινή λογική, αλλά παρόλα αυτά είμαστε υποχρεωμένοι να το δεχθούμε και να ασχοληθούμε μαζί του, τότε μαθαίνουμε να αλλάζουμε την έννοια της κοινής λογικής.» P. J Davis and R. Hersh, 1981

5 Λογική Εφαρμογές στην Πληροφορική 5 Λογικά κυκλώματα(logic Circuits) Λογικά κυκλώματα σχηματίζονται με συνδυασμούς πυλών AND, OR, NO. Στη λογική, προτάσεις συνδυάζονται με σύζευξη, διάζευξη, άρνηση Κάθε κύκλωμα μπορεί να χαρακτηριστεί από μια πρόταση του Προτασιακού Λογισμού Προβλήματα σχεδιασμού κυκλωμάτων μεταφράζονται σε προβλήματα εύρεσης αντίστοιχων προτάσεων και του χειρισμού αυτών

6 Λογική Εφαρμογές στην 6 Πληροφορική Προγραμματισμός: τύποι δεδομένων Boolean επιδέχονται τιμές true, false μπορούν να συνδυαστούν μέσω συνδετικών and, or, not για να παράγουν σύνθετες εκφράσεις του ίδιου τύπου Π.χ., η έκφραση if (A and B) or (A and C) then. μπορεί να απλοποιηθεί στην ισοδύναμη έκφραση if A and (B or C) then. Η ισοδυναμία των δύο εκφράσεων δίνεται από τα αξιώματα του Προτασιακού Λογισμού

7 Λογική Εφαρμογές στην Πληροφορική 7 Σχεδίαση Προγραμμάτων (Program Design) ο σχεδιασμός προγραμμάτων απαιτεί την κατάρτιση προδιαγραφών (rogram secifications) που περιγράφουν τη συμπεριφορά του προγράμματος οι προδιαγραφές μπορούν να γραφούν σε τυπικές γλώσσες οι οποίες συχνά επιτρέπουν την επαλήθευση της σωστής συμπεριφοράς του προγράμματος η Λογική μπορεί να χρησιμοποιηθεί για την περιγραφή του ίδιου του προγράμματος αλλά και της επιθυμητής συμπεριφοράς του ζητούμενο είναι να αποδειχθεί ότι η συμπεριφορά είναι λογική συνέπεια της περιγραφής

8 Λογική Εφαρμογές στην 8 Πληροφορική Λογικός Προγραμματισμός Αυτοματοποιημένος Λογισμός Τεχνητή Νοημοσύνη Βάσεις Δεδομένων και Γνώσεων

9 Λογικές προτάσεις 9 Λογική πρόταση ή απλά πρόταση (roositionstatement): Δήλωση αποτελούμενη από σύμβολα ή λέξεις και η οποία είναι είτε ψευδής (alse) είτε αληθής (rue) αλλά όχι και τα δύο Η πρόταση έχει μία μόνο τιμή αληθείας (truth value) Συμβολισμός:,

10 Παραδείγματα 10 Ο αριθμός 3 διαιρεί τον αριθμό 10 Ο κροκόδειλος μπορεί να πετάξει () () 2 7 =128 (Τ) Κάθε άρτιος αριθμός μεγαλύτερος του 2 μπορεί να εκφραστεί ως άθροισμα δύο πρώτων αριθμών (εικασία του Goldbach) ( ή ;)

11 Δεν θεωρούνται προτάσεις: 11 x N x 2 1 Ποιοι είναι οι διαιρέτες του 123; Να δείξετε τη σχέση:

12 Σύνθετες προτάσεις 12 Σύνθετες (comound) προτάσεις: προκύπτουν από σύνδεση άλλων προτάσεων με λογικούς συνδέσμους (υποδηλώνει μεταξύ τους σχέση) Σύνδεσμοι: λογικές πράξεις ή λογικοί τελεστές (logical oerators). Οι λογικές πράξεις ορίζονται με τη βοήθεια του πίνακα αληθείας (truth table)

13 Προτασιακή Λογική 13 Ο τομέας της λογικής που ασχολείται με προτάσεις.

14 Σύζευξη (conjunction) 14 " και q" q q

15 Παράδειγμα 15 «Σήμερα είναι Παρασκευή.» «Σήμερα βρέχει» Σύζευξη;

16 Διάζευξη (disjunction) 16 " ή q" q q

17 Παράδειγμα 17 «Σήμερα είναι Παρασκευή.» «Σήμερα βρέχει» Διάζευξη;

18 Αποκλειστική Διάζευξη (disjunction) 18 " ή q αλλά όχι και τα δύο" q q

19 Παράδειγμα 19 «Σήμερα είναι Παρασκευή.» «Σήμερα βρέχει» Αποκλειστική Διάζευξη;

20 Λογικές Πράξεις: Άρνηση (negation) 20 "όχι " : Πίνακας Αληθείας

21 Παράδειγμα 21 Α = Όλα τα ξένα πορτοκάλια είναι άγευστα. () Τι σημαίνει όχι Α; Α) Όλα τα ξένα πορτοκάλια είναι καλά. Β) Όλα τα ξένα πορτοκάλια δεν είναι άγευστα. Γ) Τουλάχιστον ένα πορτοκάλι είναι εύγευστο. Δ) Τουλάχιστον ένα πορτοκάλι δεν είναι άγευστο. Ε) Όλα τα ντόπια πορτοκάλια είναι καλά.

22 Παράδειγμα 22 «Σήμερα είναι Παρασκευή» «Είμαι από τον Άρη.» Άρνηση;

23 Συνεπαγωγή (imlication) 23 «συνεπάγεται την q» ( q) «Αν τότε q» Υπόθεση Συμπέρασμα q

24 24 Συνεπαγωγή (imlication) «συνεπάγεται την q» ( q) Υπόθεση Αν εκλεγώ θα μειώσω τους φόρους. Συμπέρασμα «Αν τότε q» q q Ένα ανέκδοτο: Κάποιος θεώρησε λάθος την ιδέα ότι ξεκινώντας από λάθος πρότασεις μπορείς να καταλήξεις σε μία οποιαδήποτε αληθής πρόταση και προκάλεσε τον B. Russell να δείξει ότι αν 1=2 τότε ο B.R. είναι ο πάπας. Τί νομίζετε ότι είπε; Έστω 1=2. Έγω και ο πάπας είμαστε δύο, άρα εγώ και ο πάπας είμαστε ένα.

25 Συνεπαγωγή Αν σήμερα είναι Πάσχα, τότε αύριο είναι Δευτέρα Η αντίστροφη της q είναι η q. 2. Η αντίθετη της q είναι η q. 3. Η αντιθετοαντίστροφη της q είναι η q. Αν αλλάξει ο καθηγητής θα περάσω τα Διακριτά. Μία συνεπαγωγή είναι ισοδύναμη με την αντιθετοαντίστροφή της. (απόδειξη με πίνακα αληθείας ή με ιδιότητες)

26 Ισοδυναμία (equivalence) 26 «είναι ισοδύναμη με q» είναι ισοδύναμο με ( q) ( q) q q = Είμαι ενήλικας q= Είμαι 18 χρονών

27 Ικανή και Αναγκαία Συνθήκη 27 Η r είναι μία ικανή συνθήκη για την s «αν r τότε s» Η r είναι μία αναγκαία συνθήκη για την s «αν όχι r τότε όχι s» «αν s τότε r» Παράδειγμα: «Αν ο Γιάννης έχει δικαίωμα ψήφου, τότε είναι τουλάχιστον 18 ετών.»

28 Παράδειγμα 28 «Ένας αριθμός είναι ζυγός αν και μόνο αν διαιρείται τέλεια από το 2.» Αναγκαία? Ικανή?

29 Προτεραιότητα Λογικών Τελεστών 29 Γενικά καθορίζουμε την προτεραιότητα με τις παρενθέσεις. Όταν δεν το κάνουμε αυτό τότε οι τελεστές με σειρά προτεραιότητας από υψηλότερη προς χαμηλότερη είναι: 1. Άρνηση 2. Σύζευξη 3. Διάζευξη 4. Συνεπαγωγή 5. Ισοδυναμία

30 Σύνθετες προτάσεις 30 Προτάσεις,, 1 n Λογικές πράξεις,,,, Σύνθετες προτάσεις P( 1,, n )

31 Από Φυσική Γλώσσα 31 «Μπορείτε να έχετε πρόσβαση στο Διαδίκτυο από την πανεπιστημιούπολη, μόνο αν σπουδάζετε Πληροφορική ή, αν δεν είστε νέοι φοιτητές» Λογική πρόταση;

32 Πίνακας Αληθείας 32 Σύνθετης Πρότασης Όταν μια σύνθετη πρόταση αποτελείται από n απλές προτάσεις, ο πίνακας αληθείας αποτελείται από 2 n γραμμές

33 Παράδειγμα 33 ) ( ) ( ),, ( r q r q P r q r q q q r q ) ( ) ( ) (

34 Ταυτολογία και αντίφαση 34 Ταυτολογία (tautology): Σύνθετη πρόταση η οποία παίρνει σε όλες τις περιπτώσεις τιμή αληθείας Τ Αντίφαση (contradiction): Σύνθετη πρόταση που παίρνει σε όλες τις περιπτώσεις τιμή αληθείας

35 35 Ίσες προτάσεις Δεν είναι λογικός σύνδεσμος. Η q δεν είναι λογική πρόταση. Ίσες ή λογικά ισοδύναμες σύνθετες προτάσεις: Όταν οι πίνακες αληθείας τους είναι ίδιοι Αποδεικνύεται ότι η ισότητα δύο προτάσεων ισχύει αν και μόνο αν η πρόταση είναι ταυτολογία P(,..., n ) Q( 1,..., 1 n P(,..., n) Q( 1,..., 1 n ) )

36 Παράδειγμα Νόμοι De Morgan 36 ) ( ) ( q q q q q q q q ) (

37 Παράδειγμα Νόμοι De Morgan 37 ) ( ) ( q q q q q q q ) ( ) ( ) (

38 Λογικές Ισοδυναμίες 38 Nόμος Περιγραφή αυτότητας Διπλής άρνησης ( ) Aποκλείσεως τρίτου Aντιφατικότητας ( ) Τ De Morgan ( q) q ( q) q Aντιμεταθετικότητας q q q q Προσεταιριστικότητας ( q) r (q r) ( q) r (q r) Aντιθετικός ( q) ( q ) Eπιμεριστικός (q r) ( q) ( r) (q r) ( q) ( r) Aναδιάταξης [ (q r)] q ( r)] Eξαγωγής [( q) r] [ (q r)]

39 Μέθοδοι Απόδειξης 39 Θεώρημα: Μία δήλωση που μπορούμε να αποδείξουμε ότι αληθεύει. Απόδειξη: Το επιχείρημα που αποτελείται από τη σειρά δηλώσεων που χρησιμοποιούμε για να καταλήξουμε στο θεώρημα. Αξίωμα: Υποθέσεις που χρησιμοποιούμε για την απόδειξη του θεωρήματος. Κανόνες εξαγωγής συμπερασμάτων: τα μέσα που χρησιμοποιούνται για εξαγωγή συμπερασμάτων από άλλες δηλώσεις (βήματα απόδειξης)

40 Εγκυρότητα Απόδειξης 40 Αν κάθε φορά που όλες οι υποθέσεις είναι αληθείς τότε είναι αληθές και το συμπέρασμα. Δείξτε ότι η παρακάτω απόδειξη δεν είναι έγκυρη: q r q r r

41 Κανόνας Απόσπασης (modus onens) 41 ( ( q)) q ή q q Παράδειγμα: «Αν σήμερα χιονίσει τότε θα κάνουμε σκι.» «Σήμερα χιονίζει.» Άρα: «Θα κάνουμε σκι.»

42 Μέθοδος Άρνησης (modus tollens) 42 ( q ( q)) ή q q Παράδειγμα: «Αν ο Δίας είναι άνθρωπος, τότε ο Δίας είναι θνητός.» «Ο Δίας δεν είναι θνητός.» Άρα: «Ο Δίας δεν είναι άνθρωπος.»

43 Κανόνες ( q) Πρόσθεση (γενίκευση) ( q) Απλοποίηση (ειδίκευση) (() (q)) ( q) Σύζευξη ( ( q)) q Modus Ponens ( q ( q)) (( q) (q r)) ( r) (( q) ) q (( q) ( r)) (q r) Modus ollens Υποθετικός Συλλογισμός (Μεταβατικότητα) Διαζευκτικός Συλλογισμός (Απαλοιφή) Διαχωρισμός 43

44 Παράδειγμα Είναι έγκυρο; 44 «Δεν έχει ήλιο σήμερα το απόγευμα και έχει περισσότερο κρύο από χθες.» «Αν έχει ήλιο σήμερα το απόγευμα τότε θα κολυμπήσουμε.» «Αν δεν θα κολυμπήσουμε, τότε θα πάμε με το κανό.» «Αν θα πάμε με το κανό, θα γυρίσουμε σπίτι με το ηλιοβασίλεμα.» «Θα γυρίσουμε σπίτι με το ηλιοβασίλεμα.» Το συμπέρασμα δεν είναι έγκυρο.

45 Παράδειγμα Είναι έγκυρο; 45 «Δεν έχει ήλιο σήμερα το απόγευμα και έχει περισσότερο κρύο από χθες.» «Αν δεν έχει ήλιο τότε δεν θα κολυμπήσουμε.» (Θα κολυμπήσουμε μόνο αν έχει ήλιο) «Αν δεν θα κολυμπήσουμε, τότε θα πάμε με το κανό.» «Αν θα πάμε με το κανό, θα γυρίσουμε σπίτι με το ηλιοβασίλεμα.» «Θα γυρίσουμε σπίτι με το ηλιοβασίλεμα.» Το συμπέρασμα είναι έγκυρο.

46 46 Μέθοδοι Απόδειξης

47 Μέθοδοι Απόδειξης Θεωρημάτων 47 Άμεση Απόδειξη: Για να αποδείξουμε τη συνεπαγωγή q, αρκεί να δείξουμε με διαδοχικά βήματα ότι αν είναι Αληθής τότε και η q είναι αληθής. Παράδειγμα: Αποδείξτε ότι αν ο n είναι περιττός τότε και ο n 2 είναι περιττός.

48 Έμμεση Απόδειξη 48 Για να αποδείξουμε τη συνεπαγωγή q, αρκεί να δείξουμε ότι η αντιθετοαντίστροφή της q είναι Αληθής. Παράδειγμα: Αποδείξτε ότι αν ο 3n+2 είναι περιττός τότε και ο n είναι περιττός.

49 Απόδειξη με Αντίφαση 49 Έστω ότι μπορεί να βρεθεί μία αντίφαση () q έτσι ώστε q να είναι Αληθής. Άρα η πρόταση είναι Ψευδής και άρα η θα πρέπει να είναι Αληθής. Παράδειγμα: Αποδείξτε ότι ο αριθμός 2 ½ είναι άρρητος χρησιμοποιώντας απόδειξη με αντίφαση.

50 50 Αποδείξεις κατά Περίπτωση Για να αποδείξουμε μία συνεπαγωγή τη μορφής ( 1 2 n ) q χρησιμοποιούμε την ταυτολογία: (( 1 2 n ) q) ( 1 q) ( 2 q) ( n q) Παράδειγμα: Να χρησιμοποιηθεί απόδειξη κατά περίπτωση για να δειχτεί ότι xy = x y, όπου x και y είναι πραγματικοί αριθμοί.

51 Αποδείξεις Ισοδυναμίας 51 Για να αποδείξουμε θεώρημα που είναι ισοδυναμία, δηλαδή της μορφής q μπορεί να χρησιμοποιηθεί η ταυτολογία: ( q) (( q) (q )) Παράδειγμα: Να αποδειχθεί ότι ο ακέραιος n είναι περιττός αν και μόνο αν ο n 2 είναι περιττός.

52 Λογικές Πλάνες 52 Σφάλμα κατά τον συλλογισμό που μας οδηγεί σε λάθος συμπέρασμα. 1. Σφάλμα αντιστρόφου: «Αν ο Κώστας αντιγράφει, τότε κάθεται στην τελευταία σειρά.» «Ο Κώστας κάθεται στην τελευταία σειρά.» «Ο Κώστας αντιγράφει.» 2. Σφάλμα αντιθέτου: «Αν τα επιτόκια αυξηθούν, οι τιμές στο χρηματιστήριο θα πέσουν.» «Τα επιτόκια δεν αυξάνονται.» «Οι τιμές στο χρηματιστήριο δεν θα πέσουν.»

53 Ο Κωστίκας, ο Γιωρίκας και ο 53 Πανίκας... Για κάθε όνομα μία boolean μεταβλητή έτσι ώστε αν λέει ψέματα να είναι 0, αν λέει αλήθεια να είναι 1. Η πρόταση Ρ=«Όλοι μας λέμε ψέματα» είναι η Ρ=Κ Γ Π. Η πρόταση Σ=«Ακριβώς ένας λέει αλήθεια» είναι η Σ=ΚΓ Π +Κ ΓΠ +Κ Γ Π. Φτιάχνουμε τον πίνακα αληθείας για όλους τους συνδυασμούς ΡΣ(ΚΓ), Ρ Σ(Κ Γ), Ρ Σ (Κ Γ ), ΡΣ (ΚΓ ). Αν υπάρχει ένα 1 λύθηκε αλλιώς...

54 Άλλος Τρόπος 54 Έστω ότι ο Κ λέει αλήθεια. Όλοι λένε ψέματα (από αυτό που λέει ο Κ) Αντίφαση: Ο Κ λέει αλήθεια και ψέματα Η υπόθεση είναι εσφαλμένη Άρα ο Κ λέει ψέματα

55 Ο Γρίφος των Λασπωμένων 55 Παιδιών Ένας πατέρας λέει στα παιδιά του, ένα αγόρι και ένα κορίτσι, να παίξουν στην αυλή χωρίς να λερωθούν. Ωστόσο, τα παιδιά καθώς παίζουν λερώνονται με λάσπες στο μέτωπό τους. Όταν ο πατέρας τα βλέπει λέει «Τουλάχιστον ένα παιδί έχει λασπωμένο πρόσωπο» και ύστερα ζητά από τα παιδιά να απαντήσουν «ΝΑΙ» ή «ΌΧΙ» στην ερώτηση: «Μήπως γνωρίζεις αν το πρόσωπό σου είναι λασπωμένο;». Ο πατέρας κάνει την ερώτηση δύο φορές. Τι θα απαντήσουν τα παιδιά δεδομένου ότι μπορούν να δουν το πρόσωπο του άλλου αλλά όχι το δικό τους και επίσης είναι έντιμα ενώ απαντάνε ταυτόχρονα; s το αγόρι έχει λερωμένο πρόσωπο d το κορίτσι έχει λερωμένο πρόσωπο

56 Ποιος σκότωσε τον λόρδο 56 Lordaton; «Ο λόρδος Lordaton, το θύμα, σκοτώθηκε από χτύπημα στο κεφάλι με ένα μπρούτζινο κηροπήγιο.» «Είτε η λαίδη Lordaton είτε η υπηρέτρια Sara, ήταν στο καθιστικό την ώρα του φόνου.» «Αν η μαγείρισσα ήταν στην κουζίνα την ώρα του φόνου, τότε ο μπάτλερ σκότωσε το λόρδο Lordaton με μία μοιραία δόση στρυχνίνης.» «Αν η λαίδη Lordaton ήταν στο καθιστικό την ώρα του φόνου, τότε ο σοφέρ σκότωσε τον λόρδο Lordaton.» «Αν η μαγείρισσα δεν ήταν στην κουζίνα την ώρα του φόνου, τότε η Sara δεν ήταν στο καθιστικό όταν διαπράχτηκε ο φόνος.» «Αν η Sara ήταν στο καθιστικό την ώρα του φόνου, τότε ο σερβιτόρος σκότωσε το λόρδο Lordaton.»

57 Κάποιες Επιπλέον Ασκήσεις Να αποδειχθεί ότι το γινόμενο δύο ρητών αριθμών είναι ρητός. 2. Να αποδειχθεί ότι αν ο x είναι άρρητος, τότε και ο 1/x είναι επίσης άρρητος. 3. Να αποδειχθεί ότι m 2 = n 2 αν και μόνο αν m = n ή m = n. 4. Να δείξετε ότι ο αριθμητικός μέσος είναι πάντα μεγαλύτερος ή ίσος του γεωμετρικού μέσου δύο θετικών πραγματικών αριθμών x και y.

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΗΥ Λογική. Διδάσκων: Δημήτρης Πλεξουσάκης Καθηγητής

ΗΥ Λογική. Διδάσκων: Δημήτρης Πλεξουσάκης Καθηγητής ΗΥ 180 - Λογική Διδάσκων: Καθηγητής E-mail: dp@csd.uoc.gr Ώρες διδασκαλίας: Δευτέρα, Τετάρτη 4-6 μμ, Αμφ. Β Ώρες φροντιστηρίου: Πέμπτη 4-6 μμ, Αμφ. Β Ώρες γραφείου: Δευτέρα, Τετάρτη 2-4 μμ, Κ.307 Web site:

Διαβάστε περισσότερα

4. Το Τυπικό Σύστημα Αποδείξεων του Π.Λ.

4. Το Τυπικό Σύστημα Αποδείξεων του Π.Λ. 4 Το Τυπικό Σύστημα Αποδείξεων του ΠΛ Τα θεμελιώδη συστατικά του τυπικού συστήματος αποδείξεων του Προτασιακού Λογισμού (συντομογραφικά Prop) είναι τα προτασιακά σχήματα τα οποία φτιάχνονται από τα σύμβολα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο Παράδοση: Τρίτη 26/2/2019, μέχρι το τέλος του φροντιστηρίου

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο Παράδοση: Τρίτη 26/2/2019, μέχρι το τέλος του φροντιστηρίου ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2019 1 η Σειρά Ασκήσεων (Προτασιακός Λογισμός) Παράδοση: Τρίτη 26/2/2019, μέχρι το τέλος του φροντιστηρίου Σημείωση: Όλες οι απαντήσεις πρέπει να είναι τεκμηριωμένες

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017 HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen Προηγούμενη

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen 08-Feb-18

Διαβάστε περισσότερα

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη) Εισαγωγή στις βασικές έννοιες των Μαθηματικών 5 ο Μάθημα Μαθηματική Λογική (επανάληψη) Προτάσεις Η πρόταση είναι μια γλωσσική ενότητα, η οποία εκφράζει κάποιο νόημα. Παραδείγματα: Η Μαρία σχεδιάζει ένα

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016

Διαβάστε περισσότερα

Επανάληψη. ΗΥ-180 Spring 2019

Επανάληψη. ΗΥ-180 Spring 2019 Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2018 Οργάνωση και περιεχόμενα Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2017 Οργάνωση Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες Συνεπαγωγή Αποδείξεις

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις Δεδομζνων II

Εισαγωγή στις Βάσεις Δεδομζνων II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen Τι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Προτασιακός Λογισµός (συνέχεια...) Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από

Διαβάστε περισσότερα

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή

Διαβάστε περισσότερα

Κανονικές μορφές - Ορισμοί

Κανονικές μορφές - Ορισμοί HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος

Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF

Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 19/2/2016. Άσκηση Φ1.1 Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις.

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 19/2/2016. Άσκηση Φ1.1 Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις. Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 19/2/2016 Άσκηση Φ1.1 Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις. (a) ( p ( p )) ( r) (b) ( p ( r)) (( p ) r) (c) ( p r) ( r) Λύση Άσκησης

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Ask seic Majhmatik c Logik c 2

Ask seic Majhmatik c Logik c 2 Ask seic Majhmatik c Logik c 2 1. Να δειχτεί με πίνακες αλήθειας ότι οι παρακάτω προτάσεις είναι λογικά ισοδύναμες. (αʹ) (A B) και A B. (βʹ) A (B C) και (A B) (A C). (γʹ) A B και B A. (δʹ) A B και B A.

Διαβάστε περισσότερα

Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"

Σχέδιο Μαθήματος - Ευθεία Απόδειξη Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 8 ης διάλεξης

Ασκήσεις μελέτης της 8 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής

Διαβάστε περισσότερα

x < y ή x = y ή y < x.

x < y ή x = y ή y < x. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με

Διαβάστε περισσότερα

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας

Διαβάστε περισσότερα

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας

Διαβάστε περισσότερα

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2 A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ MYY204 Διακριτά Μαθηματικά Μθ άii Προτασιακή Λογική ιδακτικές Σημειώσεις EPP : Παράγραφοι 1.1 1.2 Rosen: Παράγραφοι 1.1 1.3 1 η +2 η Εβδομάδα Άνοιξη 2015 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Λογική και Προτασιακός Λογισµός ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 16 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Λογική

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΚΑΘΟΛΙΚΕΣ ΠΥΛΕΣ NND NOR ΑΛΓΕΒΡΑ OOLE ΘΕΩΡΗΜΑ

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18

Διαβάστε περισσότερα

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 15/2/2019. Άσκηση Φ1.1 (*) Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις.

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 15/2/2019. Άσκηση Φ1.1 (*) Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις. Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 15/2/2019 Άσκηση Φ1.1 (*) Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις. ( p ( p q)) ( q r) ( p ( q r)) (( p q) r) ( p r) ( q r) (a) p

Διαβάστε περισσότερα

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Υπολογιστική Λογική και Λογικός Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 13/2/2018. Άσκηση Φ1.1 Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις.

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 13/2/2018. Άσκηση Φ1.1 Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις. Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 13/2/2018 Άσκηση Φ1.1 Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις. ( p ( p )) ( r) ( p ( r)) (( p ) r) ( p r) ( r) (a) p r p p ( p )

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017 HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2018

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2018 ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 1 η Σειρά Ασκήσεων Λύσεις Άσκηση 1.1 [1 μονάδα] Αποδείξτε ότι η πρόταση ((p q) p) q είναι ταυτολογία (α) χρησιμοποιώντας πίνακες αλήθειας (β) χωρίς πίνακες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες.

ΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες. ΑΣΚΗΣΕΙΣ 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες. α) A B/A Α Β ΑΛΒ Α α α α α α ψ ψ α ψ α ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση A B είναι αληθής, τότε σε

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο η Σειρά Ασκήσεων

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο η Σειρά Ασκήσεων ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2017 1 η Σειρά Ασκήσεων Παράδοση: Τρίτη, 28/2/2017 μέχρι το τέλος του φροντιστηρίου Σημείωση: Οι απαντήσεις πρέπει να είναι τεκμηριωμένες Άσκηση 1.1 [1 μονάδα]

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 1ο μέρος σημειώσεων: Προτασιακός Λογισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης. ΗΥ180 Λογική

Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης. ΗΥ180 Λογική Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης ΗΥ180 Λογική Σημειώσεις Εαρινό Εξάμηνο 2018 Διδάσκων: Δημήτρης Πλεξουσάκης, Καθηγητής 1 1. Εισαγωγή 1.1 Σύντομη Ιστορική Ανασκόπηση Η θεμελίωση της Λογικής

Διαβάστε περισσότερα

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της ΔΟΜΗ ΕΠΙΛΟΓΗΣ Οι διάφορες εκδοχές της Απλή επιλογή Ναι Ομάδα Εντολών Α Ισχύει η Συνθήκη; Χ Χ Χ Όχι Αν (Συνθήκη =Αληθινή) Τότε Ομάδα εντολών Τέλος_αν Λειτουργία: 1. Αν ισχύει η συνθήκη εκτελείται ΠΡΩΤΑ

Διαβάστε περισσότερα

Σημεία Προσοχής στην Παράγραφο Ε1.

Σημεία Προσοχής στην Παράγραφο Ε1. Σημεία Προσοχής στην Παράγραφο Ε1. 1. Πότε μια πρόταση που περιέχει το ή είναι αληθής; Μια πρόταση που περιέχει τον σύνδεσμο "ή", ουσιαστικά αποτελείται από δύο ισχυρισμούς. Μπορεί και οι δύο ισχυρισμοί

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά: πυλώνες Image source: http://www.patrasevents.gr Διακριτά Μαθηματικά: λογική Διακριτά Μαθηματικά: αποδείξεις Διακριτά Μαθηματικά:

Διαβάστε περισσότερα

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 14/2/2017. q r ( q r) p q ( p q)

Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 14/2/2017. q r ( q r) p q ( p q) Φροντιστήριο #1 Λυμένες Ασκήσεις σε Προτασιακό Λογισμό 14/2/2017 Άσκηση Φ1.1 Κατασκευάστε πίνακες αληθείας για τις παρακάτω προτάσεις. ( p ( p )) ( r) ( p ( r)) (( p ) r) ( p r) ( r) (a) p r p p ( p )

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL 8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2

ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Έλεγχος συνθηκών - if Ας μελετήσουμε το πρόβλημα του υπολογισμού του ελάχιστου

Διαβάστε περισσότερα