ΠΡΟΣ: ΚΟΙΝ.: ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΣ: ΚΟΙΝ.: ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση : Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη : Μαρούσι Ιστοσελίδα : Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο : ΠΡΟΣ: ΚΟΙΝ.: Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, Αρ. Πρωτ /Δ2 Περιφερειακές Δ/νσεις Εκπαίδευσης Σχολ. Συμβούλους Δ.Ε. (μέσω των Περιφερειακών Δ/νσεων Εκπαίδευσης) Δ/νσεις Δ/θμιας Εκπαίδευσης Γενικά Λύκεια (μέσω των Δ/νσεων Δ/θμιας Εκπαίδευσης) Ινστιτούτο Εκπαιδευτικής Πολιτικής Αν. Τσόχα 36, Αθήνα ΘΕΜΑ: Διδακτέα ύλη και Οδηγίες για τη διδασκαλία των μαθημάτων της Α τάξης του Ημερησίου Γενικού Λυκείου και των Α και Β τάξεων του Εσπερινού Γενικού Λυκείου για το σχ. έτος Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 42/2015 του Δ.Σ.) σας αποστέλλουμε τις παρακάτω οδηγίες σχετικά με τη διδασκαλία των μαθημάτων της Α τάξης του Ημερησίου Γενικού Λυκείου και των Α και Β τάξεων του Εσπερινού Γενικού Λυκείου για το σχ. έτος Συγκεκριμένα: ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Για το μάθημα της Νέας Ελληνικής Γλώσσας της Α τάξης Ημερησίου Γενικού Λυκείου ως διδακτικά εγχειρίδια θα χρησιμοποιηθούν τα βιβλία: α) Έκφραση-Έκθεση Τεύχος Α της Α τάξης Γενικού Λυκείου β) Έκφραση-Έκθεση για το Γενικό Λύκειο-Θεματικοί Κύκλοι των Α, Β, Γ τάξεων Γενικού Λυκείου γ) Γλωσσικές Ασκήσεις για το Γενικό Λύκειο Από το βιβλίο Έκφραση-Έκθεση, Τεύχος Α, της Α τάξης Γενικού Λυκείου θα διδαχθούν τα εξής: ΠΡΟΛΟΓΙΚΑ Τα όρια της λέξης ΓΛΩΣΣΑ ΚΑΙ ΓΛΩΣΣΙΚΕΣ ΠΟΙΚΙΛΙΕΣ Ι. ΤΑ ΟΡΙΑ ΤΗΣ ΓΛΩΣΣΑΣ 1. Η απεραντοσύνη της 2. Η πολυμορφία της 3. Η παντοδυναμία της ΙΙ. ΟΙ ΠΟΙΚΙΛΙΕΣ ΤΗΣ ΓΛΩΣΣΑΣ (ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΕΡΗ ΓΛΩΣΣΑ) 1. Γεωγραφικές γλωσσικές ποικιλίες 2. Κοινωνικές γλωσσικές ποικιλίες ΙΙΙ. ΟΙ ΟΠΤΙΚΕΣ ΤΗΣ ΓΛΩΣΣΑΣ 1

2 IV. Η ΔΗΜΙΟΥΡΓΙΚΟΤΗΤΑ ΤΗΣ ΓΛΩΣΣΑΣ V. ΠΑΡΑΓΩΓΗ ΚΕΙΜΕΝΩΝ VI. ΕΙΔΙΚΕΣ ΓΛΩΣΣΕΣ VII. ΟΡΓΑΝΩΣΗ ΤΟΥ ΛΟΓΟΥ VIII. ΘΕΜΑΤΑ ΓΙΑ ΣΥΖΗΤΗΣΗ ΚΑΙ ΕΚΦΡΑΣΗ-ΕΚΘΕΣΗ Ο ΛΟΓΟΣ I. ΠΡΟΦΟΡΙΚΟΣ ΚΑΙ ΓΡΑΠΤΟΣ ΛΟΓΟΣ 1. Επισημαίνω τα στοιχεία της ομιλίας 2. Συγκρίνω τον προφορικό με το γραπτό λόγο Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με τον προφορικό και το γραπτό λόγο ΙΙ. ΔΙΑΛΟΓΟΣ 1. Διάλογος. Η σχέση του λόγου με το σώμα, το χρόνο και το χώρο 2. Προϋποθέσεις για την επιτυχία ενός διαλόγου/μιας συνομιλίας 3. Ο λογοτεχνικός διάλογος Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με το διάλογο Λεξιλόγιο Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με την εφηβεία Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με την αγάπη και με τον έρωτα ΠΕΡΙΓΡΑΦΗ Ι. ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Μεθόδευση της περιγραφής α. Η επιλογή και η παράθεση/οργάνωση των λεπτομερειών β. Η ακρίβεια και η σαφήνεια στην περιγραφή 2. Η γλώσσα της περιγραφής α. Η επιλογή των κατάλληλων λέξεων/φράσεων β. Κυριολεκτική (δηλωτική) και μεταφορική (συνυποδηλωτική) χρήση της γλώσσας 3. Το σχόλιο και η οπτική γωνία στην περιγραφή. ΙΙ. ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ / ΑΝΤΙΚΕΙΜΕΝΑ ΤΗΣ ΠΕΡΙΓΡΑΦΗΣ 1.Περιγραφή ενός χώρου / κτιρίου 2.Περιγραφή προσώπου/ατόμου α. Τα τυπικά και τα ιδιαίτερα χαρακτηριστικά ενός προσώπου / ατόμου β. Το σχόλιο στην περιγραφή ενός ατόμου 3. Περιγραφή ζωγραφικού πίνακα ή άλλου έργου τέχνης 4. Ειδικά θέματα β. Περιγραφή της διαδικασίας για την κατασκευή ή τη χρήση ενός αντικειμένου ΙΙΙ. ΕΚΦΡΑΣΗ-ΕΚΘΕΣΗ: θέματα σχετικά με την ενδυμασία και τη μόδα ΙV. ΟΡΓΑΝΩΣΗ ΤΟΥ ΛΟΓΟΥ Ανάπτυξη μιας παραγράφου με αναλογία. ΑΦΗΓΗΣΗ Ι. ΑΦΗΓΗΣΗ 1.Ορισμός της αφήγησης. 2.Αφηγηματικό περιεχόμενο και αφηγηματική πράξη. 7.Αφηγηματικός χρόνος Λεξιλόγιο σχετικό με τα θέματα για συζήτηση και έκφραση/έκθεση που ακολουθούν. Θέματα για συζήτηση ή έκφραση/έκθεση (Γηρατειά και νεότητα. Χθες-Σήμερα-Αύριο. Αφηγήσεις για το παρελθόν και το μέλλον) 2

3 ΙΙ. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΦΗΓΗΣΗ Λεξιλόγιο Θέματα για συζήτηση και έκφραση/έκθεση. Το Κωμικό και η σημασία του γέλιου ΙΙΙ. ΟΡΓΑΝΩΣΗ ΤΟΥ ΛΟΓΟΥ: Συνοχή κειμένου Συνοχή σε ένα αφηγηματικό κείμενο ΤΟ ΧΡΟΝΟΓΡΑΦΗΜΑ ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Για το μάθημα της Νέας Ελληνικής Γλώσσας της Α τάξης Εσπερινού Γενικού Λυκείου ως διδακτικά εγχειρίδια θα χρησιμοποιηθούν τα βιβλία: α) Έκφραση-Έκθεση Τεύχος Α της Α τάξης Γενικού Λυκείου β) Έκφραση-Έκθεση για το Γενικό Λύκειο-Θεματικοί Κύκλοι των Α, Β, Γ τάξεων Γενικού Λυκείου γ) Γλωσσικές Ασκήσεις για το Γενικό Λύκειο Από το βιβλίο Έκφραση-Έκθεση, Τεύχος Α, της Α τάξης Γενικού Λυκείου θα διδαχθούν τα εξής: ΠΡΟΛΟΓΙΚΑ Τα όρια της λέξης ΓΛΩΣΣΑ ΚΑΙ ΓΛΩΣΣΙΚΕΣ ΠΟΙΚΙΛΙΕΣ Ι. ΤΑ ΟΡΙΑ ΤΗΣ ΓΛΩΣΣΑΣ 1. Η απεραντοσύνη της 2. Η πολυμορφία της 3. Η παντοδυναμία της ΙΙ. ΟΙ ΠΟΙΚΙΛΙΕΣ ΤΗΣ ΓΛΩΣΣΑΣ (ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΕΡΗ ΓΛΩΣΣΑ) 1. Γεωγραφικές γλωσσικές ποικιλίες 2. Κοινωνικές γλωσσικές ποικιλίες ΙΙΙ. ΟΙ ΟΠΤΙΚΕΣ ΤΗΣ ΓΛΩΣΣΑΣ IV. Η ΔΗΜΙΟΥΡΓΙΚΟΤΗΤΑ ΤΗΣ ΓΛΩΣΣΑΣ V. ΠΑΡΑΓΩΓΗ ΚΕΙΜΕΝΩΝ VI. ΕΙΔΙΚΕΣ ΓΛΩΣΣΕΣ VII. ΟΡΓΑΝΩΣΗ ΤΟΥ ΛΟΓΟΥ VIII. ΘΕΜΑΤΑ ΓΙΑ ΣΥΖΗΤΗΣΗ ΚΑΙ ΕΚΦΡΑΣΗ-ΕΚΘΕΣΗ Ο ΛΟΓΟΣ I. ΠΡΟΦΟΡΙΚΟΣ ΚΑΙ ΓΡΑΠΤΟΣ ΛΟΓΟΣ 1. Επισημαίνω τα στοιχεία της ομιλίας 2. Συγκρίνω τον προφορικό με το γραπτό λόγο Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με τον προφορικό και το γραπτό λόγο ΙΙ. ΔΙΑΛΟΓΟΣ 1. Διάλογος. Η σχέση του λόγου με το σώμα, το χρόνο και το χώρο 2. Προϋποθέσεις για την επιτυχία ενός διαλόγου/μιας συνομιλίας 3. Ο λογοτεχνικός διάλογος Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με το διάλογο Λεξιλόγιο Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με την εφηβεία Θέματα για συζήτηση και έκφραση-έκθεση σχετικά με την αγάπη και με τον έρωτα 3

4 ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Β ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Για το μάθημα της Νέας Ελληνικής Γλώσσας της Β τάξης Εσπερινού Γενικού Λυκείου ως διδακτικά εγχειρίδια θα χρησιμοποιηθούν τα βιβλία: α) Έκφραση-Έκθεση Τεύχος Α της Α τάξης Γενικού Λυκείου β) Έκφραση-Έκθεση για το Γενικό Λύκειο-Θεματικοί Κύκλοι των Α, Β, Γ τάξεων Γενικού Λυκείου γ) Γλωσσικές Ασκήσεις για το Γενικό Λύκειο Από το βιβλίο Έκφραση Έκθεση, Τεύχος Α θα διδαχτούν τα εξής: ΠΕΡΙΓΡΑΦΗ Ι. ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Μεθόδευση της περιγραφής α. Η επιλογή και η παράθεση/οργάνωση των λεπτομερειών β. Η ακρίβεια και η σαφήνεια στην περιγραφή 2. Η γλώσσα της περιγραφής α. Η επιλογή των κατάλληλων λέξεων/φράσεων β. Κυριολεκτική (δηλωτική) και μεταφορική (συνυποδηλωτική) χρήση της γλώσσας 3. Το σχόλιο και η οπτική γωνία στην περιγραφή ΙΙ. ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ / ΑΝΤΙΚΕΙΜΕΝΑ ΤΗΣ ΠΕΡΙΓΡΑΦΗΣ 1.Περιγραφή ενός χώρου / κτιρίου 2.Περιγραφή προσώπου/ατόμου α. Τα τυπικά και τα ιδιαίτερα χαρακτηριστικά ενός προσώπου / ατόμου β. Το σχόλιο στην περιγραφή ενός ατόμου 3. Περιγραφή ζωγραφικού πίνακα ή άλλου έργου τέχνης 4. Ειδικά θέματα β. Περιγραφή της διαδικασίας για την κατασκευή ή τη χρήση ενός αντικειμένου ΙΙΙ. ΕΚΦΡΑΣΗ-ΕΚΘΕΣΗ: θέματα σχετικά με την ενδυμασία και τη μόδα ΙV. ΟΡΓΑΝΩΣΗ ΤΟΥ ΛΟΓΟΥ ΑΦΗΓΗΣΗ Ανάπτυξη μιας παραγράφου με αναλογία Ι. ΑΦΗΓΗΣΗ 1.Ορισμός της αφήγησης 2.Αφηγηματικό περιεχόμενο και αφηγηματική πράξη 7.Αφηγηματικός χρόνος Λεξιλόγιο σχετικό με τα θέματα για συζήτηση και έκφραση/έκθεση που ακολουθούν. Θέματα για συζήτηση ή έκφραση/έκθεση (Γηρατειά και νεότητα. Χθες-Σήμερα-Αύριο. Αφηγήσεις για το παρελθόν και το μέλλον) ΙΙ. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΦΗΓΗΣΗ Λεξιλόγιο Θέματα για συζήτηση και έκφραση/έκθεση. Το Κωμικό και η σημασία του γέλιου ΙΙΙ. ΟΡΓΑΝΩΣΗ ΤΟΥ ΛΟΓΟΥ: Συνοχή κειμένου Συνοχή σε ένα αφηγηματικό κείμενο ΤΟ ΧΡΟΝΟΓΡΑΦΗΜΑ 4

5 ΝΕΑ ΕΛΛΗΝΙΚΗ ΛΟΓΟΤΕΧΝΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Στην διδακτέα ύλη της Α Λυκείου περιλαμβάνονται οι διδακτικές ενότητες: 1) Τα φύλα στη λογοτεχνία. 2) Παράδοση και μοντερνισμός στη νεοελληνική ποίηση. Ως διδακτικό εγχειρίδιο θα χρησιμοποιηθεί κυρίως το Ανθολόγιο Κειμένων της Νεοελληνικής Λογοτεχνίας της Α Λυκείου με συνανάγνωση κειμένων που ανθολογούνται και στα άλλα δύο ανθολόγια της Β και Γ τάξης του Λυκείου. ΝΕΑ ΕΛΛΗΝΙΚΗ ΛΟΓΟΤΕΧΝΙΑ Β ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ως διδακτικό εγχειρίδιο θα χρησιμοποιηθεί το Ανθολόγιο Κειμένων της Νεοελληνικής Λογοτεχνίας της Α Λυκείου. Το μάθημα της Νεοελληνικής Λογοτεχνίας ως μάθημα Γενικής Παιδείας διδάσκεται δύο (2) ώρες την εβδομάδα καθ όλη τη διάρκεια του έτους με ελεύθερη επιλογή κειμένων από τον διδάσκοντα. Το δίωρο αυτό, εφόσον ο διδάσκων το επιθυμεί, είναι συνεχόμενο. Η επιλογή της διδακτέας ύλης θα είναι ίδια για όλα τα τμήματα της τάξης του ίδιου σχολείου, προκειμένου να τηρηθεί η ενότητα της διδασκαλίας και της αξιολόγησης. Κατά τη διάρκεια του σχολικού έτους θα διδαχθούν κείμενα ποιητικά και πεζά, τουλάχιστον 13, αντιπροσωπευτικά ό- λων των ενοτήτων που περιέχονται στο οικείο σχολικό εγχειρίδιο (Πρώτη Περίοδος [10ος αι.-1453], Δεύτερη Περίοδος [ ], Τρίτη Περίοδος [ ], Επτανησιακή Σχολή, Οι Φαναριώτες και η Ρομαντική Σχολή των Αθηνών [ ], Ξένη Λογοτεχνία, Αθηναϊκή Σχολή-Ποίηση, Ο Δημοτικισμός). Θα διδαχθούν, επίσης, τα γραμματολογικά στοιχεία που συνοδεύουν τα κείμενα που πρόκειται να διδαχθούν αλλά και τα γραμματολογικά στοιχεία που δίνονται στην εισαγωγή κάθε ενότητας. 5

6 ΙΣΤΟΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Η διδακτέα ύλη στο μάθημα της Ιστορίας της Α Τάξης του Ημερήσιου και Εσπερινού Γενικού Λυκείου, με βάση το σχολικό βιβλίο Ιστορία του Αρχαίου Κόσμου: Από τους προϊστορικούς πολιτισμούς της Ανατολής έως την εποχή του Ιουστινιανού, του Α. Μαστραπά, είναι η ακόλουθη: Ι. ΟΙ ΠΟΛΙΤΙΣΜΟΙ ΤΗΣ ΕΓΓΥΣ ΑΝΑΤΟΛΗΣ 2. Η Αίγυπτος ΙΙ. ΟΙ ΑΡΧΑΙΟΙ ΕΛΛΗΝΕΣ 1. Ελληνική προϊστορία 1.2. O Mυκηναϊκός πολιτισμός 2. Η αρχαία Ελλάδα (από το 1100 ως το 323 π.χ.) 2.1. Ομηρική εποχή ( π.χ.), [εκτός από την ενότητα Οι μετακινήσεις (11ος-9ος αι. π.χ.)], Ο πρώτος ελληνικός αποικισμός, Οικονομική, κοινωνική και πολιτική οργάνωση, Ο πολιτισμός 2.2. Αρχαϊκή εποχή ( π.χ) 2.3. Κλασική εποχή ( π.χ.): το εισαγωγικό τμήμα και η υποενότητα: η συμμαχία της Δήλου - Αθηναϊκή ηγεμονία, Η εποχή του Περικλή, ο Πελοποννησιακός πόλεμος ( π.χ.), Η κρίση της πόληςκράτους, Η πανελλήνια ιδέα, Ο Φίλιππος Β και η ένωση των Ελλήνων, Το έργο του Μ. Αλεξάνδρου, Ο πολιτισμός ΙΙΙ. ΕΛΛΗΝΙΣΤΙΚΟΙ ΧΡΟΝΟΙ 1.2. Τα χαρακτηριστικά του Ελληνιστικού κόσμου (Οι υποενότητες: Τα βασίλεια της Ανατολής, Τα βασίλεια του Ελλαδικού χώρου, Οι πόλεις κράτη, Οι συμπολιτείες δεν συμπεριλαμβάνονται στην εξεταστέα ύλη). 2. Ο ελληνιστικός πολιτισμός IV. Ο ΕΛΛΗΝΙΣΜΟΣ ΤΗΣ ΔΥΣΗΣ. ΠΟΛΙΤΙΣΜΟΙ ΔΥΤΙΚΗΣ ΜΕΣΟΓΕΙΟΥ ΚΑΙ ΡΩΜΗ 3.3 Η ίδρυση της Ρώμης και η οργάνωσή της 3.4. Η συγκρότηση της Ρωμαϊκής πολιτείας-res publica V. OI MEΓΑΛΕΣ ΚΑΤΑΚΤΗΣΕΙΣ 2.2. Οι μεταρρυθμιστικές προσπάθειες VI. Η ΡΩΜΑΪΚΗ ΑΥΤΟΚΡΑΤΟΡΙΑ (1ος αι. π.χ. 3ος αι. μ.χ.) 1. Η περίοδος της ακμής (27 π.χ. 193 μ.χ.) 1.1 Η εποχή του Αυγούστου (27 π.χ.-14 μ.χ.): Η ισχυροποίηση της κεντρικής εξουσίας, Το πολίτευμα και οι στρατιωτικές μεταρρυθμίσεις 1.2 Οι διάδοχοι του Αυγούστου ( μ.χ.): το εισαγωγικό τμήμα, Η διοίκηση και το δίκαιο VII. H ΥΣΤΕΡΗ ΑΡΧΑΙΟΤΗΤΑ (4ος - 6ος αι. μ.χ.) 1.1. Ο Διοκλητιανός και η αναδιοργάνωση της αυτοκρατορίας 1.2. Μ. Κωνσταντίνος: Εκχριστιανισμός και ισχυροποίηση της ρωμαϊκής Ανατολής 1.4. Ο εξελληνισμός του Ανατολικού Ρωμαϊκού κράτους 1.5. Η μεγάλη μετανάστευση των λαών. Το τέλος του Δυτικού Ρωμαϊκού κράτους 2. Η εποχή του Ιουστινιανού (6ος αι. μ.χ.) 2.2 Η ελληνοχριστιανική οικουμένη 6

7 ΙΣΤΟΡΙΑ B ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Η διδακτέα ύλη στο μάθημα της Ιστορίας της Β τάξης του Εσπερινού Γενικού Λυκείου, με βάση το σχολικό βιβλίο Ιστορία του Μεσαιωνικού και του Νεότερου Κόσμου , των Ι. Δημητρούκα, Θ. Ιωάννου, Κ. Μπαρούτα, είναι η ακόλουθη: Ι. Από το θάνατο του Ιουστινιανού ως την αποκατάσταση των εικόνων και τη συνθήκη του Βερντέν ( ) 2. Η βασιλεία του Ηρακλείου ( ). Αποφασιστικοί αγώνες και μεταρρυθμίσεις 3. Η εμφάνιση του Ισλάμ 5. Η Εικονομαχία 6. Κοινωνία και οικονομία 7. Σλάβοι και Βούλγαροι 8. Το Φραγκικό κράτος υπό τις δυναστείες των Μεροβιγγείων και των Καρολιδών ΙΙ. Η εποχή της ακμής: από τον τερματισμό της Εικονομαχίας ως το Σχίσμα των δύο εκκλησιών ( ) 1. Προοίμιο της ακμής του Βυζαντινού Κράτους ( ) 3. Κοινωνία 5. Η διεθνής ακτινοβολία του Βυζαντίου 7. Οικονομία και κοινωνία στη Δυτική Ευρώπη. Το σύστημα της Φεουδαρχίας ΙΙΙ. Από το Σχίσμα των δύο εκκλησιών ως την άλωση της Κωνσταντινούπολης από τους Σταυροφόρους ( ) 1. Εσωτερική κρίση και εξωτερικοί κίνδυνοι ( ) 2. Η εσωτερική πολιτική των Κομνηνών ( ) 7. Οι Σταυροφορίες: α. Οι αιτίες, δ. Η Τέταρτη Σταυροφορία, ε. Η άλωση της Κωνσταντινούπολης από τους Σταυροφόρους IV. Η Λατινοκρατία και η Παλαιολόγεια εποχή ( ). Ο Ύστερος Μεσαίωνας στη Δύση 2. Τα Ελληνικά κράτη: Τραπεζούς, Ήπειρος, Νίκαια 6. Οι Οθωμανοί και η ραγδαία προέλασή τους 7. Η άλωση της Κωνσταντινούπολης VI. Από την άλωση της Κωνσταντινούπολης και τις Ανακαλύψεις των Νέων Χωρών ως τη συνθήκη της Βεστφαλίας ( ) 2. Αναγέννηση και ανθρωπισμός 3. Ανακαλύψεις 4. Θρησκευτική μεταρρύθμιση ( ) VII. Από τη συνθήκη της Βεστφαλίας (1648) έως το συνέδριο της Βιέννης (1815) 1. Ο Διαφωτισμός 2. Οι οικονομικές εξελίξεις: Οι απαρχές της Βιομηχανικής επανάστασης, οι οικονομικές θεωρίες 3. Η Αμερικανική επανάσταση 4. Η Γαλλική επανάσταση και η Ναπολεόντεια περίοδος ( ) 7

8 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά., οι οποίες είναι απαραίτητες για την μετέπειτα μαθηματική εξέλιξη των μαθητών. Οι μαθητές έχουν έρθει σε μια πρώτη επαφή με αυτές τις έννοιες σε προηγούμενες τάξεις. Στην Α Λυκείου θα τις αντιμετωπίσουν σε ένα υψηλότερο επίπεδο αφαίρεσης, το οποίο δημιουργεί ιδιαίτερες δυσκολίες στους μαθητές. Για την αντιμετώπιση αυτών των δυσκολιών προτείνεται να αφιερωθεί ικανός χρόνος στην εμπέδωση των νέων εννοιών, μέσω της ανάπτυξης και σύνδεσης πολλαπλών αναπαραστάσεών τους και στη χρήση τους στην επίλυση προβλημάτων. Επίσης, να αφιερωθεί χρόνος ώστε οι μαθητές να εμπλακούν στην αναγνώριση ομοιοτήτων και διαφορών μεταξύ ιδιοτήτων και διαδικασιών καθώς και σε διαδικασίες γενίκευσης. Οι πολλαπλές αναπαραστάσεις και η σύνδεσή τους μπορούν υποστηριχθούν από ψηφιακά περιβάλλοντα, με τη βοήθεια των οποίων οι μαθητές μπορούν να εμπλακούν σε ουσιαστικές μαθηματικές δραστηριότητες. Μέσα από τη διερεύνηση ομοιοτήτων και διαφορών - για παράδειγμα η συσχέτιση των διαδικασιών επίλυσης ή της μορφής των λύσεων εξισώσεων και ανισώσεων, η συσχέτιση ορισμένων ιδιοτήτων των ριζών και των αποδείξεών τους με αντίστοιχες των απολύτων τιμών - οι μαθητές μπορούν να κατανοήσουν καλύτερα τις σχετικές έννοιες και διαδικασίες. ΙΙ. Διδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2015) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1ο: Πιθανότητες 1.1 Δειγματικός Χώρος-Ενδεχόμενα 1.2 Έννοια της Πιθανότητας (εκτός της υποπαραγράφου «Αξιωματικός Ορισμός Πιθανότητας») Κεφ.2ο: Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 2.2 Διάταξη Πραγματικών Αριθμών (εκτός της απόδειξης της ιδιότητας 4) 2.3 Απόλυτη Τιμή Πραγματικού Αριθμού 2.4 Ρίζες Πραγματικών Αριθμών (εκτός των αποδείξεων των ιδιοτήτων 3 και 4) Κεφ.3ο: Εξισώσεις 3.1 Εξισώσεις 1 ου Βαθμού 3.2 Η Εξίσωση x 3.3 Εξισώσεις 2 ου Βαθμού Κεφ.4ο: Ανισώσεις 4.1 Ανισώσεις 1 ου Βαθμού 4.2 Ανισώσεις 2 ου Βαθμού Κεφ.5ο: Πρόοδοι 5.1 Ακολουθίες 5.2 Αριθμητική πρόοδος (εκτός της απόδειξης για το S ν ) 5.3 Γεωμετρική πρόοδος (εκτός της απόδειξης για το S ν ) Κεφ.6ο: Βασικές Έννοιες των Συναρτήσεων 8

9 6.1 Η Έννοια της Συνάρτησης 6.2 Γραφική Παράσταση Συνάρτησης (εκτός της υποπαραγράφου «Απόσταση σημείων») 6.3 Η Συνάρτηση f(x)= αx+β (εκτός της κλίσης ευθείας ως λόγος μεταβολής) Κεφ.7ο: Μελέτη Βασικών Συναρτήσεων 7.1 Μελέτη της Συνάρτησης: f(x)= αx2 7.3 Μελέτη της Συνάρτησης: f(x)= αx2+βx+γ ΙΙΙ. Διαχείριση διδακτέας ύλης Εισαγωγικό Κεφάλαιο (Προτείνεται να διατεθούν 2 διδακτικές ώρες) Στο κεφάλαιο αυτό οι μαθητές διαπραγματεύονται την έννοια του συνόλου καθώς και σχέσεις και πράξεις μεταξύ συνόλων. Ειδικότερα: Όσον αφορά στην Ε.1, αυτή να μη διδαχθεί ως αυτόνομο κεφάλαιο αλλά να συζητηθεί το νόημα και η χρήση των στοιχείων της Λογικής στις ιδιότητες και προτάσεις που διατρέχουν τη διδακτέα ύλη (για παράδειγμα στην ιδιότητα α β 0 α 0 και β 0 της 2.1 μπορεί να διερευνηθεί το νόημα της ισοδυναμίας και του συνδέσμου «και»). Ε.2 Οι μαθητές αντιμετωπίζουν για πρώτη φορά με συστηματικό τρόπο την έννοια του συνόλου και των σχέσεων και πράξεων μεταξύ συνόλων. Επειδή η έννοια του συνόλου είναι πρωταρχική, δηλαδή δεν ορίζεται, χρειάζεται να τονισθούν οι προϋποθέσεις που απαιτούνται για να θεωρηθεί μια συλλογή αντικειμένων σύνολο μέσα από κατάλληλα παραδείγματα (π.χ. το σύνολο που αποτελείται από τα θρανία και τους μαθητές της τάξης, το «σύνολο» των ψηλών μαθητών της τάξης). Η αναπαράσταση συνόλων, σχέσεων και πράξεων αυτών καθώς και η μετάβαση από τη μία αναπαράσταση στην άλλη, μπορούν να υποστηρίξουν την κατανόηση της έννοιας του συνόλου. Οι πράξεις μεταξύ συνόλων είναι ένα πλαίσιο στο οποίο οι μαθητές μπορούν να δώσουν νόημα στους συνδέσμους «ή» και «και». Ειδικά, όσον αφορά στο σύνδεσμο «ή», να επισημανθεί η διαφορετική του σημασία στα Μαθηματικά από εκείνη της αποκλειστικής διάζευξης που του αποδίδεται συνήθως στην καθημερινή χρήση του. Οι δραστηριότητες Δ.1, Δ.2 και Δ.3 του ΑΠΣ είναι ενδεικτικές για την εννοιολογική προσέγγιση της έννοιας του συνόλου. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 8 διδακτικές ώρες) Οι μαθητές έχουν έλθει σε επαφή με την έννοια της πιθανότητας στις προηγούμενες τάξεις με εμπειρικό τρόπο. Στο κεφάλαιο αυτό εισάγονται στην έννοια της πιθανότητας με τον κλασικό ορισμό και εξασκούνται στο βασικό λογισμό πιθανοτήτων με χρήση της θεωρίας συνόλων. Ειδικότερα: 1.1 Είναι σημαντικό οι μαθητές να μπορούν να αναγνωρίζουν ένα πείραμα τύχης και να διακρίνουν τις διαφορές που έχει από ένα αιτιοκρατικό πείραμα (προτείνεται η δραστηριότητα Δ.4 του ΑΠΣ), με στόχο να μπορέσουν στη συνέχεια να αντιληφθούν την ανάγκη εισαγωγής της έννοιας της πιθανότητας για τη μελέτη τέτοιων πειραμάτων. Ο προσδιορισμός και η αναπαράσταση του δειγματικού χώρου ενός πειράματος τύχης είναι μια διαδικασία δύσκολη για τους μαθητές, ειδικά όταν αντιμετωπίζουν ένα πείραμα τύχης που πραγματοποιείται σε δυο ή περισσότερα στάδια. Εργαλεία, όπως το δενδροδιάγραμμα και ο πίνακας διπλής εισόδου, βοηθούν στη μοντελοποίηση ενός πειράματος τύχης και στην κατασκευή του δειγματικού χώρου (προτείνεται η Δ.5 του ΑΠΣ). 9

10 Σημαντική για την κατανόηση και την επίλυση προβλημάτων είναι, επίσης, η μετάφραση σχέσεων μεταξύ ενδεχομένων από τη φυσική γλώσσα στη γλώσσα των συνόλων και αντίστροφα (προτείνονται οι δραστηριότητες Δ.6 και Δ.7 του ΑΠΣ). 1.2 Ο κλασικός ορισμός της πιθανότητας προτείνεται να είναι η κατάληξη της μελέτης της σχετικής συχνότητας και όχι να δοθεί απλά ο τυπικός ορισμός (προτείνεται η δραστηριότητα που αντιστοιχεί στο στόχο Πθ4 του ΑΠΣ). Οι κανόνες λογισμού των πιθανοτήτων εισάγονται για πρώτη φορά και, εκτός από τον απλό χειρισμό τους, είναι σημαντικό να χρησιμοποιηθούν στην επίλυση προβλημάτων που δε θα μπορούσαν να λυθούν με τον κλασικό ορισμό (π.χ. δραστηριότητα Δ.8 του ΑΠΣ) Να μην διδαχθεί η εφαρμογή 3 στη σελίδα 36, καθώς και ασκήσεις με ανισότητες (όπως οι ασκήσεις 4, 5, 6 της Β Ομάδας της παραγράφου 1.2) Κεφάλαιο 2ο (Προτείνεται να διατεθούν 16 διδακτικές ώρες) Στο κεφάλαιο αυτό οι μαθητές επαναλαμβάνουν και εμβαθύνουν στις ιδιότητες του συνόλου των πραγματικών αριθμών με στόχο να βελτιώσουν την κατανόηση της δομής του. Η επανάληψη και περαιτέρω εξάσκηση των μαθητών στον αλγεβρικό λογισμό (αλγεβρικές πράξεις, παραγοντοποίηση, ταυτότητες κ.λ.π.) δεν αποτελεί τον κύριο στόχο αυτού του κεφαλαίου. Ειδικότερα: 2.1 Οι μαθητές συναντούν δυσκολίες στη διάκριση των ρητών από τους άρρητους και γενικότερα στην ταξινόμηση των πραγματικών αριθμών σε φυσικούς, ακέραιους ρητούς και άρρητους. Οι διαφορετικές αναπαραστάσεις των πραγματικών αριθμών επηρεάζουν τις παραπάνω διεργασίες. Για το λόγο αυτό προτείνεται να δοθεί έμφαση στη διάκριση των ρητών από τους άρρητους με χρήση κατάλληλων παραδειγμάτων, όπως οι αριθμοί 4, 1.333, 1,010101, 1, , καθώς και στην ταξινόμηση αριθμών στα βασικά υποσύνολα των 3 πραγματικών αριθμών (όπως 4 2, 3 5,, κ.ά.). Παράλληλα, και με αφορμή τα παραπάνω παραδείγ- 6 ματα, μπορεί να γίνει συζήτηση αν το άθροισμα και το γινόμενο δύο ρητών ή δύο άρρητων ή ρητού και άρρητου είναι ρητός ή άρρητος. Σημαντικό για τον αλγεβρικό λογισμό είναι οι μαθητές να κατανοήσουν τις ιδιότητες των πράξεων. Σε αυτό θα βοηθήσει η λεκτική διατύπωση και η διερεύνηση των ιδιοτήτων καθώς και η αναγνώριση της σημασίας της ισοδυναμίας, της συνεπαγωγής και των συνδέσμων «ή» και «και», με ιδιαίτερη έμφαση στις ιδιότητες: α β=0 α=0 ή β=0, α β 0 α 0 και β 0. Να δοθεί έμφαση στις μεθόδους απόδειξης και ιδιαίτερα σε αυτές με τις οποίες δεν είναι εξοικειωμένοι οι μαθητές, όπως η χρήση της απαγωγής σε άτοπο για την απόδειξη ότι ο 2 είναι άρρητος και του αντιπαραδείγματος στην απόρριψη του ισχυρισμού: α 2 =β 2 α=β Οι μαθητές, επηρεασμένοι από τη διαδοχικότητα των ακεραίων, συναντούν δυσκολίες στην κατανόηση της πυκνότητας των ρητών αριθμών. Προτείνεται να δοθεί έμφαση στη διερεύνηση της έννοιας της πυκνότητας και της διαδοχικότητας στα βασικά υποσύνολα των πραγματικών αριθμών (προτείνεται η δραστηριότητα Δ.9 του ΑΠΣ) καθώς και στις ομοιότητες και διαφορές των ιδιοτήτων της ισότητας και της ανισότητας, με έμφαση στις ισοδυναμίες: α 2 +β 2 =0 α=0 και β=0, ενώ α 2 +β 2 >0 α 0 ή β 0 και στα σχόλια 1 και 2 της σελ

11 Οι μαθητές έχουν αντιμετωπίσει, στο Γυμνάσιο, την απόλυτη τιμή ενός αριθμού ως την απόστασή του από το μηδέν στον άξονα των πραγματικών αριθμών. Στην ενότητα αυτή δίνεται ο τυπικός ορισμός της απόλυτης τιμής και αποδεικνύονται οι βασικές ιδιότητές της. Να επισημανθεί η μέθοδος απόδειξης των ιδιοτήτων των απολύτων τιμών (ότι η ζητούμενη σχέση είναι ισοδύναμη με μία σχέση που γνωρίζουμε ότι είναι αληθής) και να συζητηθεί η αναγκαιότητα του «πρέπει» ( ) και του «αρκεί» ( ) σε αυτές. Η γεωμετρική ερμηνεία της απόλυτης τιμής ενός αριθμού και της απόλυτης τιμής της διαφοράς δύο αριθμών είναι σημαντική, γιατί βοηθά τους μαθητές να αποδώσουν νόημα στην έννοια. Η σύνδεση, όμως, της αλγεβρικής σχέσης και της γεωμετρικής της αναπαράστασης δεν είναι κάτι που γίνεται εύκολα από τους μαθητές και για αυτό απαιτείται να δοθεί σε αυτό ιδιαίτερη έμφαση. Με αυτή την έννοια προτείνεται να μη διδαχθούν, στη γενική τους μορφή, οι: Ix-x 0 I<ρ x (x 0 -ρ, x 0 +ρ) x 0 -ρ<x<x 0 +ρ καθώς και Ix-x 0 I>ρ x (, x 0 -ρ) (x 0 +ρ, ) x<x 0 -ρ ή x>x 0 +ρ καθώς και η γεωμετρική ερμηνεία αυτών, επειδή είναι πολύ δύσκολο να γίνουν κατανοητά από τους μαθητές σ αυτή τη φάση της αλγεβρικής τους εμπειρίας. Αντίθετα, οι μαθητές μπορούν να ασχοληθούν με τα παραπάνω μέσα από συγκεκριμένα παραδείγματα (π.χ. η ανίσωση Ιx-2Ι<3 σημαίνει: «ποιοι είναι οι αριθμοί που απέχουν από το 2 απόσταση μικρότερη του 3;» δηλ. Ix-2I<3 d (x, 2) <3-1<x<5). Προτείνεται, όμως, να γίνει διαπραγμάτευση των σχέσεων IxI<ρ -ρ<x<ρ και IxI>ρ x<-ρ ή x>ρ. H δραστηριότητα Δ.10 του ΑΠΣ υποστηρίζει την παραπάνω προσέγγιση. 2.4 Οι μαθητές έχουν ήδη αντιμετωπίσει, στο Γυμνάσιο, τις τετραγωνικές ρίζες και δυνάμεις με ακέραιο εκθέτη καθώς και τις ιδιότητες αυτών. Στην ενότητα αυτή γίνεται επέκταση στη ν-οστή ρίζα και στη δύναμη με ρητό εκθέτη. Να επισημανθεί η διατήρηση των ιδιοτήτων των δυνάμεων με ακέραιο εκθέτη και στην περίπτωση του ρητού εκθέτη. Προτείνεται η διαπραγμάτευση απλών ασκήσεων. Για να αναδειχθούν τα πλεονεκτήματα της χρήσης των ιδιοτήτων των ριζών, έναντι της χρήσης του υπολογιστή τσέπης, προτείνεται μια δραστηριότητα σαν τη Δ.11 του ΑΠΣ. Κεφάλαιο 3ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Στο κεφάλαιο αυτό οι μαθητές μελετούν συστηματικά και διερευνούν εξισώσεις 1ου και 2ου βαθμού. Ως ι- διαίτερη περίπτωση εξετάζεται η εξίσωση x ν =α. Ειδικότερα: 3.1 Οι μαθητές, στο Γυμνάσιο, έχουν διαπραγματευθεί αναλυτικά την επίλυση εξισώσεων της μορφής αx+β=0, της οποίας οι συντελεστές α και β είναι συγκεκριμένοι αριθμοί. Συναντούν δυσκολίες στη μετάβαση από την επίλυση μιας τέτοιας μορφής εξίσωσης στην επίλυση της γενικής μορφής αx+β=0, για δυο κυρίως λόγους: α) είναι δύσκολος ο διαχωρισμός της έννοιας της παραμέτρου από την έννοια της μεταβλητής και β) δεν είναι εξοικειωμένοι με τη διαδικασία της διερεύνησης γενικά. Για το λόγο αυτό, προτείνεται να δοθεί προτεραιότητα στην αναγνώριση του ρόλου της παραμέτρου σε μια παραμετρική εξίσωση 1ου βαθμού μέσα από τη διαπραγμάτευση της παραμετρικής εξίσωσης που περιλαμβάνεται στη θεωρία αυτής της παραγράφου (σχολικό βιβλίο, σελ. 80). Για παράδειγμα, μπορεί να ζητηθεί από τους μαθητές να λύσουν την εξίσωση για συγκεκριμένες τιμές του λ (π.χ. λ=2, λ=5, λ=1, λ=-1) και στη συ- 11

12 νέχεια να προσπαθήσουν να διατυπώσουν γενικά συμπεράσματα για κάθε τιμή της παραμέτρου λ. Προτείνεται, επίσης, προς διαπραγμάτευση η δραστηριότητα Δ.12 του ΑΠΣ καθώς και η επίλυση απλών παραμετρικών εξισώσεων και απλών εξισώσεων που ανάγονται σε εξισώσεις 1ου βαθμού (όπως η άσκηση 10 της Α Ομάδας). Για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων των απολύτων τιμών, προτείνεται να δοθεί ιδιαίτερη έμφαση σε εξισώσεις, όπως η Ix-5I=-3, την οποία δύσκολα χαρακτηρίζουν οι μαθητές από την αρχή ως αδύνατη. 3.2 Η επίλυση εξισώσεων της μορφής x ν =α να περιοριστεί σε απλές εξισώσεις. 3.3 Η επίλυση της εξίσωσης αx 2 +βx+γ=0, α 0 στη γενική της μορφή με τη μέθοδο «συμπλήρωσης τετραγώνου» είναι μια διαδικασία που δυσκολεύει τους μαθητές. Προτείνεται να χρησιμοποιήσουν οι μαθητές τη μέθοδο της «συμπλήρωσης τετραγώνου» πρώτα σε εξισώσεις 2ου βαθμού με συντελεστές συγκεκριμένους αριθμούς και στη συνέχεια με τη βοήθεια του εκπαιδευτικού να γενικεύσουν τη διαδικασία. Επίσης, προτείνεται η επίλυση απλών εξισώσεων που ανάγονται σε εξισώσεις 2ου βαθμού (όπως τα παραδείγματα 1 και 3) και να δοθεί έμφαση στη μοντελοποίηση και επίλυση προβλημάτων με χρήση εξισώσεων 2ου βαθμού (προτείνονται οι δραστηριότητες Δ.13 και Δ.14 του ΑΠΣ). Οι τύποι του Vieta επιτρέπουν στους μαθητές είτε να κατασκευάσουν μια εξίσωση 2ου βαθμού με δεδομένο το άθροισμα και το γινόμενο ριζών της είτε να προσδιορίσουν απευθείας τις ρίζες της (βρίσκοντας δυο αριθμούς που να έχουν άθροισμα S και γινόμενο P). Προτείνεται να ζητηθεί από τους μαθητές, υπό μορφή άσκησης, να προσδιορίσουν αυτούς τους τύπους και να τους χρησιμοποιήσουν στην επίλυση σχετικών προβλημάτων. Κεφάλαιο 4ο (Προτείνεται να διατεθούν 8 διδακτικές ώρες) Στο κεφάλαιο αυτό οι μαθητές μελετούν συστηματικά και διερευνούν ανισώσεις 1ου και 2ου βαθμού Ειδικότερα: 4.1 Οι μαθητές, στο Γυμνάσιο, έχουν διαπραγματευθεί αναλυτικά την επίλυση ανισώσεων 1ου βαθμού με συγκεκριμένους συντελεστές. Εκτός από τη χρήση της αριθμογραμμής, για την απεικόνιση του συνόλου λύσεων μιας ανίσωσης, προτείνεται να δοθεί έμφαση και στη χρήση των διαστημάτων των πραγματικών αριθμών για την παραπάνω απεικόνιση, ως εφαρμογή της αντίστοιχης υποπαραγράφου της 2.2. Να συζητηθούν ομοιότητες και διαφορές ανάμεσα στην εξίσωση και την ανίσωση, ως προς τη διαδικασία της επίλυσης τους και το σύνολο των λύσεών τους. Για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων των απολύτων τιμών, προτείνεται να λυθούν από τους μαθητές και ανισώσεις όπως οι Ix-5I<-3 ή Ix-5I>-3, των οποίων τη λύση, αν και προκύπτει από απλή παρατήρηση, δεν την αναγνωρίζουν άμεσα οι μαθητές. Προτείνεται επίσης να δοθεί προτεραιότητα στη μοντελοποίηση προβλημάτων με χρήση ανισώσεων 1 ου βαθμού, όπως για παράδειγμα η άσκηση 11 της Α Ομάδας και οι ασκήσεις 3 και 4 της Β Ομάδας. 4.2 Η διαπραγμάτευση ανισώσεων 2 ου βαθμού γίνεται για πρώτη φορά στην Α Λυκείου. Προτείνεται να δοθεί έμφαση στη διερεύνηση της παραγοντοποίησης του τριωνύμου, όπου γίνεται ξανά χρήση της μεθόδου «συμπλήρωσης τετραγώνου», ώστε να μη δοθούν απευθείας τα συμπεράσματα αυτής. Στον προσδιορισμό του πρόσημου του τριωνύμου, παρατηρείται συχνά οι μαθητές να παραβλέπουν το πρόσημο του συντελεστή του 12

13 δευτεροβάθμιου όρου ή να συγχέουν το πρόσημο της διακρίνουσας με το πρόσημο του τριωνύμου (π.χ. όταν Δ<0, θεωρούν ότι και το τριώνυμο παίρνει αρνητικές τιμές). Τα παραπάνω προβλήματα συχνά αντιμετωπίζονται με διάφορα «τεχνάσματα» με τα σύμβολα «+» και «-», ώστε να προσδιορίσουν οι μαθητές το πρόσημο του τριωνύμου και να επιλύσουν ανισώσεις 2ου βαθμού. Τέτοιες προσεγγίσεις δε συνδέονται με την κατανόηση του πότε ένα τριώνυμο παίρνει θετικές και πότε αρνητικές τιμές. Για το λόγο αυτό προτείνεται να δοθεί έμφαση στην κατανόηση της διαδικασίας προσδιορισμού του πρόσημου του τριωνύμου (π.χ. μέσα από τη μελέτη του προσήμου των παραγόντων του και του συντελεστή του δευτεροβάθμιου όρου, όταν αυτό παραγοντοποιείται) και στη συνέχεια στη χρήση των συμπερασμάτων για την επίλυση ανισώσεων 2ου βαθμού. Η μοντελοποίηση και επίλυση προβλημάτων με χρήση ανισώσεων 2ου βαθμού (π.χ. η δραστηριότητα Δ.15 του ΑΠΣ και η άσκηση 7 της Β Ομάδας) λειτουργούν προς αυτήν την κατεύθυνση. Κεφάλαιο 5ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Στο κεφάλαιο αυτό οι μαθητές εισάγονται στην έννοια της ακολουθίας πραγματικών αριθμών και μελετούν περιπτώσεις ακολουθιών που εμφανίζουν κάποιες ειδικές μορφές κανονικότητας, την αριθμητική και τη γεωμετρική πρόοδο. Ειδικότερα: 5.1 Να δοθεί προτεραιότητα στην αναγνώριση της ακολουθίας ως αντιστοιχίας των φυσικών στους πραγματικούς αριθμούς και στην εξοικείωση των μαθητών με το συμβολισμό (π.χ. ότι ο φυσικός αριθμός 1, μέσω μιας ακολουθίας α, αντιστοιχεί στον πραγματικό αριθμό α 1 που αποτελεί τον πρώτο όρο της ακολουθίας αυτής), δεδομένου ότι αυτός δυσκολεύει τους μαθητές (προτείνεται η δραστηριότητα Δ.16 του ΑΠΣ). 5.2 Αρχικά οι μαθητές χρειάζεται να μπορούν να αναγνωρίσουν με βάση τον ορισμό αν μια συγκεκριμένη ακολουθία είναι αριθμητική πρόοδος (π.χ. η δραστηριότητα Δ.17 του ΑΠΣ). Στη συνέχεια, να προσδιορίζουν το ν- οστό όρο και το άθροισμα των ν πρώτων όρων συγκεκριμένων αριθμητικών προόδων, με τρόπο τέτοιο που να τους βοηθά να αντιληφθούν κανονικότητες, οι οποίες μπορούν να τους οδηγήσουν στα γενικά συμπεράσματα (προτείνεται η δραστηριότητα Δ.18 του ΑΠΣ). Η μοντελοποίηση και επίλυση προβλημάτων (όπως η άσκηση 12 της Α Ομάδας) συμβάλλει στην εννοιολογική κατανόηση της έννοιας της αριθμητικής προόδου. Το να δοθούν απλώς οι τύποι του ν-οστού όρου και του αθροίσματος των ν πρώτων όρων αριθμητικής προόδου και στη συνέχεια οι μαθητές να επιδοθούν στην αλγοριθμική χρήση τους για την επίλυση ασκήσεων δεν είναι συμβατό με το πνεύμα του ΑΠΣ. 5.3 Η διαπραγμάτευση της έννοιας της γεωμετρικής προόδου προτείνεται να γίνει κατ αντιστοιχία με την έννοια της αριθμητικής προόδου. Προτείνονται οι δραστηριότητες Δ.19, Δ.20 και Δ.21 του ΑΠΣ, που στόχο έχουν να αντιληφθούν οι μαθητές κανονικότητες που θα τους οδηγήσουν στην εύρεση του ν-στού όρου και του αθροίσματος των ν πρώτων όρων γεωμετρικής προόδου. Αν ο εκπαιδευτικός κρίνει ότι το επιτρέπουν ο χρόνος, που έχει στη διάθεσή του και το επίπεδο της τάξης, θα μπορούσαν να τεθούν υπό διαπραγμάτευση, τα παραδείγματα της 5.4, ως εφαρμογή της γεωμετρικής προόδου, με στόχο να συνδεθεί η έννοια με πραγματικές καταστάσεις. Κεφάλαιο 6ο (Προτείνεται να διατεθούν 9 διδακτικές ώρες) 13

14 Οι μαθητές, στο Γυμνάσιο, έχουν έρθει σε επαφή με την έννοια της συνάρτησης, κυρίως με εμπειρικό τρόπο, και έχουν διερευνήσει στοιχειωδώς συγκεκριμένες συναρτήσεις. Στην Α Λυκείου μελετούν την έννοια της συνάρτησης με πιο συστηματικό και τυπικό τρόπο. Σε πολλούς μαθητές δημιουργούνται παρανοήσεις και ελλιπείς εικόνες σχετικά με την έννοια αυτή, με αποτέλεσμα να παρουσιάζουν προβλήματα στην αναγνώριση μιας συνάρτησης, καθώς και να μη μπορούν να χειριστούν με ευελιξία διαφορετικές αναπαραστάσεις της ί- διας συνάρτησης (π.χ. πίνακας τιμών, αλγεβρικός τύπος, γραφική παράσταση). Για το λόγο αυτό θα πρέπει οι μαθητές, μέσω κατάλληλων δραστηριοτήτων, να χρησιμοποιούν, να συνδέουν και να ερμηνεύουν τις αναπαραστάσεις μιας συνάρτησης καθώς και να εντοπίζουν πλεονεκτήματα και (ενδεχομένως)μειονεκτήματα καθεμιάς εξ αυτών. Οι έννοιες «κατακόρυφη - οριζόντια μετατόπιση καμπύλης», «μονοτονία ακρότατα - συμμετρίες συνάρτησης», δεν συμπεριλαμβάνονται στη διδακτέα ύλη, όπως αναπτύσσονται στις παραγράφους 6.4 και 6.5. Οι έννοιες αυτές θα μελετηθούν στις ειδικές περιπτώσεις συναρτήσεων της μορφής: f(x)=αx+β ( 6.3), f(x)=αx 2 ( 7.1) και f(x)=αx 2 +βx+γ ( 7.3). Ειδικότερα: Προτείνεται να δοθούν αρχικά συγκεκριμένα παραδείγματα μοντελοποίησης καταστάσεων, ώστε να αναδειχθεί η σημασία της έννοιας της συνάρτησης για τις εφαρμογές, και στη συνέχεια να ακολουθήσει ο τυπικός ορισμός. Να δοθεί έμφαση στην αναγνώριση και τεκμηρίωση, με βάση τον ορισμό, αν αντιστοιχίες που δίνονται με διάφορες αναπαραστάσεις είναι συναρτήσεις ή όχι (οι δραστηριότητες Δ.22, Δ.23 και Δ.24 του ΑΠΣ λειτουργούν προς αυτήν την κατεύθυνση), στη σύνδεση διαφορετικών αναπαραστάσεων μιας συνάρτησης (τύπος, πίνακας τιμών και γραφική παράσταση) και στην ερμηνεία μιας δεδομένης γραφικής παράστασης για την επίλυση ενός προβλήματος (προτείνεται η δραστηριότητα Δ.26 του ΑΠΣ). 6.3 Οι μαθητές έχουν διαπραγματευθεί τη γραφική παράσταση της ευθείας ψ=αx+β στο Γυμνάσιο. Εδώ προτείνεται να δοθεί έμφαση στη διερεύνηση του ρόλου των παραμέτρων α και β στη γραφική παράσταση της f(x)=αx+β, ώστε να προκύψουν οι σχετικές θέσεις ευθειών στο επίπεδο (πότε είναι παράλληλες μεταξύ τους, πότε ταυτίζονται, πότε τέμνουν τον άξονα y y στο ίδιο σημείο). Επίσης προτείνεται, αφού οι μαθητές παρατηρήσουν (με χρήση της γραφικής παράστασης και του πίνακα τιμών συγκεκριμένων γραμμικών συναρτήσεων) πώς μεταβάλλονται οι τιμές της συνάρτησης όταν μεταβάλλεται η ανεξάρτητη μεταβλητή, να καταλήξουν σε γενικότερα συμπεράσματα που αφορούν στη μονοτονία της συνάρτησης και να τα εκφράσουν συμβολικά, καθώς και να διερευνήσουν το ρόλο της παραμέτρου α σε σχέση με αυτά (προτείνεται η δραστηριότητα Δ.27 του ΑΠΣ). Κεφάλαιο 7ο (Προτείνεται να διατεθούν 9 διδακτικές ώρες) Οι μαθητές, στο Γυμνάσιο, έχουν μελετήσει παραβολές της μορφής ψ=αx 2. Στο κεφάλαιο αυτό μελετούν επιπλέον ιδιότητες αυτής της συνάρτησης. Επίσης, με αφετηρία την ψ=αx 2, κατασκευάζουν τη γραφική παράσταση της συνάρτησης f(x)=αx 2 + βx + γ την οποία στη συνέχεια χρησιμοποιούν για να μελετήσουν ιδιότητες της f. Ειδικότερα: 7.1 Οι μαθητές έχουν διαπραγματευθεί, στο Γυμνάσιο, τη γραφική παράσταση της συνάρτησης ψ=αx 2. Εδώ προτείνεται να δοθεί έμφαση στη διερεύνηση ως προς τη μονοτονία, τα ακρότατα και τις συμμετρίες των συναρτήσεων g(x)=x 2 και h(x)=-x 2 με τη βοήθεια της γραφικής παράστασής τους, στη γενίκευση των παραπάνω συμπερασμάτων για τη συνάρτηση f(x)=αx 2 (προτείνεται η δραστηριότητα Δ. 29 του ΑΠΣ) και στη συμβολική τους έκφραση. 14

15 7.3 Να δοθεί έμφαση στη χάραξη και διερεύνηση της γραφικής παράστασης συγκεκριμένων πολυωνυμικών συναρτήσεων της μορφής f(x)=αx 2 +βx+γ μέσω κατάλληλων μετατοπίσεων της g(x)=αx 2 και στη μελέτη της μονοτονίας, των ακρότατων και της συμμετρίας της συνάρτησης με τη βοήθεια της γραφικής της παράστασης. Ε- πίσης, να γίνει γεωμετρική ερμηνεία των συμπερασμάτων των 3.3 και 4.2 (ρίζες και πρόσημο τριωνύμου) με τη βοήθεια της γραφικής παράστασης της συνάρτησης f(x)=αx 2 +βx+γ (προτείνεται η δραστηριότητα Δ.32 του ΑΠΣ). Ειδικότερα, όσον αφορά στη χάραξη της γραφικής παράστασης και στη μελέτη της συνάρτησης f(x)=αx 2 +βx+γ, η ιδέα που βρίσκεται και πίσω από τη δραστηριότητα Δ.30 του ΑΠΣ είναι η εξής: Οι μαθητές, με τη βοήθεια λογισμικού δυναμικής γεωμετρίας, χαράσσουν τη γραφική παράσταση της g(x)=αx 2 για διάφορες τιμές του α. Τη μετατοπίζουν κ μονάδες οριζόντια για διάφορες τιμές του κ (π.χ. κατά 3 μονάδες αριστερά, κατά 4 μονάδες δεξιά) και παρατηρούν τη μορφή που παίρνει ο τύπος της συνάρτησης. Στη συνέχεια τη μετατοπίζουν λ μονάδες κατακόρυφα για διάφορες τιμές του λ (π.χ. κατά 2 μονάδες κάτω, κατά 5 μονάδες πάνω) και κάνουν ανάλογες παρατηρήσεις. Συνδυάζοντας τις δύο μετατοπίσεις μπορούν να παρατηρήσουν ότι η συνάρτηση που θα προκύψει θα είναι της μορφής f(x)=α(x+κ) 2 +λ. Τέλος, δίνονται στους μαθητές συγκεκριμένες συναρτήσεις της μορφής f(x)=αx 2 +βx+γ και εκείνοι προσπαθούν, με κατάλληλες μετατοπίσεις της g(x)=αx 2, να οδηγηθούν στη γραφική παράσταση της f. Στη συνέχεια μελετούν, με τη βοήθεια της γραφικής της παράστασης, ιδιότητες της f και επεκτείνουν τα συμπεράσματα που αφορούν στη μονοτονία, στα ακρότατα και στις συμμετρίες της g(x) = αx 2 στην f(x)=αx 2 +βx+γ. 15

16 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε επαφή με στοιχεία θεωρητικής γεωμετρικής σκέψης και στο Γυμνάσιο, όπου έχουν αντιμετωπίσει ασκήσεις που απαιτούν θεωρητική α- πόδειξη. Στην Α Λυκείου, πρέπει αυτή η εμπειρία των μαθητών να αξιοποιηθεί με στόχο την περαιτέρω ανάπτυξη της θεωρητικής τους σκέψης. Η διατύπωση ορισμών γεωμετρικών εννοιών είναι κάτι δύσκολο για τους μαθητές, ακόμα και αυτής της τάξης, καθώς απαιτεί τη συνειδητοποίηση των κρίσιμων και ελάχιστων ιδιοτήτων που απαιτούνται για τον καθορισμό μιας έννοιας. Επίσης οι μαθητές χρειάζεται να διερευνούν ιδιότητες και σχέσεις των γεωμετρικών εννοιών και να δημιουργούν εικασίες τις οποίες να προσπαθούν να τεκμηριώσουν. Η αντιμετώπιση της μαθηματικής απόδειξης απλά ως περιγραφή μιας σειράς λογικών βημάτων που παρουσιάζονται από τον εκπαιδευτικό, δεν είναι κατάλληλη ώστε να μυηθούν οι μαθητές στη σημασία και την κατασκευή μιας απόδειξης. Αντίθετα, είναι σημαντικό να εμπλακούν οι μαθητές σε αποδεικτικές διαδικασίες, να προσπαθούν να εντοπίζουν τη βασική αποδεικτική ιδέα, μέσω πειραματισμού και διερεύνησης, και να χρησιμοποιούν μετασχηματισμούς και αναπαραστάσεις, που υποστηρίζουν την ανάπτυξη γεωμετρικών συλλογισμών. Η κατασκευή από τους μαθητές αντιπαραδειγμάτων και η συζήτηση για το ρόλο τους είναι μια σημαντική διαδικασία, ώστε να αρχίσουν να αποκτούν μια πρώτη αίσθηση της σημασίας του αντιπαραδείγματος στα Μαθηματικά. Η απαγωγή σε άτοπο είναι επίσης μια μέθοδος που συχνά συναντούν οι μαθητές στην απόδειξη αρκετών θεωρημάτων. Ο ρόλος του «άτοπου» στην τεκμηρίωση του αρχικού ισχυρισμού αλλά και το κατά πόσο η άρνηση του συμπεράσματος οδηγεί τελικά στην τεκμηρίωσή του, δημιουργούν ιδιαίτερη δυσκολία στους μαθητές. Σε όλα τα παραπάνω ουσιαστικό ρόλο μπορεί να παίξει η αξιοποίηση λογισμικών Δυναμικής Γεωμετρίας. II. Διδακτέα Ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου Π., Κατσούλη Γ., Μαρκάτη Σ., Σίδερη Π. (έκδοση 2015) Κεφ.1ο: Εισαγωγή στην Ευκλείδεια Γεωμετρία 1.1 Το αντικείμενο της Ευκλείδειας Γεωμετρίας 1.2 Ιστορική αναδρομή στη γένεση και ανάπτυξη της Γεωμετρίας Κεφ.3ο: Τρίγωνα 3.1 Είδη και στοιχεία τριγώνων 3.2 1ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.4 3ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.5 Ύπαρξη και μοναδικότητα καθέτου (εκτός της απόδειξης του θεωρήματος) 3.6 Κριτήρια ισότητας ορθογώνιων τριγώνων (εκτός της απόδειξης των θεωρημάτων Ι και ΙΙ). 3.7 Κύκλος - Μεσοκάθετος Διχοτόμος 3.8 Κεντρική συμμετρία 3.9 Αξονική συμμετρία 3.10 Σχέση εξωτερικής και απέναντι γωνίας (εκτός της απόδειξης του θεωρήματος) 3.11 Ανισοτικές σχέσεις πλευρών και γωνιών (εκτός της απόδειξης του θεωρήματος) 3.12 Tριγωνική ανισότητα (εκτός της απόδειξης του θεωρήματος) 3.13 Κάθετες και πλάγιες (εκτός της απόδειξης του θεωρήματος ΙΙ) 3.14 Σχετικές θέσεις ευθείας και κύκλου (εκτός της απόδειξης του θεωρήματος Ι) 3.15 Εφαπτόμενα τμήματα 16

17 3.16 Σχετικές θέσεις δύο κύκλων 3.17 Απλές γεωμετρικές κατασκευές 3.18 Βασικές κατασκευές τριγώνων Κεφ.4ο: Παράλληλες ευθείες 4.1. Εισαγωγή 4.2. Τέμνουσα δύο ευθειών - Ευκλείδειο αίτημα (εκτός της απόδειξης του Πορίσματος ΙΙ της σελ. 81, και των προτάσεων Ι, ΙΙ, ΙΙΙ και ΙV) 4.3. Κατασκευή παράλληλης ευθείας 4.4. Γωνίες με πλευρές παράλληλες 4.5. Αξιοσημείωτοι κύκλοι τριγώνου (Εκτός της απόδειξης του θεωρήματος που αναφέρεται στον εγγεγραμμένο κύκλο τριγώνου) Άθροισμα γωνιών τριγώνου 4.7. Γωνίες με πλευρές κάθετες (εκτός της απόδειξης του θεωρήματος και του πορίσματος) 4.8. Άθροισμα γωνιών κυρτού ν-γώνου (Εκτός της απόδειξης του Πορίσματος) Κεφ.5ο: Παραλληλόγραμμα Τραπέζια 5.1. Εισαγωγή 5.2. Παραλληλόγραμμα 5.3. Ορθογώνιο 5.4. Ρόμβος 5.5. Τετράγωνο 5.6. Εφαρμογές στα τρίγωνα (εκτός της απόδειξης του Θεωρήματος ΙΙΙ) 5.7. Βαρύκεντρο τριγώνου (εκτός της απόδειξης του θεωρήματος) 5.8. Το ορθόκεντρο τριγώνου (Χωρίς το Πόρισμα) Μια ιδιότητα του ορθογώνιου τριγώνου Τραπέζιο Ισοσκελές τραπέζιο Αξιοσημείωτες ευθείες και κύκλοι τριγώνου Κεφ.6ο: Εγγεγραμμένα σχήματα 6.1. Εισαγωγικά Ορισμοί 6.2. Σχέση εγγεγραμμένης και αντίστοιχης επίκεντρης (Εκτός της απόδειξης του θεωρήματος) 6.3. Γωνία χορδής και εφαπτομένης (Εκτός της απόδειξης του θεωρήματος) 6.4. Βασικοί γεωμετρικοί τόποι στον κύκλο Τόξο κύκλου που δέχεται γνωστή γωνία. 6.5 Το εγγεγραμμένο τετράπλευρο 6.6 Το εγγράψιμο τετράπλευρο (εκτός της απόδειξης του θεωρήματος) ΙΙΙ. Διαχείριση διδακτέας ύλης Κεφάλαιο 1ο (Προτείνεται να διατεθούν 1 διδακτική ώρα) Στόχος του κεφαλαίου αυτού είναι η διάκριση και επισήμανση των διαφορετικών χαρακτηριστικών της Πρακτικής Γεωμετρίας, που οι μαθητές διδάχθηκαν σε προηγούμενες τάξεις, και της Θεωρητικής Γεωμετρίας που θα διδαχθούν στο Λύκειο. Κάποια ζητήματα που θα μπορούσαν να συζητηθούν για την ανάδειξη των πλεονεκτημάτων της Θεωρητικής Γεωμετρίας έναντι της Πρακτικής, είναι: Η αδυναμία ακριβούς μέτρησης, η ανάγκη μέτρησης αποστάσεων μεταξύ απρόσιτων σημείων, η αναξιοπιστία των εμπειρικών προσεγγίσεων (προτείνεται η δραστηριότητα που αντιστοιχεί στο στόχο ΕΓ1 του ΑΠΣ). Για να αποκτήσουν οι μαθητές μια πρώτη αίσθηση των βασικών αρχών της ανάπτυξης της Ευκλείδειας Γεωμετρίας ως αξιωματικoύ συστήματος, προτείνεται να εμπλακούν σε μια συζήτηση σχετικά με τη σημασία και 17

18 το ρόλο των όρων «πρωταρχική έννοια», «ορισμός», «αξίωμα», «θεώρημα», «απόδειξη». Στοιχεία της ιστορικής εξέλιξης της Γεωμετρίας μπορούν να αποτελέσουν ένα πλαίσιο αναφοράς στο οποίο θα αναδειχθούν τα παραπάνω ζητήματα. Κεφάλαιο 3ο (Προτείνεται να διατεθούν 15 διδακτικές ώρες) Οι μαθητές έχουν διαπραγματευθεί το μεγαλύτερο μέρος του περιεχομένου των παραγράφων αυτών στο Γυμνάσιο. Προτείνεται να δοθεί έμφαση σε κάποια νέα στοιχεία όπως: α) Η σημασία της ισότητας των ομόλογων πλευρών στη σύγκριση τριγώνων. β) Η διαπραγμάτευση παραδειγμάτων τριγώνων με τρία κύρια στοιχεία τους ίσα, τα οποία δεν είναι ίσα (δυο τρίγωνα με ίσες δυο πλευρές και μια μη περιεχόμενη γωνία αντίστοιχα ίση, όπως στις δραστηριότητες Δ.5 και Δ.7 του ΑΠΣ). γ) Ο σχεδιασμός σχημάτων με βάση τις λεκτικές διατυπώσεις των γεωμετρικών προτάσεων (ασκήσεων, θεωρημάτων) και αντίστροφα. δ) Η διατύπωση των γεωμετρικών συλλογισμών των μαθητών. ε) Η ισότητα τριγώνων, ως μια στρατηγική απόδειξης ισότητας ευθυγράμμων τμημάτων ή γωνιών (σχόλιο σελ.43). στ) Ο εντοπισμός κατάλληλων τριγώνων για σύγκριση σε «σύνθετα» σχήματα (προτείνεται η δραστηριότητα Δ.6 του ΑΠΣ). ζ) Η σημασία της «βοηθητικής γραμμής» στην αποδεικτική διαδικασία (πόρισμα I της.3.2). Προτείνεται να ενοποιηθούν σε μια πρόταση οι προτάσεις που ταυτίζουν τη διχοτόμο, τη διάμεσο και το ύ- ψος από τη κορυφή ισοσκελούς τριγώνου (πόρισμα I σελ.42, πόρισμα I σελ.45, πόρισμα I σελ.50). Μαζί με την πρόταση αυτή προτείνεται να γίνει η διαπραγμάτευση της εφαρμογής 2 της σελ.61 για την απόδειξη της οποίας αρκούν τα κριτήρια ισότητας τριγώνων. Επίσης, σαν μια ενιαία πρόταση, μπορεί να ζητηθεί από τους μαθητές να δείξουν ότι σε ίσα τρίγωνα τα δευτερεύοντα στοιχεία τους (διάμεσος, ύψος, διχοτόμος) που αντιστοιχούν σε ομόλογες πλευρές είναι επίσης ίσα (π.χ. άσκηση 1i Εμπέδωσης σελ. 48, άσκηση 4 Εμπέδωσης σελ.54 Ενιαία μπορούν να αντιμετωπιστούν, ως αντίστροφες προτάσεις, τα πορίσματα ΙV της 3.2 και ΙΙΙ, ΙV της 3.4 που αναφέρονται στις σχέσεις των χορδών και των αντίστοιχων τόξων. Με στόχο την ανάδειξη της διδακτικής αξίας των γεωμετρικών τόπων προτείνεται τα πορίσματα ΙΙΙ της 3.2 και ΙΙ της 3.4, που αφορούν στη μεσοκάθετο τμήματος, καθώς και το θεώρημα ΙV της 3.6, που αφορά στη διχοτόμο γωνίας, να διδαχθούν ενιαία ως παραδείγματα βασικών γεωμετρικών τόπων. Συγκεκριμένα, προτείνεται οι μαθητές πρώτα να εικάσουν τους συγκεκριμένους γεωμετρικούς τόπους και στη συνέχεια να τους αποδείξουν (προτείνονται οι δραστηριότητες Δ.8, Δ.9 και Δ.10 του ΑΠΣ) Η ύλη των παραγράφων αυτών είναι νέα για τους μαθητές. Να επισημανθεί στους μαθητές ότι η τριγωνική ανισότητα αποτελεί κριτήριο για το πότε τρία ευθύγραμμα τμήματα αποτελούν πλευρές τριγώνου (προτείνεται η δραστηριότητα Δ.12 του ΑΠΣ). Επίσης, προτείνονται οι ασκήσεις 4 και 6 (Αποδεικτικές), που διαπραγματεύονται: την απόσταση σημείου από κύκλο και σχέσεις χορδών και τόξων αντίστοιχα Τα συμπεράσματα της 3.14 είναι γνωστά στους μαθητές από το Γυμνάσιο. Οι αιτιολογήσεις, όμως, προέρχονται από τα θεωρήματα της Το περιεχόμενο της 3.16 δεν είναι γνωστό στους μαθητές και χρειάζεται και για τις γεωμετρικές κατασκευές που ακολουθούν (προτείνονται οι Δ.14 και Δ.15 του ΑΠΣ) και 3.18 Η διαπραγμάτευση των γεωμετρικών κατασκευών συμβάλλει στην κατανόηση των σχημάτων από τους μαθητές με βάση τις ιδιότητές τους καθώς και στην ανάπτυξη της αναλυτικής και συνθετικής σκέψης η οποία μπο- 18

19 ρεί να αξιοποιηθεί και σε εξωμαθηματικές γνωστικές περιοχές. Προτείνεται να γίνουν κατά προτεραιότητα τα προβλήματα 2 και 4 της 3.17 και τα προβλήματα 2 και 3 της Κεφάλαιο 4ο (Προτείνεται να διατεθούν 8 διδακτικές ώρες) Το σημαντικότερο θέμα στις παραγράφους αυτές αποτελεί το «αίτημα παραλληλίας» το οποίο καθορίζει τη φύση της Γεωμετρίας στην οποία αναφερόμαστε. Η σημασία του «αιτήματος παραλληλίας», για τη Γεωμετρία την ίδια και για την ιστορική της εξέλιξη, μπορεί να διαφανεί από στοιχεία που παρέχονται στο ιστορικό σημείωμα της σελ. 96 καθώς επίσης και στη δραστηριότητα Δ.16 του ΑΠΣ. Οι μαθητές είναι σημαντικό να α- ναγνωρίσουν την αδυναμία χρήσης του ορισμού και τη σημασία των προτάσεων της 4.2 (που προηγούνται του «αιτήματος παραλληλίας») ως εργαλεία για την απόδειξη της παραλληλίας δύο ευθειών. Προτείνεται να διερευνήσουν οι μαθητές τη σχέση του θεωρήματος της 4.2 και της Πρότασης I της σελ. 82 με στόχο να αναγνωρίσουν ότι το ένα είναι το αντίστροφο του άλλου. 4.5 Προτείνεται, πριν τη διαπραγμάτευση των θεωρημάτων της παραγράφου, να συζητηθεί η δραστηριότητα Δ.17 του ΑΠΣ. Επίσης, να επισημανθεί η στρατηγική που χρησιμοποιείται στις αποδείξεις των θεωρημάτων σχετικά με πώς δείχνουμε ότι τρεις ευθείες διέρχονται από το ίδιο σημείο, γιατί δεν είναι οικεία στους μαθητές Προτείνεται το θεώρημα της 4.6 να συνδεθεί με τα πορίσματα της σελ. 59, ώστε οι μαθητές να αναγνωρίσουν ότι το συμπέρασμα του θεωρήματος είναι ισχυρότερο από τα πορίσματα και ότι αυτό οφείλεται στη χρήση του «αιτήματος παραλληλίας» στην απόδειξή του. Το ίδιο ισχύει και για το πόρισμα (i) της σελ. 89 σε σχέση με το Θεώρημα της σελ Προτείνεται οι μαθητές, χρησιμοποιώντας το άθροισμα των γωνιών τριγώνου, να βρουν το άθροισμα των γωνιών τετραπλεύρου, πενταγώνου κ.α., να εικάσουν το άθροισμα των γωνιών ν-γώνου και να αποδείξουν την αντίστοιχη σχέση (προτείνεται η δραστηριότητα που αντιστοιχεί στο στόχο ΠΕ4 του ΑΠΣ). Δίνεται έτσι η δυνατότητα σύνδεσης Γεωμετρίας και Άλγεβρας. Να επισημανθεί, επίσης, η σταθερότητα του αθροίσματος των εξωτερικών γωνιών ν-γώνου. Κεφάλαιο 5ο (Προτείνεται να διατεθούν 20 διδακτικές ώρες) Να επισημανθεί ότι καθένα από τα κριτήρια για τα παραλληλόγραμμα περιέχει τις ελάχιστες ιδιότητες που απαιτούνται για είναι ισοδύναμο με τον ορισμό του παραλληλογράμμου (προτείνεται η δραστηριότητα Δ.18 του ΑΠΣ). Προτείνεται να ζητηθεί από τους μαθητές να διερευνήσουν αν ένα τετράπλευρο με τις δυο απέναντι πλευρές παράλληλες και τις άλλες δυο ίσες είναι παραλληλόγραμμο. Για την εφαρμογή των ιδιοτήτων των παραλληλογράμμων στην επίλυση προβλημάτων μπορεί να αξιοποιηθεί η δραστηριότητα Δ.19 του ΑΠΣ Να επισημανθεί ότι κάθε ένα από τα κριτήρια για να είναι ένα τετράπλευρο ορθογώνιο ή ρόμβος ή τετράγωνο περιέχει τις ελάχιστες ιδιότητες που απαιτούνται για να είναι ισοδύναμο με τον ορισμό του ορθογωνίου ή του ρόμβου ή του τετραγώνου αντίστοιχα. Επιδιώκεται οι μαθητές να αναγνωρίζουν τα είδη των παραλληλογράμμων (ορθογώνιο, ρόμβος, τετράγωνο) με βάση τα αντίστοιχα κριτήρια και όχι με βάση κάποια πρότυπα σχήματα που συνδέονται με την οπτική γωνία που τα κοιτάμε. Να δοθεί έμφαση στην άρση της παρανόησης που δημιουργείται σε μαθητές, ότι ένα τετράγωνο δεν είναι ορθογώνιο ή ένα τετράγωνο δεν είναι ρόμβος. Προτείνεται να ζητηθεί από τους μαθητές να διερευνήσουν: αν ένα τετράπλευρο με ίσες διαγώνιες είναι ορ- 19

20 θογώνιο και αν ένα τετράπλευρο με κάθετες διαγώνιες είναι ρόμβος, καθώς και να αξιοποιήσουν τις ιδιότητες των παραλληλογράμμων στην επίλυση προβλημάτων (δραστηριότητες Δ.20, Δ.21 και Δ.22 του ΑΠΣ) Προτείνεται να ζητηθεί από τους μαθητές να εικάσουν σε ποια γραμμή ανήκουν τα σημεία που ισαπέχουν από δυο παράλληλες ευθείες και στη συνέχεια να αποδείξουν ότι η μεσοπαράλληλή τους είναι ο ζητούμενος γεωμετρικός τόπος. Προτείνεται, επίσης, η διαπραγμάτευση της Εφαρμογής 1 της σελ Προτείνεται να ζητηθεί από τους μαθητές να διερευνήσουν τα είδη των τριγώνων που το ορθόκεντρο είναι μέσα ή έξω από το τρίγωνο. Θα μπορούσαν να αναζητηθούν εναλλακτικές αποδείξεις για τα θεωρήματα που αφορούν στις ι- διότητες του ορθογωνίου τριγώνου Εκτός από το συγκεκριμένο αντικείμενο των παραγράφων αυτών, προτείνεται να εμπλακούν οι μαθητές στην επίλυση προβλημάτων που συνδυάζουν γεωμετρικά θέματα από όλο το κεφάλαιο. Προτείνεται επίσης να συζητηθεί με τους μαθητές η ταξινόμηση των τετραπλεύρων του σχολικού βιβλίου (σελ. 125) και, κατά την κρίση του εκπαιδευτικού, η συσχέτιση με άλλες ταξινομήσεις όπως αναφέρονται στο ιστορικό σημείωμα των σελ. 123, 124. Κεφάλαιο 6ο (Προτείνεται να διατεθούν 6 διδακτικές ώρες) Προτείνεται, ως εισαγωγή στο πρόβλημα εγγραψιμότητας ενός τετραπλεύρου σε κύκλο, οι μαθητές να διερευνήσουν ποια από τα γνωστά τετράπλευρα (παραλληλόγραμμο, ορθογώνιο, ρόμβος, τετράγωνο, τραπέζιο) είναι εγγράψιμα, βασιζόμενοι στις ιδιότητες των εγγεγραμμένων τετραπλεύρων (π.χ., ο ρόμβος δεν είναι εγγράψιμος σε κύκλο, γιατί αν ήταν εγγράψιμος θα έπρεπε να έχει τις απέναντι γωνίες του παραπληρωματικές). Η διερεύνηση θα μπορούσε να επεκταθεί και σε τυχαία τετράπλευρα (και με τη βοήθεια λογισμικού), ώστε οι μαθητές να εικάσουν τα κριτήρια εγγραψιμότητας. 20

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Η ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΣΤΗΝ ΕΛΛΑΔΑ: Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ Ι.Κ.Α.

Η ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΣΤΗΝ ΕΛΛΑΔΑ: Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ Ι.Κ.Α. Πτυχιακή εργασία Η ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΣΤΗΝ ΕΛΛΑΔΑ: Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ Ι.Κ.Α. Ονοματεπώνυμο: Νταμπο Αρτεμίσια Αρ. Μ ητρώου:2007058 Επιβλέπουσα κ αθη γή τρια: Ρόη Γεωργιλά \Ί\6 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΛΗΨΗ... 3 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Ε.Ε. Π α ρ.ι(i), Α ρ.3834, 8/4/2004 Ο ΠΕΡΙ ΑΣΤΥΝΟΜΙΑΣ ΝΟΜΟΣ ΤΟΥ 2004 ΚΑΤΑΤΑΞΗ ΑΡΘΡΩΝ ΜΕΡΟΣ Ι - ΕΙΣΑΓΩΓΗ ΜΕΡΟΣ ΙΙ - ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ

Ε.Ε. Π α ρ.ι(i), Α ρ.3834, 8/4/2004 Ο ΠΕΡΙ ΑΣΤΥΝΟΜΙΑΣ ΝΟΜΟΣ ΤΟΥ 2004 ΚΑΤΑΤΑΞΗ ΑΡΘΡΩΝ ΜΕΡΟΣ Ι - ΕΙΣΑΓΩΓΗ ΜΕΡΟΣ ΙΙ - ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ Ο ΠΕΡΙ ΑΣΤΥΝΟΜΙΑΣ ΝΟΜΟΣ ΤΟΥ 2004 ΚΑΤΑΤΑΞΗ ΑΡΘΡΩΝ ΜΕΡΟΣ Ι - ΕΙΣΑΓΩΓΗ Άρθρο 1. Συνοπτικός τίτλος. 2. Ερμηνεία. 3. Καθίδρυση Αστυνομίας Κύπρου. 4. Εξουσίες Υπουργού. 5. Συγκρότηση Αστυνομίας. 6. Εξουσίες

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΡΕΥΝΩΝ ΑΜΕΡΙΚΗΣ 11, ΑΘΗΝΑ Τ.Κ. 10672, Τηλ. 210 3676400 Fax 210 3611136

ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΡΕΥΝΩΝ ΑΜΕΡΙΚΗΣ 11, ΑΘΗΝΑ Τ.Κ. 10672, Τηλ. 210 3676400 Fax 210 3611136 ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΡΕΥΝΩΝ ΑΜΕΡΙΚΗΣ 11, ΑΘΗΝΑ Τ.Κ. 10672, Τηλ. 210 3676400 Fax 210 3611136 Διεύθυνση Διοικητικού Αθήνα, 16.5.2014 Πληροφορίες: Χ. Νούνης Α.Π. 839/379 Διευθυντής Διοικητικού

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Η ΣΥΝΟΙΚΙΑ ΤΟΥ ΑΓΙΟΥ ΤΡΥΦΩΝΑ ΚΑΜΑΤΕΡΟΥ. 2 ο ΓΕΛ ΚΑΜΑΤΕΡΟΥ Α ΛΥΚΕΙΟΥ 2012-13

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Η ΣΥΝΟΙΚΙΑ ΤΟΥ ΑΓΙΟΥ ΤΡΥΦΩΝΑ ΚΑΜΑΤΕΡΟΥ. 2 ο ΓΕΛ ΚΑΜΑΤΕΡΟΥ Α ΛΥΚΕΙΟΥ 2012-13 ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Η ΣΥΝΟΙΚΙΑ ΤΟΥ ΑΓΙΟΥ ΤΡΥΦΩΝΑ ΚΑΜΑΤΕΡΟΥ 2 ο ΓΕΛ ΚΑΜΑΤΕΡΟΥ Α ΛΥΚΕΙΟΥ 2012-13 ΜΑΘΗΤΕΣ ΚΑΙ ΜΑΘΗΤΡΙΕΣ ΠΟΥ ΕΚΠΟΝΗΣΑΝ ΤΗΝ ΕΡΓΑΣΙΑ ΑΘΑΝΑΣΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΑΝΤΩΝΟΠΟΥΛΟΥ ΛΥΔΙΑ ΓΙΑΤΣΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Νεοελληνική Γλώσσα Λυκείου

Νεοελληνική Γλώσσα Λυκείου Νεοελληνική Γλώσσα Λυκείου Πλαίσιο προδιαγραφών Ι. Δομή θεμάτων Η διαδικασία εισαγωγής των μαθητών/τριών στην Α Λυκείου προβλέπει τη δοκιμασία τους σε τρία θέματα Νεοελληνικής Γλώσσας, καθένα από τα οποία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ- ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΑΝΑΠΤΥΞΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΔΥΤΙΚΗΣ ΑΘΗΝΑΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ- ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΑΝΑΠΤΥΞΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΔΥΤΙΚΗΣ ΑΘΗΝΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ- ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΑΝΑΠΤΥΞΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΔΥΤΙΚΗΣ ΑΘΗΝΑΣ ΕΘΝΙΚΗΣ ΑΝΤΙΣΤΑΣΕΩΣ 65, 121 34 ΠΕΡΙΣΤΕΡΙ ΤΗΛ. 210 5745826, 210 5762434, FAX 210 5759547 http://www.asda.gr Περιστέρι, 4/09/2007

Διαβάστε περισσότερα

Θέμα: Συνάντηση εκπροσώπων του Δ.Σ. του Σ.Κ.Φ.Ε. με την Επόπτρια των Σχολείων της Φ.Ε.

Θέμα: Συνάντηση εκπροσώπων του Δ.Σ. του Σ.Κ.Φ.Ε. με την Επόπτρια των Σχολείων της Φ.Ε. Δευτέρα 1 Σεπτεμβρίου 2014 Αρ. πρωτ. 213 Προς: Τους καθηγητές των Σχολείων μας Θέμα: Συνάντηση εκπροσώπων του Δ.Σ. του Σ.Κ.Φ.Ε. με την Επόπτρια των Σχολείων της Φ.Ε. ΕΝΗΜΕΡΩΣΗ Την Τετάρτη 20 Αυγούστου

Διαβάστε περισσότερα

ΣΕ ΑΝΑΖΗΤΗΣΗ ΕΛΛΗΝΙΚΟΤΗΤΟΣ (ιστορικές και ιδεολογικές προσεγγίσεις εθνικής αυτογνωσίας)

ΣΕ ΑΝΑΖΗΤΗΣΗ ΕΛΛΗΝΙΚΟΤΗΤΟΣ (ιστορικές και ιδεολογικές προσεγγίσεις εθνικής αυτογνωσίας) ΣΕ ΑΝΑΖΗΤΗΣΗ ΕΛΛΗΝΙΚΟΤΗΤΟΣ (ιστορικές και ιδεολογικές προσεγγίσεις εθνικής αυτογνωσίας) Η συγκρότηση εθνικής ταυτότητος και αυτοσυνειδησίας ενός έθνους είναι μία πολύπλοκη και πολυσύνθετη διαδικασία, πολλές

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: ΑΡΧΑΙΑ ΛΙΜΑΝΙΑ ΣΠΟΥΔΑΣΤΕΣ: ΚΑΤΣΙΓΙΑΝΝΟΠΟΥΛΟΥ ΑΙΚΑΤΕΡΙΝΗ ΑΡΦΑΝΗΣ ΗΛΙΑΣ ΕΠΙΒΛΕΨΗ: ΚΑΝΕΤΑΚΗ ΕΛΕΝΗ ΠΕΙΡΑΙΑΣ 2010

Διαβάστε περισσότερα

ΚΑΤΑΣΤΑΤΙΚΟ Του Συλλόγου με την επωνυμία ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΦΙΛΩΝ ΤΟΙΧΟΣΦΑΙΡΙΣΗΣ

ΚΑΤΑΣΤΑΤΙΚΟ Του Συλλόγου με την επωνυμία ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΦΙΛΩΝ ΤΟΙΧΟΣΦΑΙΡΙΣΗΣ ΚΑΤΑΣΤΑΤΙΚΟ Του Συλλόγου με την επωνυμία ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΦΙΛΩΝ ΤΟΙΧΟΣΦΑΙΡΙΣΗΣ ΚΕΦΑΛΑΙΟ Α Επωνυμία- Έδρα- Σκοπός-Πόροι ΑΡΘΡΟ 1 Ιδρύεται Σωματείο με την επωνυμία «Πανελλήνια Ένωση Φίλων Τοιχοσφαίρισης»

Διαβάστε περισσότερα

1ο Γυμνάσιο Πατρών. Ημερολόγιο Πολιτιστικού προγράμματος Σχολ. Έτος 2009-2010.

1ο Γυμνάσιο Πατρών. Ημερολόγιο Πολιτιστικού προγράμματος Σχολ. Έτος 2009-2010. 1ο Γυμνάσιο Πατρών Ημερολόγιο Πολιτιστικού προγράμματος Σχολ. Έτος 2009-2010. Η επίδραση της Δυτικής- Αναγεννησιακής τέχνης στην εικονογραφία των Πατρών. Στόχοι του προγράμματος: Να έρθουν οι μαθητές

Διαβάστε περισσότερα

ΦΕΚ Β 2139 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: -----

ΦΕΚ Β 2139 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ

Διαβάστε περισσότερα

ΠΡΟΤΑΣΗ ΣΥΝΗΓΟΡΟΥ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ. για την κατάρτιση ΚΩΔΙΚΑ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ

ΠΡΟΤΑΣΗ ΣΥΝΗΓΟΡΟΥ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ. για την κατάρτιση ΚΩΔΙΚΑ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ Ελληνική Δημοκρατία Ευρωπαϊκό ΕΥΡΩΠΑΪΚΟ ΚΕΝΤΡΟ ΚΑΤΑΝΑΛΩΤΗ ΕΛΛΑΔΑΣ Κέντρο Καταναλωτή Ελλάδας ΠΡΟΤΑΣΗ ΣΥΝΗΓΟΡΟΥ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ για την κατάρτιση ΚΩΔΙΚΑ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ Δεκέμβριος 2015 ΠΡΟΤΑΣΗ

Διαβάστε περισσότερα

Ε.Ε. Π α ρ.ι(i), Α ρ.3646, 25/10/2002. ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3646 της 25ης ΟΚΤΩΒΡΙΟΥ 2002

Ε.Ε. Π α ρ.ι(i), Α ρ.3646, 25/10/2002. ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3646 της 25ης ΟΚΤΩΒΡΙΟΥ 2002 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3646 της 25ης ΟΚΤΩΒΡΙΟΥ 2002 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ I Ο περί Σκύλων Νόμος του 2002, εκδίδεται με δημοσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημοκρατίας

Διαβάστε περισσότερα

ΓΕΩΦΥΣΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΣΤΟΝ ΑΡΧΑΙΟΛΟΓΙΚΟ ΙΩΑΝΝΗΣ Θ. ΒΛΑΣΣΗΣ

ΓΕΩΦΥΣΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΣΤΟΝ ΑΡΧΑΙΟΛΟΓΙΚΟ ΙΩΑΝΝΗΣ Θ. ΒΛΑΣΣΗΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΓΕΩΦΥΣΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΣΤΟΝ ΑΡΧΑΙΟΛΟΓΙΚΟ ΧΩΡΟ ΤΩΝ ΑΠΤΕΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΙΩΑΝΝΗΣ Θ. ΒΛΑΣΣΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ ΚΑΘΗΓΗΤΗΣ ΑΝΤΩΝΙΟΣ ΒΑΦΕΙΔΗΣ, (ΕΠΙΒΛΕΠΩΝ)

Διαβάστε περισσότερα

ΠΟΛΙΤΙΚΉ ΠΑΙΔΕΙΑ. Α Γενικού Λυκείου και ΕΠΑ.Λ. Καζάκου Γεωργία, ΠΕ09 Οικονομολόγος

ΠΟΛΙΤΙΚΉ ΠΑΙΔΕΙΑ. Α Γενικού Λυκείου και ΕΠΑ.Λ. Καζάκου Γεωργία, ΠΕ09 Οικονομολόγος 1 ΠΟΛΙΤΙΚΉ ΠΑΙΔΕΙΑ Α Γενικού Λυκείου και ΕΠΑ.Λ. 2 ΚΕΦΑΛΑΙΟ 11 Ο ΤΟ ΧΡΗΜΑ ΚΑΙ ΟΙ ΤΡΑΠΕΖΕΣ 11.1 Από τον αντιπραγματισμό στην οικονομία του χρήματος 11.1 ΑΠΟ ΤΟΝ ΑΝΤΙΠΡΑΓΜΑΤΙΣΜΟ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΦΕΚ Β 2721 ΑΠΟΦΑΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ.

ΦΕΚ Β 2721 ΑΠΟΦΑΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ Από το υπ' αριθμ. 21/09-12-2011 Πρακτικό της Οικονομικής Επιτροπής Ιονίων Νήσων

ΑΠΟΣΠΑΣΜΑ Από το υπ' αριθμ. 21/09-12-2011 Πρακτικό της Οικονομικής Επιτροπής Ιονίων Νήσων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ ΑΠΟΣΠΑΣΜΑ Από το υπ' αριθμ. 21/09-12-2011 Πρακτικό της Οικονομικής Επιτροπής Ιονίων Νήσων Αριθμ. απόφασης 492/21-2011 ΠΕΡΙΛΗΨΗ: «Εισήγηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας:

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΚΕΙΜΕΝΟΥ : Θεωρία. Περίληψη γραπτού Λόγου. Τι είναι η περίληψη;

ΠΕΡΙΛΗΨΗ ΚΕΙΜΕΝΟΥ : Θεωρία. Περίληψη γραπτού Λόγου. Τι είναι η περίληψη; ΠΕΡΙΛΗΨΗ ΚΕΙΜΕΝΟΥ : Θεωρία Περίληψη γραπτού Λόγου Τι είναι η περίληψη; Είναι η συνοπτική και περιεκτική απόδοση, σε συνεχή λόγο, ενός κειμένου. Είναι ένα νέο κείμενο, που, χωρίς να προδίδει το αρχικό,

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ. Βαθμός Ασφαλείας... Μαρούσι 24-9-08 Αριθ. Πρωτ. 122455 /Γ2 Βαθ. Προτερ... ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΑΠΟΦΑΣΗ. Βαθμός Ασφαλείας... Μαρούσι 24-9-08 Αριθ. Πρωτ. 122455 /Γ2 Βαθ. Προτερ... ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Βαθμός Ασφαλείας... ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Μαρούσι 24-9-08 Αριθ. Πρωτ. 122455 /Γ2 Βαθ. Προτερ.... ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου

Διαβάστε περισσότερα

ΕΝΩΠΙΟΝ ΠΑΝΤΟΣ ΑΡΜΟΔΙΟΥ ΔΙΚΑΣΤΗΡΙΟΥ ΚΑΙ ΠΑΣΗΣ ΔΗΜΟΣΙΑΣ ΑΡΧΗΣ ΕΞΩΔΙΚΗ ΔΙΑΜΑΡΤΥΡΙΑ ΠΡΟΣΚΛΗΣΗ ΔΗΛΩΣΗ

ΕΝΩΠΙΟΝ ΠΑΝΤΟΣ ΑΡΜΟΔΙΟΥ ΔΙΚΑΣΤΗΡΙΟΥ ΚΑΙ ΠΑΣΗΣ ΔΗΜΟΣΙΑΣ ΑΡΧΗΣ ΕΞΩΔΙΚΗ ΔΙΑΜΑΡΤΥΡΙΑ ΠΡΟΣΚΛΗΣΗ ΔΗΛΩΣΗ ΕΝΩΠΙΟΝ ΠΑΝΤΟΣ ΑΡΜΟΔΙΟΥ ΔΙΚΑΣΤΗΡΙΟΥ ΚΑΙ ΠΑΣΗΣ ΔΗΜΟΣΙΑΣ ΑΡΧΗΣ ΕΞΩΔΙΚΗ ΔΙΑΜΑΡΤΥΡΙΑ ΠΡΟΣΚΛΗΣΗ ΔΗΛΩΣΗ 1. ΑΓΟΡΑΝΟΥ Νικολάου, Ιατρού Ε.Σ.Υ., Επιμελητή Α Γενικής Ιατρικής στο Κέντρο Υγείας Ν. Μάκρης, δικαιοδοσίας

Διαβάστε περισσότερα

14PROC002476995 2014-12-15

14PROC002476995 2014-12-15 Μεσσήνη 09-12 - 2014 Αρ. πρωτ.: 41834 ΔΙΑΚΗΡΥΞΗ ΠΡΟΧΕΙΡΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΡΟΜΗΘΕΙΑΣ ΤΡΟΦΙΜΩΝ ΔΗΜΟΥ ΜΕΣΣΗΝΗΣ ΚΑΙ ΤΩΝ ΝΟΜΙΚΩΝ Ο ΔΗΜΑΡΧΟΣ ΜΕΣΣΗΝΗΣ Προκηρύσσει πρόχειρο μειοδοτικό διαγωνισμό με σφραγισμένες προσφορές

Διαβάστε περισσότερα

Ενιαιο Σύστημα Κοινωνικης Ασφαλειας- Εθνικο Σύστημα Κοινωνικης Ασφαλισης ΑΠΟΣΠΑΣΜΑ ΑΠΟ ΤΟ ΠΡΟΣΧΕΔΙΟ ΝΟΜΟΥ ΔΙΑΤΑΞΕΙΣ ΠΟΥ ΜΑΣ ΑΦΟΡΟΥΝ

Ενιαιο Σύστημα Κοινωνικης Ασφαλειας- Εθνικο Σύστημα Κοινωνικης Ασφαλισης ΑΠΟΣΠΑΣΜΑ ΑΠΟ ΤΟ ΠΡΟΣΧΕΔΙΟ ΝΟΜΟΥ ΔΙΑΤΑΞΕΙΣ ΠΟΥ ΜΑΣ ΑΦΟΡΟΥΝ Ενιαιο Σύστημα Κοινωνικης Ασφαλειας- Εθνικο Σύστημα Κοινωνικης Ασφαλισης ΑΠΟΣΠΑΣΜΑ ΑΠΟ ΤΟ ΠΡΟΣΧΕΔΙΟ ΝΟΜΟΥ ΔΙΑΤΑΞΕΙΣ ΠΟΥ ΜΑΣ ΑΦΟΡΟΥΝ 1 Κεφάλαιο Α Αρχές και όργανα του Ενιαίου Συστήματος Κοινωνικής Ασφάλειας

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΡΑΤΙΚΑ ΙΝΣΤΙΤΟΥΤΑ ΕΠΙΜΟΡΦΩΣΗΣ ΤΕΛΙΚΕΣ ΕΝΙΑΙΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 Μάθημα: Ελληνικά Επίπεδο: 2 Διάρκεια: 2 ώρες Ημερομηνία:

Διαβάστε περισσότερα

ΠΡΟΚΗΡΥΞΗ ΥΠΟΤΡΟΦΙΩΝ ΙΔΡΥΜΑΤΟΣ ΑΦΩΝ Π. ΜΠΑΚΑΛΑ. Το Δ.Σ του Ιδρύματος λαμβάνοντας υπ όψη του:

ΠΡΟΚΗΡΥΞΗ ΥΠΟΤΡΟΦΙΩΝ ΙΔΡΥΜΑΤΟΣ ΑΦΩΝ Π. ΜΠΑΚΑΛΑ. Το Δ.Σ του Ιδρύματος λαμβάνοντας υπ όψη του: ΠΡΟΚΗΡΥΞΗ ΥΠΟΤΡΟΦΙΩΝ ΙΔΡΥΜΑΤΟΣ ΑΦΩΝ Π. ΜΠΑΚΑΛΑ Το Δ.Σ του Ιδρύματος λαμβάνοντας υπ όψη του: 1) Τις από 5/4/1959, 8/8/1960 και 20/10/1961 ιδιόγραφες διαθήκες του Κωνστ. Π. Μπάκαλα, δημοσιευθείσες από το

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ. Βαθμός Ασφαλείας... Μαρούσι 24-9-08 Αριθ. Πρωτ. 122459 /Γ2 Βαθ. Προτερ... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ

ΑΠΟΦΑΣΗ. Βαθμός Ασφαλείας... Μαρούσι 24-9-08 Αριθ. Πρωτ. 122459 /Γ2 Βαθ. Προτερ... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθμός Ασφαλείας... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Μαρούσι 24-9-08 Αριθ. Πρωτ. 122459 /Γ2 Βαθ. Προτερ.... ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ / ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου

Διαβάστε περισσότερα

169(Ι)/2012 ΝΟΜΟΣ ΠΟΥ ΤΡΟΠΟΠΟΙΕΙ ΤΟΥΣ ΠΕΡΙ ΦΟΡΩΝ ΚΑΤΑΝΑΛΩΣΗΣ ΝΟΜΟΥΣ ΤΟΥ 2004 ΕΩΣ 2010. Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως:

169(Ι)/2012 ΝΟΜΟΣ ΠΟΥ ΤΡΟΠΟΠΟΙΕΙ ΤΟΥΣ ΠΕΡΙ ΦΟΡΩΝ ΚΑΤΑΝΑΛΩΣΗΣ ΝΟΜΟΥΣ ΤΟΥ 2004 ΕΩΣ 2010. Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως: Αρ. 4369, 6.12.2012 ΝΟΜΟΣ ΠΟΥ ΤΡΟΠΟΠΟΙΕΙ ΤΟΥΣ ΠΕΡΙ ΦΟΡΩΝ ΚΑΤΑΝΑΛΩΣΗΣ ΝΟΜΟΥΣ ΤΟΥ 2004 ΕΩΣ 2010 Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως: Συνοπτικός τίτλος. 91(Ι) του 2004 208(Ι) του 2004 245(Ι) του

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΘΡΗΣΚΕΙΑΣ ΣΤΟ ΟΥΔΕΤΕΡΟΘΡΗΣΚΟ ΣΧΟΛΕΙΟ (ΤΟΥ ΡΕΖΙΣ ΝΤΕΜΠΡΕ)

Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΘΡΗΣΚΕΙΑΣ ΣΤΟ ΟΥΔΕΤΕΡΟΘΡΗΣΚΟ ΣΧΟΛΕΙΟ (ΤΟΥ ΡΕΖΙΣ ΝΤΕΜΠΡΕ) Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΘΡΗΣΚΕΙΑΣ ΣΤΟ ΟΥΔΕΤΕΡΟΘΡΗΣΚΟ ΣΧΟΛΕΙΟ (ΤΟΥ ΡΕΖΙΣ ΝΤΕΜΠΡΕ) I Το Δεκέμβριο του 2001 ο Ζακ Λαγκ, Υπουργός Εθνικής Παιδείας της Γαλλίας ζήτησε από τον καθηγητή Ρεζίς Ντεμπρέ, το θεωρητικό ενδιαφέρον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Β ΣΚΟΠΟΣ- ΜΕΣΑ ΑΡΘΡΟ 2 ο ΣΚΟΠΟΙ

ΚΕΦΑΛΑΙΟ Β ΣΚΟΠΟΣ- ΜΕΣΑ ΑΡΘΡΟ 2 ο ΣΚΟΠΟΙ ΚΑΤΑΣΤΑΤΙΚΟ Του σωματείου με την επωνυμία «ΣΥΛΛΟΓΟΣ ΦΙΛΩΝ ΘΕΑΤΡΟΥ ΙΕΡΑΠΕΤΡΑΣ ΚΕΦΑΛΑΙΟ Α ΙΔΡΥΣΗ- ΕΔΡΑ- ΕΠΩΝΥΜΙΑ ΑΡΘΡΟ 1 ο Ιδρύεται σήμερα στην Ιεράπετρα μη κερδοσκοπικό σωματείο με την επωνυμία «ΣΥΛΛΟΓΟΣ

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΓΙΑ ΤΗΝ ΚΩΔΙΚΟΠΟΙΗΣΗ ΤΗΣ ΝΟΜΟΘΕΣΙΑΣ. Α. Αντικείμενο του εγχειριδίου

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΓΙΑ ΤΗΝ ΚΩΔΙΚΟΠΟΙΗΣΗ ΤΗΣ ΝΟΜΟΘΕΣΙΑΣ. Α. Αντικείμενο του εγχειριδίου ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΤΗΣ ΚΥΒΕΡΝΗΣΗΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΚΩΔΙΚΟΠΟΙΗΣΗΣ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΓΙΑ ΤΗΝ ΚΩΔΙΚΟΠΟΙΗΣΗ ΤΗΣ ΝΟΜΟΘΕΣΙΑΣ Α. Αντικείμενο του εγχειριδίου Με το ν. 3133/2003 «Κεντρική Επιτροπή Κωδικοποίησης»

Διαβάστε περισσότερα

ΚΟΥΡΙΟ-ΜΑΘΗΜΑ ΙΣΤΟΡΙΑΣ

ΚΟΥΡΙΟ-ΜΑΘΗΜΑ ΙΣΤΟΡΙΑΣ ΚΟΥΡΙΟ-ΜΑΘΗΜΑ ΙΣΤΟΡΙΑΣ ΣΤΕΦΑΝΟΣ ΑΧΙΛΛΕΩΣ Β`2 Καθηγήτρια: Μαρία Πουλιάου Χατζημιχαήλ 1 ΠΕΡΙΕΧΟΜΕΝΑ Γενική εισαγωγή...σελ.3 Ιστορική διαδρομή...σελ.4 Οικία Ευστόλιου...σελ.5 Θέατρο Κουρείου...σελ.6-7 Σεισμόπληκτη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΟΜΟΣΠΟΝΔΙΑ ΚΑΡΑΤΕ

ΕΛΛΗΝΙΚΗ ΟΜΟΣΠΟΝΔΙΑ ΚΑΡΑΤΕ ΕΛΛΗΝΙΚΗ ΟΜΟΣΠΟΝΔΙΑ ΚΑΡΑΤΕ ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΚΕΦΑΛΑΙΟ Α - ΘΕΜΕΛΙΩΔΕΙΣ ΔΙΑΤΑΞΕΙΣ 1. Η σύνταξη του παρόντος κανονισμού βασίζεται στις διατάξεις της ελληνικής νομοθεσίας και ιδίως του Νόμου 2725/1999

Διαβάστε περισσότερα

(ΜΕ ΤΑ ΔΥΟ ΜΕΙΟΝΕΚΤΗΜΑΤΑ)

(ΜΕ ΤΑ ΔΥΟ ΜΕΙΟΝΕΚΤΗΜΑΤΑ) 1 ΤΟ ΒΙΒΛΙΟ ΤΩΝ ΠΟΝΩΝ ΤΟΥ ΣΩΜΑΤΟΣ (ΜΕ ΤΑ ΔΥΟ ΜΕΙΟΝΕΚΤΗΜΑΤΑ) Η πραγματικότητα ξεπερνά και την πιο τολμηρή φαντασία. Επίκτητος Σοφός δεν είναι όποιος ξέρει πολλά, αλλά όποιος ξέρει χρήσιμα. Ηράκλειτος Οι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΓΓΕΛΙΚΗ ΑΝΕΣΤΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Λαϊκά παιχνίδια και αγωνίσματα στην περιοχή της Αταλάντης» ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΘΕΟΔΩΡΟΣ ΝΗΜΑΣ

Διαβάστε περισσότερα

ΝΟΜΟΣ ΥΠ' ΑΡΙΘ. 4194 Κώδικας Δικηγόρων

ΝΟΜΟΣ ΥΠ' ΑΡΙΘ. 4194 Κώδικας Δικηγόρων ΝΟΜΟΣ ΥΠ' ΑΡΙΘ. 4194 Κώδικας Δικηγόρων ΝΟΜΟΣ ΥΠ' ΑΡΙΘ. 4194 Κώδικας Δικηγόρων. (ΦΕΚ Α' 208/27-09-2013) Ο ΠΡΟΕΔΡΟΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Εκδίδομε τον ακόλουθο νόμο που ψήφισε η Βουλή: Αρθρο 1. Η φύση

Διαβάστε περισσότερα

Φωτογραφία εξώφυλλου. Άποψη του Γκιαούρκιοϊ σήμερα. (Φωτ. Αντ. Μισυρλή).

Φωτογραφία εξώφυλλου. Άποψη του Γκιαούρκιοϊ σήμερα. (Φωτ. Αντ. Μισυρλή). Η παρούσα έκδοση έγινε στο πλαίσιο της 2 ης Συνάντησης (21.9.2014 στη Θεσσαλονίκη) των συγγενών που προέρχονται από το Γενεαλογικό Δέντρο της οικογένειας με γενάρχες τους Φώτιο και Τριανταφυλλιά Παπαδημητρίου

Διαβάστε περισσότερα

Αριθμός 3121/2014 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟ ΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ( ιαδικασία Εκουσίας ικαιοδοσίας)

Αριθμός 3121/2014 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟ ΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ( ιαδικασία Εκουσίας ικαιοδοσίας) ΠΡΩΤΟ ΙΚΕΙΟ ΠΕΙΡΑΙΩΣ Αριθμός 3121/2014 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟ ΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ( ιαδικασία Εκουσίας ικαιοδοσίας) Συγκροτήθηκε από τους ικαστές Σοφία Καλούδη Πρόεδρο Πρωτοδικών-εισηγήτρια, Γεώργιο Ξυνόπουλο και

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΝΟΜΟΥ ΔΑΣΙΚΕΣ ΣΥΝΕΤΑΙΡΙΣΤΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ

ΣΧΕΔΙΟ ΝΟΜΟΥ ΔΑΣΙΚΕΣ ΣΥΝΕΤΑΙΡΙΣΤΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ ΣΧΕΔΙΟ ΝΟΜΟΥ ΔΑΣΙΚΕΣ ΣΥΝΕΤΑΙΡΙΣΤΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Α ΓΕΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ Άρθρο 1 Ορισμός σκοπός διαβάθμιση δραστηριότητες 1. Η Δασική Συνεταιριστική Οργάνωση (ΔΑ.Σ.Ο.) είναι αυτόνομη ένωση προσώπων,

Διαβάστε περισσότερα

Η ΕΠΑΓΓΕΛΜΑΤΙΚΗ & ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΠΟΙΗΣΗ ΤΩΝ ΕΛΛΗΝΩΝ ΤΗΣ ΔΙΑΣΠΟΡΑΣ ΜΕΤΑ ΤΟΝ Β ΠΑΓΚΟΣΜΙΟ ΠΟΛΕΜΟ ΚΑΙ Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΣΤΟ ΕΘΝΙΚΟ ΚΕΝΤΡΟ

Η ΕΠΑΓΓΕΛΜΑΤΙΚΗ & ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΠΟΙΗΣΗ ΤΩΝ ΕΛΛΗΝΩΝ ΤΗΣ ΔΙΑΣΠΟΡΑΣ ΜΕΤΑ ΤΟΝ Β ΠΑΓΚΟΣΜΙΟ ΠΟΛΕΜΟ ΚΑΙ Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΣΤΟ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΤΕΧΝΟΛΟΓΙΚΌ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Η ΕΠΑΓΓΕΛΜΑΤΙΚΗ & ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΠΟΙΗΣΗ ΤΩΝ ΕΛΛΗΝΩΝ ΤΗΣ ΔΙΑΣΠΟΡΑΣ ΜΕΤΑ ΤΟΝ Β ΠΑΓΚΟΣΜΙΟ ΠΟΛΕΜΟ

Διαβάστε περισσότερα

ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΚΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΕΚΜΙΣΘΩΣΗΣ ΚΥΛΙΚΕΙΟΥ ΤΟΥ 7 ΟΥ & 22 ΟΥ ΔΗΜΟΤΙΚΟΥ ΒΟΛΟΥ

ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΚΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΕΚΜΙΣΘΩΣΗΣ ΚΥΛΙΚΕΙΟΥ ΤΟΥ 7 ΟΥ & 22 ΟΥ ΔΗΜΟΤΙΚΟΥ ΒΟΛΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΜΑΓΝΗΣΙΑΣ ΔΗΜΟΣ ΒΟΛΟΥ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΝΠΔΔ) ΤΗΛ. 24210-28517 Βόλος, 4-7-2014 Αριθ. Πρωτ.300 ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΚΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΕΚΜΙΣΘΩΣΗΣ ΚΥΛΙΚΕΙΟΥ ΤΟΥ

Διαβάστε περισσότερα

ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΦΟΡΟΛΟΓΙΚΩΝ Αθήνα, 22 Φεβρουαρίου 2008

ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΦΟΡΟΛΟΓΙΚΩΝ Αθήνα, 22 Φεβρουαρίου 2008 ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΦΟΡΟΛΟΓΙΚΩΝ Αθήνα, 22 Φεβρουαρίου 2008 ΚΑΙ ΤΕΛΩΝΕΙΑΚΩΝ ΘΕΜΑΤΩΝ Αρ. Πρωτ. 1023056 /1210/ΔΕ-Α' ΓΕΝ. Δ/ΝΣΗ ΦΟΡΟΛ. ΕΛΕΓΧΩΝ Δ/ΝΣΗ ΕΛΕΓΧΟΥ ΠΟΛ. 1041 ΤΜΗΜΑΤΑ A, Β, Γ Ταχ. Δ/νση: Κ. Σερβίας 10

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ Ν.Ο.Π.Ε. ΤΜΗΜΑ ΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΕΜΠΟΡΙΚΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΟΥ ΔΙΚΑΙΟΥ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ Ν.Ο.Π.Ε. ΤΜΗΜΑ ΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΕΜΠΟΡΙΚΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΟΥ ΔΙΚΑΙΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ Ν.Ο.Π.Ε. ΤΜΗΜΑ ΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΕΜΠΟΡΙΚΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΟΥ ΔΙΚΑΙΟΥ ΚΥΡΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΕΣ ΔΙΚΑΙΟΠΡΑΞΙΕΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ

Διαβάστε περισσότερα

Ο ΠΡΟΕΔΡΟΣ ΤΗΣ ΒΟΥΛΗΣ ΤΩΝ ΕΛΛΗΝΩΝ. Άρθρο πρώτο.

Ο ΠΡΟΕΔΡΟΣ ΤΗΣ ΒΟΥΛΗΣ ΤΩΝ ΕΛΛΗΝΩΝ. Άρθρο πρώτο. ΝΟΜΟΣ: 1634/86 Κύρωση των πρωτοκόλλων 1980 «Για την προστασία της Μεσογείου θαλάσσης από τη ρύπανση από χερσαίες πηγές» και 1982 «περί των ειδικά προστατευομένων περιοχών της Μεσογείου» (ΦΕΚ 104/Α/18-07-86)

Διαβάστε περισσότερα

15PROC002541788 2015-01-26

15PROC002541788 2015-01-26 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΦΘΙΩΤΙΔΑΣ Κάτω Τιθορέα 26/01/2015 ΔΗΜΟΣ ΑΜΦΙΚΛΕΙΑΣ-ΕΛΑΤΕΙΑΣ Αριθ. Πρωτ: 841 ------------------------------------------------------ Πληροφορίες: Τριφύλλη Ελένη Τηλ.:

Διαβάστε περισσότερα

ΔΗΜΟΣ ΠΑΛΑΜΑ Πληροφορίες: ΠΕΤΡΟΥ ΣΩΤΗΡΙΑ Τηλέφωνο:24443-50144 Αριθμ.πρωτ. 3019 Παλαμάς 11/3/2015

ΔΗΜΟΣ ΠΑΛΑΜΑ Πληροφορίες: ΠΕΤΡΟΥ ΣΩΤΗΡΙΑ Τηλέφωνο:24443-50144 Αριθμ.πρωτ. 3019 Παλαμάς 11/3/2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΠΑΛΑΜΑ Πληροφορίες: ΠΕΤΡΟΥ ΣΩΤΗΡΙΑ Τηλέφωνο:24443-50144 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ Αριθμ.πρωτ. 3019 Παλαμάς 11/3/2015 ΔΙΑΚΗΡΥΞΗ ΔΗΜΟΠΡΑΣΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΝΕΚΜΙΣΘΩΣΗ ΔΗΜΟΤΙΚΩΝ ΑΓΡΩΝ ΣΤΙΣ ΤΟΠΙΚΕΣ

Διαβάστε περισσότερα

ΣΩΜΑ ΠΡΟΣΚΟΠΩΝ ΚΥΠΡΟΥ

ΣΩΜΑ ΠΡΟΣΚΟΠΩΝ ΚΥΠΡΟΥ Υπό την Υψηλή Προστασία του Προέδρου της Κυπριακής Δημοκρατίας ΣΩΜΑ ΠΡΟΣΚΟΠΩΝ ΚΥΠΡΟΥ ΜΝΗΜΟΝΙΟ ΠΑΡΑΔΟΣΗΣ - ΠΑΡΑΛΑΒΗΣ ΚΑΙ ΚΑΝΟΝΙΣΜΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΚΕΝΤΡΟΥ ΚΑΤΑΣΚΗΝΩΤΙΚΟ ΚΕΝΤΡΟ «ΠΛΑΤΑΝΙΑ» ΓΙΑ ΤΗΝ ΚΑΤΑΣΚΗΝΩΤΙΚΗ

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ 34750/2006 (Αριθμός καταθέσεως πράξεως 43170/2006) ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑ ΕΚΟΥΣΙΑΣ ΔΙΚΑΙΟΔΟΣΙΑΣ ΣΥΓΚΡΟΤΗΘΗΚΕ από

ΑΠΟΦΑΣΗ 34750/2006 (Αριθμός καταθέσεως πράξεως 43170/2006) ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑ ΕΚΟΥΣΙΑΣ ΔΙΚΑΙΟΔΟΣΙΑΣ ΣΥΓΚΡΟΤΗΘΗΚΕ από ΑΠΟΦΑΣΗ 34750/2006 (Αριθμός καταθέσεως πράξεως 43170/2006) ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑ ΕΚΟΥΣΙΑΣ ΔΙΚΑΙΟΔΟΣΙΑΣ ΣΥΓΚΡΟΤΗΘΗΚΕ από τους Δικαστές Κυριάκο Μπαμπαλίδη, Πρόεδρο Πρωτοδικών,

Διαβάστε περισσότερα

Ι Σ Ο Κ Ρ Α Τ Η Σ ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ Δ.Σ.Α.

Ι Σ Ο Κ Ρ Α Τ Η Σ ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ Δ.Σ.Α. Ι Σ Ο Κ Ρ Α Τ Η Σ ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ Δ.Σ.Α. Το κείμενο παρατίθεται ακριβώς όπως δημοσιεύθηκε στο Φ.Ε.Κ. ΤΕΥΧΟΣ Α'/194/23-8-2002 ΠΡΟΕΔΡΙΚΟ ΔΙΑΤΑΓΜΑ ΥΠ' ΑΡΙΘ. 208 Εκπαιδευτές Υποψηφίων Οδηγών, Σχολές

Διαβάστε περισσότερα

Αθήνα 20 Ιουλίου 2009 Αρ.Πρωτ.: 1073959/6332/943/Α0014 ΠΟΛ. 1095

Αθήνα 20 Ιουλίου 2009 Αρ.Πρωτ.: 1073959/6332/943/Α0014 ΠΟΛ. 1095 ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΦΟΡΟΛΟΓΙΚΩΝ ΚΑΙ ΤΕΛΩΝΕΙΑΚΩΝ ΘΕΜΑΤΩΝ ΓΕΝ. Δ/ΝΣΗ ΦΟΡΟΛΟΓΙΑΣ ΔΙΕΥΘΥΝΣΗ 14 η Φ.Π.Α. ΤΜΗΜΑ Α Ταχ. Δ/νση : Σίνα 2-4 Ταχ. Κωδ. : 106 72 ΑΘΗΝΑ Τηλ. : 210 3647202-5 E-mail : dfpa.a1@1992.syzefxis.gov.gr

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: (υπόψη καθ. Γεωργίου Θ. Καλκάνη)

ΠΡΟΣ: ΚΟΙΝ.: (υπόψη καθ. Γεωργίου Θ. Καλκάνη) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ.E. ΤΜΗΜΑ Γ ΜΑΘΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ ΚΑΙ ΣΧΟΛΙΚΗΣ

Διαβάστε περισσότερα

ΑΣΤΡΟΝΟΜΙΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ

ΑΣΤΡΟΝΟΜΙΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ ΑΣΤΡΟΝΟΜΙΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ Στην αρχή της Τετραβίβλου του ο Πτολεμαίος, ο μεγάλος αστρονόμος και γεωγράφος του 2ου αιώνα μ.χ. διαιρεί την επιστήμη των άστρων σε δύο μέρη. Με σημερινούς όρους το πρώτο

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΠΡΟΚΗΡΥΞΗΣ ανοικτού δημόσιου Διαγωνισμού για το έργο «ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΕΙΔΙΚΩΝ ΣΧΟΛΕΙΩΝ ΔΗΜΟΥ ΟΡΕΣΤΙΑΔΑΣ»

ΤΕΥΧΟΣ ΠΡΟΚΗΡΥΞΗΣ ανοικτού δημόσιου Διαγωνισμού για το έργο «ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΕΙΔΙΚΩΝ ΣΧΟΛΕΙΩΝ ΔΗΜΟΥ ΟΡΕΣΤΙΑΔΑΣ» ΤΕΥΧΟΣ ΠΡΟΚΗΡΥΞΗΣ ανοικτού δημόσιου Διαγωνισμού για το έργο «ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ-ΘΡΑΚΗΣ ΔΗΜΟΣ ΟΡΕΣΤΙΑΔAΣ Ταχ. Δ/νση ΒΑΣ. ΚΩΝΣΤΑΝΤΙΝΟΥ 11 ΟΡΕΣΤΙΆΔΑ

Διαβάστε περισσότερα

ΧΕΙΜΕΡΙΝΟΣ ΤΟΥΡΙΣΜΟΣ ΣΤΗΝ ΕΛΛΑ Α

ΧΕΙΜΕΡΙΝΟΣ ΤΟΥΡΙΣΜΟΣ ΣΤΗΝ ΕΛΛΑ Α ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΧΕΙΜΕΡΙΝΟΣ ΤΟΥΡΙΣΜΟΣ ΣΤΗΝ ΕΛΛΑ Α ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΓΙΑΝΝΟΥΛΙ ΟΥ ΠΑΡΑΣΚΕΥΗ ΣΠΟΥ ΑΣΤΡΙΑ

Διαβάστε περισσότερα

ΤΗΣ ΕΚΤΕΛΕΣΗΣ ΜΕΤΑΦΟΡΙΚΩΝ ΚΑΙ ΑΛΛΩΝ ΣΥΝΑΦΩΝ ΒΟΗΘΗΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΣΤΟΥΣ ΧΩΡΟΥΣ ΤΗΣ ΤΡΑΠΕΖΑΣ Νο

ΤΗΣ ΕΚΤΕΛΕΣΗΣ ΜΕΤΑΦΟΡΙΚΩΝ ΚΑΙ ΑΛΛΩΝ ΣΥΝΑΦΩΝ ΒΟΗΘΗΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΣΤΟΥΣ ΧΩΡΟΥΣ ΤΗΣ ΤΡΑΠΕΖΑΣ Νο ΔΙΕΥΘΥΝΣΗ ΔΙΟΙΚΗΤΙΚΟΥ ΤΜΗΜΑ ΠΡΟΜΗΘΕΙΩΝ 1ος όροφος - γραφείο 101 τηλ:210 320 3473 210 320 2291 - FAX: 210 3203257 ΔΙΑΚΗΡΥΞΗ Νο 5/2010 ΔΗΜΟΣΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΑΝΑΘΕΣΗ ΤΗΣ ΕΚΤΕΛΕΣΗΣ ΜΕΤΑΦΟΡΙΚΩΝ ΚΑΙ ΑΛΛΩΝ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3234 της 6ης ΑΠΡΙΑΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3234 της 6ης ΑΠΡΙΑΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι Ν. 16(Ι)/98 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3234 της 6ης ΑΠΡΙΑΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι Ο ΠΕΡΙ ΔΙΠΛΩΜΑΤΩΝ ΕΥΡΕΣΙΤΕΧΝΙΑΣ ΝΟΜΟΣ ΚΑΤΑΤΑΞΗ ΑΡΘΡΩΝ Άρθρο 1. Συνοπτικός τίτλος. 2.

Διαβάστε περισσότερα

ΟΙ ΣΚΕΠΤΙΚΟΙ ΦΙΛΟΣΟΦΟΙ

ΟΙ ΣΚΕΠΤΙΚΟΙ ΦΙΛΟΣΟΦΟΙ 1 Εισαγωγικές υποτυπώσεις ΟΙ ΣΚΕΠΤΙΚΟΙ ΦΙΛΟΣΟΦΟΙ Ο Σκεπτικισμός των ελληνιστικών χρόνων υποστήριζε ότι το μη προφανές δεν μπορεί να εξηγείται μέσα από το προφανές. Υπό ένα γενικότερο πνεύμα τούτο παραπέμπει

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΓΡΑΦΗΣ ΥΛΙΚΩΝ ΚΑΙ ΠΟΣΟΤΗΤΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΓΡΑΦΗΣ ΥΛΙΚΩΝ ΚΑΙ ΠΟΣΟΤΗΤΩΝ ΔΙΑΚΗΡΥΞΗ ΔΙΑΓΩΝΙΣΜΟΥ ΑΡΙΘΜΟΣ : 5002083/25-08-2015 ΔΙΕΥΘΥΝΣΗ ΠΕΡΙΦΕΡΕΙΑΣ ΠΕΛΟΠΟΝΝΗΣΟΥ-ΗΠΕΙΡΟΥ ΠΕΡΙΟΧΗ ΠΥΡΓΟΥ ΠΑΠΑΓΕΩΡΓΙΟΥ & ΑΡΧΙΜΗΔΟΥΣ, 27100-ΠΥΡΓΟΣ ΗΜΕΡΟΜΗΝΙΑ : 25-08-2015 Πληροφορίες : Μ. ΤΖΑΝΑΒΑΡΑ Τηλέφωνο

Διαβάστε περισσότερα

Ο ΠΕΡΙ ΤΗΣ ΕΠΙΒΟΛΗΣ ΠΕΡΙΟΡΙΣΤΙΚΩΝ ΜΕΤΡΩΝ ΣΤΙΣ ΣΥΝΑΛΛΑΓΕΣ ΣΕ ΠΕΡΙΠΤΩΣΗ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΝΟΜΟΣ ΤΟΥ 2013. Διάταγμα δυνάμει των άρθρων 4 και 5

Ο ΠΕΡΙ ΤΗΣ ΕΠΙΒΟΛΗΣ ΠΕΡΙΟΡΙΣΤΙΚΩΝ ΜΕΤΡΩΝ ΣΤΙΣ ΣΥΝΑΛΛΑΓΕΣ ΣΕ ΠΕΡΙΠΤΩΣΗ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΝΟΜΟΣ ΤΟΥ 2013. Διάταγμα δυνάμει των άρθρων 4 και 5 Ο ΠΕΡΙ ΤΗΣ ΕΠΙΒΟΛΗΣ ΠΕΡΙΟΡΙΣΤΙΚΩΝ ΜΕΤΡΩΝ ΣΤΙΣ ΣΥΝΑΛΛΑΓΕΣ ΣΕ ΠΕΡΙΠΤΩΣΗ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΝΟΜΟΣ ΤΟΥ 2013 Διάταγμα δυνάμει των άρθρων 4 και 5 ΕΠΕΙΔΗ υπάρχει έλλειψη ουσιαστικής ρευστότητας και σημαντικός κίνδυνος

Διαβάστε περισσότερα

ΙΟΙΚΗΣΗ Ε.Ο.Κ. ΑΡΘΡΟ 1

ΙΟΙΚΗΣΗ Ε.Ο.Κ. ΑΡΘΡΟ 1 ΙΟΙΚΗΣΗ Ε.Ο.Κ. ΑΡΘΡΟ 1 ΙΟΙΚΗΣΗ Ε.Ο.Κ. Για την άσκηση της ιοίκησης της Ελληνικής Οµοσπονδίας Καλαθοσφαίρισης, προβλέπεται, από το Καταστατικό της και το Νόµο, η λειτουργία των παρακάτω οργάνων: Α. Από το

Διαβάστε περισσότερα

ΔΙΗΜΕΡΙΔΑ ΤΕΕ ΤΜΗΜΑ ΚΕΡΚΥΡΑΣ

ΔΙΗΜΕΡΙΔΑ ΤΕΕ ΤΜΗΜΑ ΚΕΡΚΥΡΑΣ ΔΙΗΜΕΡΙΔΑ ΤΕΕ ΤΜΗΜΑ ΚΕΡΚΥΡΑΣ Κέρκυρα 8-10 Απριλίου 2005 «Πολιτεία-Χωροταξικός και Πολεοδομικός Σχεδιασμός» «ΣΧΕΔΙΑΣΜΟΣ ΠΕΡΙΑΣΤΙΚΟΥ ΧΩΡΟΥ ΣΤΗΝ ΑΤΤΙΚΗ» Θ. Ψυχογιός Τοπ-Πολεοδόμος Μηχανικός Προϊστάμενος Τμήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΕΔΙΟ ΠΡΟΤΑΣΕΩΝ ΓΙΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΕΙ. (Θεσμική Επιτροπή Συγκλήτου Πανεπιστημίου Πατρών) ΑΠΟΦΑΣΗ ΣΥΓΚΛΗΤΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΕΔΙΟ ΠΡΟΤΑΣΕΩΝ ΓΙΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΕΙ. (Θεσμική Επιτροπή Συγκλήτου Πανεπιστημίου Πατρών) ΑΠΟΦΑΣΗ ΣΥΓΚΛΗΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΕΔΙΟ ΠΡΟΤΑΣΕΩΝ ΓΙΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΕΙ (Θεσμική Επιτροπή Συγκλήτου Πανεπιστημίου Πατρών) ΑΠΟΦΑΣΗ ΣΥΓΚΛΗΤΟΥ (Συνεδρία 455/8.12.2010) 1 1. ΓΕΝΙΚΟ ΠΛΑΙΣΙΟ Η αναγνώριση της Παιδείας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΕΣ ΑΛΥΚΕΣ Α.Ε.

ΕΛΛΗΝΙΚΕΣ ΑΛΥΚΕΣ Α.Ε. ΕΛΛΗΝΙΚΕΣ ΑΛΥΚΕΣ Α.Ε. Δ Ι Α Κ Η Ρ Υ Ξ Η ΑΝΟΙΚΤΟΥ ΜΕΙΟΔΟΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΑΝΑΘΕΣΗ ΤΩΝ ΧΕΡΣAIΩΝ ΜΕΤΑΦΟΡΩΝ ΑΛΑΤΟΣ Η εταιρία «ΕΛΛΗΝΙΚΕΣ ΑΛΥΚΕΣ Α.Ε.» προκηρύσσει δημόσιο ανοιχτό μειοδοτικό διαγωνισμό,

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ Αριθμ. Απόφασης 12/2016 ΑΠΟΣΠΑΣΜΑ

ΑΝΑΡΤΗΤΕΑ Αριθμ. Απόφασης 12/2016 ΑΠΟΣΠΑΣΜΑ ΔΗΜΟΣ ΝΕΑΣ ΠΡΟΠΟΝΤΙΔΑΣ ΝΟΜΟΣ ΧΑΛΚΙΔΙΚΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ Β/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΠΟΣΠΑΣΜΑ ΑΝΑΡΤΗΤΕΑ Αριθμ. Απόφασης 12/2016 Από το Πρακτικό 2/2016 της συνεδρίασης της Σχολικής Επιτροπής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2009 2010 ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΓΡΟΤΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Ν. Ιωνία, ΒΟΛΟΣ Τη συγκέντρωση της ύλης του και την επιμέλεια της έκδοσης είχε

Διαβάστε περισσότερα

Α Π Ο Σ Π Α Σ Μ Α Πρακτικού Συνεδρίασης του Δημοτικού Συμβουλίου Κερκυραίων στις 15 9 2009. Αριθμ. Αποφ: 22-295

Α Π Ο Σ Π Α Σ Μ Α Πρακτικού Συνεδρίασης του Δημοτικού Συμβουλίου Κερκυραίων στις 15 9 2009. Αριθμ. Αποφ: 22-295 Α Π Ο Σ Π Α Σ Μ Α Πρακτικού Συνεδρίασης του Δημοτικού Συμβουλίου Κερκυραίων στις 15 9 2009. Αριθμ. Αποφ: 22-295 ΘΕΜΑ : «Υποβολή των όρων λήψης τοκοχρεολυτικού δανείου για προμήθεια μηχανολογικού εξοπλισμού

Διαβάστε περισσότερα

Αριθμός αποφάσεως 5928/2010 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΑ (Διαδικασία Εκούσιας Δικαιοδοσίας)

Αριθμός αποφάσεως 5928/2010 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΑ (Διαδικασία Εκούσιας Δικαιοδοσίας) ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ Αριθμός αποφάσεως 5928/2010 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΑ (Διαδικασία Εκούσιας Δικαιοδοσίας) Αποτελούμενο από τους Δικαστές Ελένη Τσίτσιου Πρόεδρο Πρωτοδικών, Κωνσταντίνα Λέκκου

Διαβάστε περισσότερα

Σκόπελος 2015. Ο Αντιπρόεδρος του Δ.Σ. της ΔΕΥΑΣ. Ευάγγελος Γ. Τσουκαλάς

Σκόπελος 2015. Ο Αντιπρόεδρος του Δ.Σ. της ΔΕΥΑΣ. Ευάγγελος Γ. Τσουκαλάς ΠΕΡΙΛΗΨΗ ΔΙΑΚΗΡΥΞΗΣ Η Δημοτική Επιχείρηση Ύδρευσης και Αποχέτευσης Σκοπέλου (ΔΕΥΑΣ) που έχει την έδρα της στη Σκόπελο (37003 Σκόπελος) προκηρύσσει Πρόχειρο Διαγωνισμό με σφραγισμένες προσφορές με το σύστημα

Διαβάστε περισσότερα

1. Ειδικοί Επιστήμονες 2. Επιστημονικοί Συνεργάτες Τηλέφωνο 210 3443338

1. Ειδικοί Επιστήμονες 2. Επιστημονικοί Συνεργάτες Τηλέφωνο 210 3443338 ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΔΡΑΣΕΩΝ ΜΟΝΑΔΑ Β3 Μαρούσι, 25/02/2014

Διαβάστε περισσότερα

Τίτλος Συγγραφέας Είδος Έτος έκδοσης/συγγραφής

Τίτλος Συγγραφέας Είδος Έτος έκδοσης/συγγραφής Τίτλος Συγγραφέας Είδος Έτος έκδοσης/συγγραφής Αδέλφια Τερέντιος Κωμωδία 160 π.χ. Αγκοστίνο Αλμπέρτο Μοράβια Μυθιστόρημα 1944 Αδελφοί Καραμαζόφ Φιοντόρ Μιχαήλοβιτς Ντοστογιέφσκι Μυθιστόρημα 1878-80 Άθλιοι,

Διαβάστε περισσότερα

ΑΝΑΣΚΑΦΗ ΣΤΟΝ ΝΕΟΛΙΘΙΚΟ ΟΙΚΙΣΜΟ ΤΟΥ ΖΑΓΚΛΙΒΕΡΙΟΥ ΝΟΜΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΝΑΣΚΑΦΗ ΣΤΟΝ ΝΕΟΛΙΘΙΚΟ ΟΙΚΙΣΜΟ ΤΟΥ ΖΑΓΚΛΙΒΕΡΙΟΥ ΝΟΜΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΑΣΚΑΦΗ ΣΤΟΝ ΝΕΟΛΙΘΙΚΟ ΟΙΚΙΣΜΟ ΤΟΥ ΖΑΓΚΛΙΒΕΡΙΟΥ ΝΟΜΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ Ο εντοπισμός ενός νέου επίπεδου οικισμού σε κεντρικό οικοδομικό τετράγωνο μιας ανθηρής σημερινής κωμόπολης, όπως αυτής του Ζαγκλιβερίου,

Διαβάστε περισσότερα

Αθήνα, 10/12/2014 ΠΟΛ 1253/2014

Αθήνα, 10/12/2014 ΠΟΛ 1253/2014 Αθήνα, 10/12/2014 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΗΜΟΣΙΩΝ ΕΣΟ ΩΝ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΦΟΡΟΛΟΓΙΚΗΣ ΙΟΙΚΗΣΗΣ 1. ΥΠΟ /ΝΣΗ Β - ΕΜΜΕΣΗΣ ΦΟΡΟΛΟΓΙΑΣ ΤΜΗΜΑ Α' -ΦΠΑ 2. ΑΥΤΟΤΕΛΕΣ ΤΜΗΜΑ Β' -

Διαβάστε περισσότερα

479-323 π.χ. ΝΟΤΙΑ ΚΛΙΤΥΣ ΑΚΡΟΠΟΛΗΣ

479-323 π.χ. ΝΟΤΙΑ ΚΛΙΤΥΣ ΑΚΡΟΠΟΛΗΣ 479-323 π.χ. ΝΟΤΙΑ ΚΛΙΤΥΣ ΑΚΡΟΠΟΛΗΣ Την κλασική εποχή παράλληλα με το οικοδομικό πρόγραμμα στην Ακρόπολη, αναμορφώνεται και ο χώρος νότια αυτής. Ανακαινίζεται πλήρως το θέατρο του Διονύσου και χτίζεται

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΣΥΜΠΛΗΡΩΣΗΣ

ΥΠΟΔΕΙΓΜΑ ΣΥΜΠΛΗΡΩΣΗΣ Έντυπο Υπολογισμού Κενών-Πλεονασμάτων Σχολείου στο Σύστημα «Αθηνά» Γενικές Πληροφορίες ΓΥΜΝΑΣΙΩΝ Ωράριο Διευθυντή 5 δηλ. τόσο εμφανίζεται στην οθόνη με τα ωράρια στο Αθηνά Όνομα/τα Υποδιευθυντή/ών 1. Βασιλόπουλος

Διαβάστε περισσότερα

«ΤΑ ΧΕΛΙΔΟΝΙΣΜΑΤΑ»- ΤΟ ΤΡΑΓΟΥΔΙ ΤΗΣ ΧΕΛΙΔΟΝΑΣ

«ΤΑ ΧΕΛΙΔΟΝΙΣΜΑΤΑ»- ΤΟ ΤΡΑΓΟΥΔΙ ΤΗΣ ΧΕΛΙΔΟΝΑΣ Αγαπητοί μας αναγνώστες, Σας καλωσορίζουμε στην εφημερίδα μας, «Τα Χελιδονίσματα» με ένα γλυκό χαμόγελο. Θελήσαμε να πλουτίσουμε την εφημερίδα μας με πολλά θέματα, αφιερώματα και δραστηριότητες που πιστεύουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΦΛΩΡΙΝΑΣ ΔΗΜΟΣ ΑΜΥΝΤΑΙΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΦΛΩΡΙΝΑΣ ΔΗΜΟΣ ΑΜΥΝΤΑΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΦΛΩΡΙΝΑΣ ΔΗΜΟΣ ΑΜΥΝΤΑΙΟΥ ΑΠΟΣΠΑΣΜΑ Από το πρακτικό συνεδριάσεων 24/2012 του δημοτικό συμβουλίου Δήμου Αμυνταίου. ΘΕΜΑ: Ψήφισμα Δημοτικού Συμβουλίου Αμυνταίου για το θέμα των Διαθεσιμοτήτων-

Διαβάστε περισσότερα

ΑΔΑ: 4ΙΦΝΚ-ΔΘ. Αθήνα, 14 Δεκεμβρίου 2010 Αριθ. Πρωτ.: 71351. Ταχυδρομική. Σταδίου 27 Διεύθυνση: Ταχυδρομικός Κώδικας: 101 83 ΑΘΗΝΑ

ΑΔΑ: 4ΙΦΝΚ-ΔΘ. Αθήνα, 14 Δεκεμβρίου 2010 Αριθ. Πρωτ.: 71351. Ταχυδρομική. Σταδίου 27 Διεύθυνση: Ταχυδρομικός Κώδικας: 101 83 ΑΘΗΝΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΑΠΟΚΕΝΤΡΩΣΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΑΚΥΒΕΡΝΗΣΗΣ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΤΟΠΙΚΗΣ ΑΥTΟΔΙΟΙΚΗΣΗΣ ΔΙΕΥΘΥΝΣΗ ΟΡΓΑΝΩΣΗΣ & ΛΕΙΤΟΥΡΓΙΑΣ ΟΡΓΑΝΙΣΜΩΝ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΑΔΑ: Ταχυδρομική

Διαβάστε περισσότερα

ÍÝá. ÍÝá ΚΡΕΜΑΣΤΙΩΤΙΚΑ ΕΚ ΟΣΗ ΤΟΥ ΣΥΛΛΟΓΟΥ ΚΡΕΜΑΣΤΙΩΤΩΝ ΛΑΚΩΝΙΑΣ «Ο ΠΑΤΡΙΩΤΗΣ» ΤΑ ΝΕΑ ΤΟΥ ΧΩΡΙΟΥ ΜΑΣ ΓΙΑ ΝΑ ΚΡΑΤΗΣΟΥΜΕ ΤΟ ΧΩΡΙΟ ΖΩΝΤΑΝΟ ΟΛΟΧΡΟΝΙΣ

ÍÝá. ÍÝá ΚΡΕΜΑΣΤΙΩΤΙΚΑ ΕΚ ΟΣΗ ΤΟΥ ΣΥΛΛΟΓΟΥ ΚΡΕΜΑΣΤΙΩΤΩΝ ΛΑΚΩΝΙΑΣ «Ο ΠΑΤΡΙΩΤΗΣ» ΤΑ ΝΕΑ ΤΟΥ ΧΩΡΙΟΥ ΜΑΣ ΓΙΑ ΝΑ ΚΡΑΤΗΣΟΥΜΕ ΤΟ ΧΩΡΙΟ ΖΩΝΤΑΝΟ ΟΛΟΧΡΟΝΙΣ ÍÝá ÍÝá ΚΡΕΜΑΣΤΙΩΤΙΚΑ ΕΚ ΟΣΗ ΤΟΥ ΣΥΛΛΟΓΟΥ ΚΡΕΜΑΣΤΙΩΤΩΝ ΛΑΚΩΝΙΑΣ «Ο ΠΑΤΡΙΩΤΗΣ» ΣΕΛΙΔΑ 1 ΑΘΗΝΑ ΟΚΤΩΒΡΗΣ 2011 - ΑΡ. ΦΥΛΛΟΥ 45 ΤΙΜΗ 5 Ευρώ ΠΛΗΡΩΜΕΝΟ ΤΑΧ.ΑΝΘΟΥΠΟΛΗΣ ΑΡ. ΑΔ. 4 ΕΛΛΑΣ - HELLAS Πουλάκης Ιωάννης

Διαβάστε περισσότερα

Καθορισμός Δημοτικών Κοινοχρήστων Χώρων προς ενοικίαση για το έτος 2015.

Καθορισμός Δημοτικών Κοινοχρήστων Χώρων προς ενοικίαση για το έτος 2015. Ημερομηνία: 28/05/2015 Αρ. Πρωτ. 13758 Αναρτητέα ΑΠΟΣΠΑΣΜΑ Από το πρακτικό της αριθμ.2015-13 ης Συνεδρίασης του Δημοτικού Συμβουλίου Λεβαδέων Αριθμός απόφασης : 188 Περίληψη Καθορισμός Δημοτικών Κοινοχρήστων

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΓΙΩΡΓΟΣ ΜΑΧΑΙΡΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΓΙΩΡΓΟΣ ΜΑΧΑΙΡΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ: ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΓΙΩΡΓΟΣ ΜΑΧΑΙΡΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΤΕΧΝΟΛΟΓΙΑ - ΔΙΑΧΕΙΡΙΣΗ - ΕΠΕΞΕΡΓΑΣΙΑ ΟΙΝΟΣΤΑΦΥΑΩΝ ΣΤΟ ΝΟΜΟ ΗΡΑΚΛΕΙΟΥ Κ Ρ Ο

Διαβάστε περισσότερα

35η ιδακτική Ενότητα ΕΝΟΧΙΚΕΣ ΣΧΕΣΕΙΣ ( ΕΝΟΧΙΚΟ ΙΚΑΙΟ)

35η ιδακτική Ενότητα ΕΝΟΧΙΚΕΣ ΣΧΕΣΕΙΣ ( ΕΝΟΧΙΚΟ ΙΚΑΙΟ) 35η ιδακτική Ενότητα ΕΝΟΧΙΚΕ ΧΕΕΙ ( ΕΝΟΧΙΚΟ ΙΚΑΙΟ) Εργασία για το σχολείο Ο καθηγητής θα µοιράσει µισθωτήρια κατοικιών στους µαθητές, θα τους χωρίσει ανά θρανίο σε εκµισθωτές και µισθωτές και αφού τους

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 27483 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1969 13 Αυγούστου 2013 ΑΠΟΦΑΣΕΙΣ Αριθμ. 105936/Γ2 Καθορισμός εξεταστέας διδακτέας ύλης των Πανελ λαδικά εξεταζόμενων μαθημάτων

Διαβάστε περισσότερα

Αθήνα, 21. 12. 2015. Α.Π. Φ80000/οικ.59819/1961

Αθήνα, 21. 12. 2015. Α.Π. Φ80000/οικ.59819/1961 Αθήνα, 21. 12. 2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΓΕΝΙΚΗ Δ/ΝΣΗ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ Δ/ΝΣΗ ΚΥΡΙΑΣ ΑΣΦΑΛΙΣΗΣ

Διαβάστε περισσότερα

Πολιτισµική πολυµορφία και εκπαιδευτικά χαρακτηριστικά στα νησιά Ρόδος - Κως:

Πολιτισµική πολυµορφία και εκπαιδευτικά χαρακτηριστικά στα νησιά Ρόδος - Κως: ΣΑΒΒΑΤΩ Σ. ΣΑΒΒΙ ΟΥ Πολιτισµική πολυµορφία και εκπαιδευτικά χαρακτηριστικά στα νησιά Ρόδος - Κως: Μορφές σύγκλισης και αναπαραγωγής πολιτισµικών διαφορών στην Α/θµια Εκπαίδευση -Θεωρητική και Εµπειρική

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. «Ελαιόλαδο το χρυσάφι στο πιάτο μας» Παραγωγή Ελαιολάδου

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. «Ελαιόλαδο το χρυσάφι στο πιάτο μας» Παραγωγή Ελαιολάδου ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ «Ελαιόλαδο το χρυσάφι στο πιάτο μας» Παραγωγή Ελαιολάδου Υπεύθυνες Καθηγήτριες κ. Λαγουτάρη Ελένη κ. Σούσου Άρτεμις Ομάδα Μαθητών Κάμτσιος Παναγιώτης Κασπάρης Δημήτριος Κατσαΐτης Νικόλας

Διαβάστε περισσότερα

62 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ

62 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ 62 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ Τεχνολογικό Πολιτιστικό Πάρκο Λαυρίου του Ε.Μ.Π. 11 & 12 Δεκεµβρίου 2009, Λαύριο ΕΙΣΗΓΗΣΗ ΓΙΑ ΤΟ ΣΥΣΤΗΜΑ ΠΡΟΣΒΑΣΗΣ ΣΤΗΝ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

Διαβάστε περισσότερα

Κεφάλαιο Πέμπτο Εθνοπολιτισμική Ζωή και Εμπειρίες Ελληνικότητας των Ελληνοαυστραλών Εφήβων

Κεφάλαιο Πέμπτο Εθνοπολιτισμική Ζωή και Εμπειρίες Ελληνικότητας των Ελληνοαυστραλών Εφήβων Κεφάλαιο Πέμπτο Εθνοπολιτισμική Ζωή και Εμπειρίες Ελληνικότητας των Ελληνοαυστραλών Εφήβων Στο πλαίσιο του παρόντος κεφαλαίου εξετάζονται οι κοινές ενδοοικογενειακές δραστηριότητες και η γλωσσική αλληλεπίδραση

Διαβάστε περισσότερα

Οι Πρωτεύσαντες Ε Δημοτικού στον 1ο Πανελλήνιο Διαγωνισμό Φυσικών 2013 (τα ονόματα των 314 -λόγω ισοβαθμιών- πρώτων)

Οι Πρωτεύσαντες Ε Δημοτικού στον 1ο Πανελλήνιο Διαγωνισμό Φυσικών 2013 (τα ονόματα των 314 -λόγω ισοβαθμιών- πρώτων) Με την ανακοίνωση των ονομάτων των πρωτευσάντων μαθητών της E και Στ τάξης Δημοτικού ολοκληρώνεται ο 1ος Πανελλήνιος Διαγωνισμός Φυσικών Δημοτικού 2013. Ο αυξημένος αριθμός τους οφείλεται όχι μόνο στο

Διαβάστε περισσότερα

Ιατρική: Λίγα από την ιστορία και αιφνίδια άνθιση της Καρδιολογίας Παύλος Κ. Τούτουζας Οµ. Καθηγητής Καρδιολογίας Παν. Αθηνών

Ιατρική: Λίγα από την ιστορία και αιφνίδια άνθιση της Καρδιολογίας Παύλος Κ. Τούτουζας Οµ. Καθηγητής Καρδιολογίας Παν. Αθηνών ΤΕΥΧΟΣ 62 ΟΚΤΩΒΡΙΟΣ ΝΟΕΜΒΡΙΟΣ ΕΚΕΜΒΡΙΟΣ 2011 Ιατρική: Λίγα από την ιστορία και αιφνίδια άνθιση της Καρδιολογίας Παύλος Κ. Τούτουζας Οµ. Καθηγητής Καρδιολογίας Παν. Αθηνών Στην αρχαία Αίγυπτο ζωγράφιζαν

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ. Η Εθνική Επιτροπή Τηλεπικοινωνιών και Ταχυδρομείων (ΕΕΤΤ),

ΑΠΟΦΑΣΗ. Η Εθνική Επιτροπή Τηλεπικοινωνιών και Ταχυδρομείων (ΕΕΤΤ), Μαρούσι, 23-6-2009 ΑΡΙΘ. ΑΠ.: 528/075 ΑΠΟΦΑΣΗ Κανονισμός Καθορισμού των Τελών Διέλευσης, των Τελών Χρήσης Δικαιωμάτων Διέλευσης και του Ύψους των Εγγυήσεων Καλής Εκτέλεσης των Εργασιών Διέλευσης για όλη

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΣΥΝΗΜΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ 1 ΥΠΟΔΕΙΓΜΑΤΑ ΔΗΛΩΣΗΣ-ΑΙΤΗΣΗΣ

ΠΑΡΑΡΤΗΜΑ ΣΥΝΗΜΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ 1 ΥΠΟΔΕΙΓΜΑΤΑ ΔΗΛΩΣΗΣ-ΑΙΤΗΣΗΣ ΠΑΡΑΡΤΗΜΑ ΣΥΝΗΜΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ 1 ΥΠΟΔΕΙΓΜΑΤΑ ΔΗΛΩΣΗΣ-ΑΙΤΗΣΗΣ 1. Ανήλικο τέκνο αλλοδαπών που έχει γεννηθεί στην Ελλάδα από την 9 η -7-2015 και φοιτά σε ελληνικό σχολείο στην Ελλάδα - παρ. 1 του άρθ. 1Α

Διαβάστε περισσότερα

Τμήμα Ζωικής Παραγωγής ΤΕΙ Δ. Μακεδονίας, Παράρτημα Φλώρινας

Τμήμα Ζωικής Παραγωγής ΤΕΙ Δ. Μακεδονίας, Παράρτημα Φλώρινας Τμήμα Ζωικής Παραγωγής ΤΕΙ Δ. Μακεδονίας, Παράρτημα Φλώρινας Έκθεση Εσωτερικής Αξιολόγησης ΤΜΗΜΑ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΠΑΡΑΡΤΗΜΑ ΦΛΩΡΙΝΑΣ Τ Ε Ι Δ Υ Τ Ι Κ Η Σ Μ Α Κ Ε Δ Ο Ν Ι Α Σ 2008-2009 ΦΛΩΡΙΝΑ Πίνακας περιεχομένων

Διαβάστε περισσότερα

ΙΑ ΙΚΑΣΙΑ Ι ΡΥΣΗΣ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑΣ Ι ΙΩΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

ΙΑ ΙΚΑΣΙΑ Ι ΡΥΣΗΣ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑΣ Ι ΙΩΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΚΥΠΡΙΑΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Αρ. Φακ.: 7.18.03.1/8 Αρ. Τηλ.:22800945/918 Αρ. Φαξ:22428268/ 22800869 E-mail:circularsec@schools.ac.cy ΙΑ ΙΚΑΣΙΑ Ι ΡΥΣΗΣ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑΣ Ι ΙΩΤΙΚΟΥ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΝΟΜΟΥ ΕΝΙΣΧΥΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΤΗΣ ΚΙΝΗΜΑΤΟΓΡΑΦΙΚΗΣ ΤΕΧΝΗΣ ΚΑΙ ΑΛΛΕΣ ΔΙΑΤΑΞΕΙΣ. Γενικές Αρχές και Ορισμοί. Άρθρο 1 Γενικές αρχές

ΣΧΕΔΙΟ ΝΟΜΟΥ ΕΝΙΣΧΥΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΤΗΣ ΚΙΝΗΜΑΤΟΓΡΑΦΙΚΗΣ ΤΕΧΝΗΣ ΚΑΙ ΑΛΛΕΣ ΔΙΑΤΑΞΕΙΣ. Γενικές Αρχές και Ορισμοί. Άρθρο 1 Γενικές αρχές ΣΧΕΔΙΟ ΝΟΜΟΥ ΕΝΙΣΧΥΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΤΗΣ ΚΙΝΗΜΑΤΟΓΡΑΦΙΚΗΣ ΤΕΧΝΗΣ ΚΑΙ ΑΛΛΕΣ ΔΙΑΤΑΞΕΙΣ 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ Γενικές Αρχές και Ορισμοί Άρθρο 1 Γενικές αρχές 1. Η ανάπτυξη της κινηματογραφικής τέχνης αποτελεί υποχρέωση

Διαβάστε περισσότερα

Η ΜΠΑΡΤΣΑ ΓΙΟΡΤΑΖΕΙ ΤΗΝ ΑΝΟΔΟ ΚΑΙ ΠΑΕΙ ΔΥΝΑΤΑ ΓΙΑ ΝΤΑ ΣΙΛΒΑ

Η ΜΠΑΡΤΣΑ ΓΙΟΡΤΑΖΕΙ ΤΗΝ ΑΝΟΔΟ ΚΑΙ ΠΑΕΙ ΔΥΝΑΤΑ ΓΙΑ ΝΤΑ ΣΙΛΒΑ εβδομαδιαία αθλητική εφημερίδα Τρίτη 22 Μαΐου 2012 1,30 Αρ. φύλλου:66 www.korinhiaspors.gr Η ΜΠΑΡΤΣΑ ΓΙΟΡΤΑΖΕΙ ΤΗΝ ΑΝΟΔΟ ΚΑΙ ΠΑΕΙ ΔΥΝΑΤΑ ΓΙΑ ΝΤΑ ΣΙΛΒΑ Άρεσε ο βραζιλιάνος στόπερ στο φιλικό με Πανιώνιο.

Διαβάστε περισσότερα

ΝΟΜΟΣ ΠΟΥ ΠΡΟΒΛΕΠΕΙ ΓΙΑ ΤΗΝ ΚΡΑΤΙΚΗ ΦΟΙΤΗΤΙΚΗ ΜΕΡΙΜΝΑ ΚΑΙ ΓΙΑ ΣΥΝΑΦΗ ΘΕΜΑΤΑ. Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως:

ΝΟΜΟΣ ΠΟΥ ΠΡΟΒΛΕΠΕΙ ΓΙΑ ΤΗΝ ΚΡΑΤΙΚΗ ΦΟΙΤΗΤΙΚΗ ΜΕΡΙΜΝΑ ΚΑΙ ΓΙΑ ΣΥΝΑΦΗ ΘΕΜΑΤΑ. Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως: ΝΟΜΟΣ ΠΟΥ ΠΡΟΒΛΕΠΕΙ ΓΙΑ ΤΗΝ ΚΡΑΤΙΚΗ ΦΟΙΤΗΤΙΚΗ ΜΕΡΙΜΝΑ ΚΑΙ ΓΙΑ ΣΥΝΑΦΗ ΘΕΜΑΤΑ Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως: Συνοπτικός τίτλος. 1. Ο παρών Νόμος θα αναφέρεται ως ο περί Κρατικής Φοιτητικής

Διαβάστε περισσότερα