Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διάλεξη 7. Θεωρία παιγνίων VA 28, 29"

Transcript

1 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29

2 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν τις ενέργειες άλλων μονάδων.

3 Μερικές εφαρμογές της θεωρίας παιγνίων Η μελέτη των ολιγοπωλίων (κλάδων που περιέχουν λίγες μόνο επιχειρήσεις) Η μελέτη των καρτέλ: π.χ. OPEC Η μελέτη εξωτερικών επιδράσεων: π.χ. η χρησιμοποίηση μιας κοινής πηγής πόρων όπως για παράδειγμα η αλιεία. Η μελέτη στρατιωτικών στρατηγικών.

4 Τι είναι ένα παίγνιο; Ένα παίγνιο αποτελείται από Ένα σύνολο παικτών. Ένα σύνολο στρατηγικών για κάθε παίκτη. Τις αποδόσεις κάθε παίκτη για κάθε σύνολο στρατηγικών κάθε παίκτη.

5 Παίγνια δύο παικτών Η αλληλεπίδραση στρατηγικών μπορεί να περιλαμβάνει πολλούς παίκτες & πολλές στρατηγικές, εμείς όμως θα μελετήσουμε μόνο τα παίγνια εκείνα που υπάρχουν δύο παίκτες, ο καθένας από τους οποίους μπορεί να επιλέξει μόνο μεταξύ δύο στρατηγικών.

6 Ένα παράδειγμα παιγνίου δυο παικτών Οι παίκτες αποκαλούνται 1 και 2. Οπαίκτης1 έχει δυο στρατηγικές, τις Πάνω και Κάτω. Οπαίκτης2 έχει δυο στρατηγικές, τις Αριστερά και Δεξιά. Ο πίνακας που δείχνει τις αποδόσεις και για τους δύο παίκτες για κάθε έναν από τους τέσσερις πιθανούς στρατηγικούς συνδυασμούς είναι ο πίνακας αποδόσεων του παιγνίου.

7 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) Αυτός είναι ο πίνακας αποδόσεων του παιγνίου. Η απόδοση του παίκτη 1 εμφανίζεται πρώτη. Η απόδοση του παίκτη 2 εμφανίζεται δεύτερη.

8 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) Αυτός είναι ο πίνακας αποδόσεων του παιγνίου. Π.χ. αν ο 1 παίζει Πάνω και ο 2 παίζει Δεξιά τότε η απόδοση του A είναι 0 και η απόδοση του B είναι 1.

9 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) Αυτός είναι ο πίνακας αποδόσεων του παιγνίου. Και αν ο παίκτης 1 παίζει Κάτω και ο 2 παίζει Δεξιά τότε η απόδοση του παίκτη 1 είναι 1 και η απόδοση του παίκτη 2 είναι 0.

10 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) Μια κατανομή στρατηγικών του παιγνίου είναι π.χ. ένα ζεύγος (Π,Δ) όπου το πρώτο στοιχείο είναι η στρατηγική που επιλέγει ο παίκτης 1 και το δεύτερο είναι η στρατηγική που επιλέγει ο παίκτης 2.

11 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) Ποιο θα είναι το αποτέλεσμα ενός τέτοιου παιγνίου; Ποια δηλαδή θα είναι η λύση του παιγνίου;

12 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) ΑπότηνάποψητουΠαίκτη1 είναι πάντα καλύτερο γι αυτόν να επιλέξει Κάτω

13 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) ΑπότηνάποψητουΠαίκτη1 είναι πάντα καλύτερο γι αυτόν να επιλέξει Κάτω ΑπότηνάποψητουΠαίκτη2 είναι παντα καλυτερο γι αυτόν να επιλέξει Αριστερά

14 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) Συνεπώς, η λύση του παιγνίου είναι η κατανομή στρατηγικών (Κ,Α): ο παίκτης1 παίζει Κάτω και ο παίκτης 2 παίζει Αριστερά

15 Ένα παράδειγμα παιγνίου δυο παικτών Α Δ Π Κ (1,2) (2,1) (0,1) (1,0) Έχουμε δηλαδή για κάθε παίκτη κυρίαρχη στρατηγική: μια άριστη στρατηγική ανεξάρτητα από το ποια στρατηγική επιλέγει ο άλλος παίκτης.

16 Ισορροπία κατά Nash Α Δ Π Κ (3,9) (0,0) (1,8) (2,1) Η λύση κυρίαρχης στρατηγικής είναι καλή όταν συμβαίνει, δεν συμβαίνει όμως συχνά. Το παραπάνω παίγνιο δεν έχει λύση κυρίαρχης στρατηγικής.

17 Ισορροπία κατά Nash Α Δ Π Κ (3,9) (0,0) (1,8) (2,1) Μια κατανομή στρατηγικών αποτελεί μια ισορροπία κατά Νash, αν η επιλογή του παίκτη 1, με δεδομένη την επιλογή του παίκτη 2, είναι άριστη, και ταυτόχρονα εάν η επιλογή του παίκτη 2, με δεδομένη την επιλογή του 1, είναι άριστη.

18 Πως βρίσκουμε τις ισορροπίες Nash; Α Δ Π Κ (3,9) (1,8) (0,0) (2,1)

19 Πως βρίσκουμε τις ισορροπίες Nash; Α Δ Π Κ (3,9) (1,8) (0,0) (2,1) Ισορροπίες κατά Νash: (Π, Α) με απόδοση (3, 9) (Κ, Δ) με απόδοση (2, 1)

20 Πως βρίσκουμε τις ισορροπίες Nash; Ένα ζεύγος στρατηγικών όπου κάθε στρατηγική του κάθε παίκτη είναι η καλύτερη απόκριση στη στρατηγική του άλλου παίκτη είναι ισορροπία κατά Nash

21 Ισορροπία κατά Nash Παίκτης B Α Δ Παίκτης A Π Κ (3,9) (0,0) (1,8) (2,1) (Π,Α) και (Κ,Δ) είναι και οι δύο ισορροπίες κατά Nash για το παίγνιο. Αλλά ποιά θα δούμε στη πράξη; Παρατηρήστε ότι η (Π,Α) προτιμάται από την (Κ,Δ) και από τους δύο παίκτες. Πρέπει τότε να δούμε να πραγματοποιείται μόνο η (Π,Α);

22 Το δίλημμα του φυλακισμένου ΓιαναδούμεανείναιτακατάPareto άριστα αποτελέσματα αυτά που βλέπουμε στην εκτέλεση ενός παιγνίου, σκεφτείτε ένα διάσημο δεύτερο παράδειγμα ενός παιγνίου δυο παικτών που ονομάζεται το δίλημμα του φυλακισμένου

23 Το δίλημμα του φυλακισμένου Κλάϊντ Α Ο Μπόνι Α Ο (-,-) (-30,-1) (-1,-30) (-10,-10)

24 Το δίλημμα του φυλακισμένου Α Κλάϊντ Ο Μπόνι Α Ο (-,-) (-30,-1) (-1,-30) (-10,-10) Αν η Μπόνι παίζει Άρνηση τότε η κάλλιστη απόκριση του Κλάϊντ είναι Ομολογία

25 Το δίλημμα του φυλακισμένου Α Κλάϊντ Ο Μπόνι Α Ο (-,-) (-30,-1) (-1,-30) (-10,-10) Αν η Μπόνι παίζει Άρνηση τότε η κάλλιστη απόκριση του Κλάϊντ είναι Ομολογία. Αν τώρα ο Κλάιντ παίζει Ομολογία τότε η κάλλιστη απόκριση της Μπόνι είναι Ομολογία και όχι Άρνηση.

26 Το δίλημμα του φυλακισμένου Α Κλάϊντ Ο Μπόνι Α Ο (-,-) (-30,-1) (-1,-30) (-10,-10) Αν η Μπόνι παίζει Ομολογία τότε η κάλλιστη απόκριση του Κλάϊντ είναι Ομολογία

27 Το δίλημμα του φυλακισμένου Α Κλάϊντ Ο Μπόνι Α Ο (-,-) (-30,-1) (-1,-30) (-10,-10) Αν η Μπόνι παίζει Ομολογία τότε η κάλλιστη απόκριση του Κλάϊντ είναι Ομολογία. Αν τώρα ο Κλάιντ παίζει Ομολογία τότε η κάλλιστη απόκριση της Μπόνι είναι Ομολογία.

28 Το δίλημμα του φυλακισμένου Α Κλάϊντ Ο Μπόνι Α Ο (-,-) (-30,-1) (-1,-30) (-10,-10) Έτσι, η μόνη ισορροπία κατά Nash γι αυτό το παίγνιο είναι (Ο,Ο), ακόμακαιανη(α,α) έχεικαιγιατημπόνικαι για τον Κλάϊντ καλύτερα αποτελέσματα. Η ισορροπία κατά Nash είναι αναποτελεσματική κατά Pareto.

29 Το δίλημμα του φυλακισμένου Α Κλάϊντ Ο Μπόνι Α Ο (-,-) (-30,-1) (-1,-30) (-10,-10) Το πρόβλημα είναι ότι δεν υπάρχει τρόπος συντονισμού των ενεργειών των φυλακισμένων. Εάν μπορούσαν να εμπιστευτούν ο ένας τον άλλο, θα βελτίωναν και οι δυο τη θέση τους.

30 Στατικά παίγνια ταυτοχρόνων κινήσεων Και στα δύο παραδείγματα που είδαμε, οι παίκτες επιλέγουν τη στρατηγική τους ταυτόχρονα και το παίγνιο παίζεται μια μόνο φορά. Τέτοια παίγνια ονομάζονται στατικά παίγνια ταυτοχρόνων κινήσεων (oneshot games).

31 Δυναμικά παίγνια διαδοχικών κινήσεων Υπάρχουν όμως παίγνια όπου ένας παίκτης παίζει πριν τον άλλο. Τέτοια παίγνια είναι τα διαδοχικά ή δυναμικά παίγνια. Ο παίκτης που παίζει πρώτος είναι ο ηγέτης. Ο παίκτης που παίζει δεύτερος είναι ο ακόλουθος.

32 Ένα παράδειγμα διαδοχικού παιγνίου Μερικές φορές ένα παίγνιο έχει περισσότερες από μια ισορροπίες κατά Nash και είναι δύσκολο να πεις τι είναι πιο πιθανό να συμβεί. Ωστόσο, αν ένα παίγνιο είναι δυναμικό, μπορούμε μερικές φορές να ισχυριστούμε ότι μια ισορροπία κατά Nash είναι πιθανότερο να συμβεί από μια άλλη.

33 Ένα παράδειγμα διαδοχικού παιγνίου Α Δ Π Κ (3,9) (0,0) (1,8) (2,1) Η (Π,Α) και η (Κ,Δ) είναι και οι δύο ισορροπίες κατά Nash όταν αυτό το παίγνιο παίζεται ταυτόχρονα και δεν έχουμε τρόπο να κρίνουμε ποιά ισορροπία είναι πιθανότερο να συμβεί.

34 Ένα παράδειγμα διαδοχικού παιγνίου Α Δ Π Κ (3,9) (0,0) (1,8) (2,1) Υποθέστε αντ αυτού ότι το παίγνιο παίζεται διαδοχικά, με τον παίκτη 1 να ηγείται και τον παίκτη 2 να ακολουθεί. Είναι καλύτερα τότε να ξαναγράψουμε το παίγνιο στην εκτεταμένη του μορφή.

35 Ένα παράδειγμα διαδοχικού παιγνίου Π 1 Κ 2 2 Ο 1 παίζει πρώτος. Ο 2 παίζει δεύτερος. Α Δ Α Δ

36 Ένα παράδειγμα διαδοχικού παιγνίου Π 1 Κ 2 2 Ο 1 παίζει πρώτος. Ο 2 παίζει δεύτερος. Α Δ Α Δ (3,9) (1,8) (0,0) (2,1) Η (Π,Α) είναι μια ισορροπία κατά Nash.

37 Ένα παράδειγμα διαδοχικού παιγνίου B Π A Κ B Ο 1 παίζει πρώτος. Ο 2 παίζει δεύτερος. Α Δ Α Δ (3,9) (1,8) (0,0) (2,1) H (Π,Α) είναι μια ισορροπία κατά Nash. H (Κ,Δ) είναι μια ισορροπία κατά Nash. Ποια είναι πιθανότερο να συμβεί;

38 Ένα παράδειγμα διαδοχικού παιγνίου Π 1 Κ 2 2 Ο 1 παίζει πρώτος. Ο 2 παίζει δεύτερος. Α Δ Α Δ (3,9) (1,8) (0,0) (2,1) Για να βρούμε τη λύση αυτού του παιγνίου αναλύουμε το παίγνιο από το τέλος προς την αρχή. Ξεκινάμε δηλαδή από τις στρατηγικές του «ακόλουθου» παίκτη, του παίκτη 2.

39 Ένα παράδειγμα διαδοχικού παιγνίου Π 1 Κ 2 2 Ο 1 παίζει πρώτος. Ο 2 παίζει δεύτερος. Α Δ Α Δ (3,9) (1,8) (0,0) (2,1) Οπαίκτης2 μεταξύ των στρατηγικών του Α και Δ επιλέγει Α αριστερά (διότι 9 >8)και Δ δεξιά (διότι 0< 1).

40 Ένα παράδειγμα διαδοχικού παιγνίου Π 1 Κ 2 2 Ο 1 παίζει πρώτος. Ο 2 παίζει δεύτερος. Α Δ Α Δ (3,9) (1,8) (0,0) (2,1) Οπαίκτης2 μεταξύ των στρατηγικών του Α και Δ επιλέγει Α αριστερά και Δ δεξιά. Το θέμα τώρα είναι ότι οπαίκτης1 το ξέρει αυτό, άρα δοθέντος ότι ο παίκτης 2 επιλέγει Α αριστερά και Δ δεξιά, τι επιλέγει αυτός;

41 Ένα παράδειγμα διαδοχικού παιγνίου Π 1 Κ 2 2 Ο 1 παίζει πρώτος. Ο 2 παίζει δεύτερος. Α Δ Α Δ (3,9) (1,8) (0,0) (2,1) Επειδή 3 >2 οπαίκτης1 επιλέγει να παίξει Π. Οπότε η ισορροπία (Π,Α) με απόδοση (3,9) είναι η πιθανότερη ισορροπία κατά Νash

42 Μικτές στρατηγικές Α Δ Π Κ (1,2) (0,4) (0,) (3,2) Εδώ είναι ένα νέο παίγνιο. Υπάρχει ισορροπία κατά Nash;

43 Μικτές στρατηγικές Α Δ Π Κ (1,2) (0,4) (0,) (3,2) Το παίγνιο δεν παρουσιάζει ισορροπία Nash σε καθαρές στρατηγικές. Ωστόσο, είναι ένα παίγνιο με πεπερασμένο αριθμό παικτών και στρατηγικών οπότε θα έχει σίγουρα τουλάχιστον μία ισορροπία Νash. Αναζητούμε ισορροπία Νash σε μικτές στρατηγικές.

44 Μικτές στρατηγικές Αντί να παίζει Πάνω ή Κάτω, ο παίκτης1 επιλέγει μια κατανομή πιθανοτήτων (π Π,1-π Π ), που σημαίνει ότι με πιθανότητα π Π οπαίκτης1 θα παίξει Πάνω και με πιθανότητα 1-π Π θα παίξει Κάτω. Οπαίκτης1 αναμιγνύει τις καθαρές στρατηγικές Πάνω και Κάτω. Η κατανομή πιθανότητας (π Π,1-π Π ) είναι μια μικτή στρατηγική για τον παίκτη 1.

45 Μικτές στρατηγικές Ομοίως, ο παίκτης 2 επιλέγει μια κατανομή πιθανοτήτων (π Α,1-π Α ), που σημαίνει ότι με πιθανότητα π Α ο παίκτης 2 θα παίξει Αριστερά και με πιθανότητα 1-π Α θα παίξει Δεξιά. Ο παίκτης 2 αναμιγνύει τις καθαρές στρατηγικές Αριστερά και Δεξιά. Η κατανομή πιθανοτήτων (π Α,1-π Α ) είναι μια μικτή στρατηγική για τον παίκτη 2.

46 Μικτές στρατηγικές Α Δ Π Κ (1,2) (0,4) (0,) (3,2) Αυτό το παίγνιο δεν έχει ισορροπία κατά Nash σε καθαρές στρατηγικές, αλλά έχει ισορροπία κατά Nash σε μικτές στρατηγικές. Πώς την βρίσκουμε;

47 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π,π Π Κ,1-π Π (1,2) (0,4) (0,) (3,2)

48 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π,π Π Κ,1-π Π (1,2) (0,4) (0,) (3,2) Αν ο παίκτης 2 παίξει Αριστερά η αναμενόμενη απόδοσή του είναι 2π Π + (1 π Π )

49 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π,π Π Κ,1-π Π (1,2) (0,4) (0,) (3,2) Αν ο παίκτης 2 παίξει Αριστερά η αναμενόμενη απόδοσή του είναι 2π Π + (1 π Π ) Αν ο παίκτης 2 παίξει Δεξιά η αναμενόμενη απόδοσή του είναι 4π Π + 2(1 π Π )

50 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π,π Π Κ,1-π Π (1,2) (0,4) (0,) (3,2) Αν 2π Π + (1 π Π ) > 4π Π + 2(1 π Π ) τότε οπαίκτης2 θα έπαιζε μόνο Αριστερά. Αλλά τότε θα είχαμε ισορροπία Nash σε καθαρές και όχι σε μικτές στρατηγικές.

51 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π,π Π Κ,1-π Π (1,2) (0,4) (0,) (3,2) Αν 2π Π + (1 π Π ) < 4π Π + 2(1 π Π ) τότε οπαίκτης2 θα έπαιζε μόνο Δεξιά. Αλλά τότε θα είχαμε ισορροπία Nash σε καθαρές και όχι σε μικτές στρατηγικές.

52 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π,π Π Κ,1-π Π (1,2) (0,4) (0,) (3,2) Άρα, για να υπάρχει ισορροπία Nash σε μικτές στρατηγικές, o παίκτης 2 πρέπει να είναι αδιάφορος μεταξύ του να παίξει Αριστερά ή Δεξιά, δηλ. 2π Π + (1 π Π ) = 4π Π + 2(1 π Π )

53 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π,π Π Κ,1-π Π (1,2) (0,4) (0,) (3,2) Άρα, για να υπάρχει ισορροπία Nash σε μικτές στρατηγικές, o παίκτης 2 πρέπει να είναι αδιάφορος μεταξύ του να παίξει Αριστερά ή Δεξιά, δηλ. 2π Π + (1 π Π ) = 4π Π + 2(1 π Π ) ππ = 3/

54 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π, Κ, 3 2 (1,2) (0,4) (0,) (3,2) Άρα για να υπάρχει ισορροπία Nash σε μικτές στρατηγικές, o παίκτης 2 πρέπει να είναι αδιάφορος μεταξύ του να παίξει Αριστερά ή Δεξιά, δηλ. 2π Π + (1 π Π ) > 4π Π + 2(1 π Π ) π Π = 3/

55 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π, Κ, 3 2 (1,2) (0,4) (0,) (3,2)

56 Μικτές στρατηγικές Π, Κ, 3 2 Α,π Α Δ,1-π Α (1,2) (0,4) (0,) (3,2) Αν ο παίκτης 1 παίξει Πάνω η αναμενόμενη απόδοσή του είναι 1 π Α + 0 (1 π Α ) = π Α

57 Μικτές στρατηγικές Π, Κ, 3 2 Α,π Α Δ,1-π Α (1,2) (0,4) (0,) (3,2) Αν ο παίκτης 1 παίξει Πάνω η αναμενόμενη απόδοσή του είναι 1 π Α + 0 (1 π Α ) = π Α Αν ο παίκτης 1 παίξει Κάτω η αναμενόμενη απόδοσή του είναι 0 π Α + 3 (1 π Α ) = 3(1 π Α )

58 Αν Π, Κ, 3 2 π Α > 3(1 π Α ) Μικτές στρατηγικές Α,π Α Δ,1-π Α (1,2) (0,4) (0,) (3,2) τότε ο παίκτης 1 θα έπαιζε μόνο Πάνω. ΑλλάδενυπάρχουνισορροπίεςNash σε μικτές όπου οπαίκτης1 να παίζει μόνο Πάνω.

59 Αν Π, Κ, 3 2 π Α <3(1 π Α ) Μικτές στρατηγικές Α,π Α Δ,1-π Α (1,2) (0,4) (0,) (3,2) τότε ο παίκτης 1 θα έπαιζε μόνο Κάτω. ΑλλάδενυπάρχουνισορροπίεςNash σε μικτές όπου οπαίκτης1 να παίζει μόνο Κάτω.

60 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π, Κ, 3 2 (1,2) (0,4) (0,) (3,2) Άρα για να υπάρχει μια ισορροπία Nash σε μικτές, o παίκτης 1 πρέπει να είναι αδιάφορος μεταξύ του να παίξει Πάνω ή Κάτω, δηλ. π Α =3(1 π Α )

61 Μικτές στρατηγικές Α,π Α Δ,1-π Α Π, Κ, 3 2 (1,2) (0,4) (0,) (3,2) Άρα για να υπάρχει μια ισορροπία Nash σε μικτές, o παίκτης 1 πρέπει να είναι αδιάφορος μεταξύ του να παίξει Πάνω ή Κάτω, δηλ. π Α = 3(1 π Α ) π Α = 3 / 4

62 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) (0,) (3,2) Άρα για να υπάρχει μια ισορροπία Nash σε μικτές, o παίκτης 1 πρέπει να είναι αδιάφορος μεταξύ του να παίξει Πάνω ή Κάτω, δηλ. π Α = 3(1 π Α ) π Α = 3 / 4

63 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) (0,) (3,2) Έτσι, ημόνηnash ισορροπία του παιγνίου θέλει τον παίκτη 1 να παίζει την μικτή στρατηγική (3/, 2/) και τον παίκτη 2 να παίζει την μικτή στρατηγική (3/4, 1/4).

64 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) 9/20 (0,4) (0,) (3,2) Οι αποδόσεις θα είναι (1,2) με πιθανότητα 3 3 =

65 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) 9/20 3/20 (0,) (3,2) Οι αποδόσεις θα είναι (0,4) με πιθανότητα 3 1 =

66 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) 9/20 3/20 (0,) 6/20 (3,2) Οι αποδόσεις θα είναι (0,) με πιθανότητα 2 3 =

67 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) 9/20 3/20 (0,) (3,2) 6/20 2/20 Οι αποδόσεις θα είναι (3,2) με πιθανότητα 2 1 =

68 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) 9/20 3/20 (0,) (3,2) 6/20 2/20

69 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) 9/20 3/20 (0,) (3,2) 6/20 2/20 Η αναμενόμενη απόδοση του παίκτη 1 στην ισορροπία Nash σε μικτές είναι: = 4.

70 Μικτές στρατηγικές Π, Κ, Α, Δ, (1,2) (0,4) 9/20 3/20 (0,) (3,2) 6/20 2/20 Η αναμενόμενη απόδοση του παίκτη 2 στην ισορροπία Nash σε μικτές είναι: =.

71 Πόσες ισορροπίες κατά Nash; Ένα παίγνιο με πεπερασμένο αριθμό παικτών και πεπερασμένο αριθμό στρατηγικών, έχει τουλάχιστον μια ισορροπία Nash. Έτσι, αν το παίγνιο δεν έχει ισορροπία Nash σε καθαρές στρατηγικές τότε θα πρέπει να έχει τουλάχιστον μια ισορροπία Nash σε μικτές στρατηγικές.

72 Παραδείγματα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική

Διαβάστε περισσότερα

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ολιγοπώλιο Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ο ατελής ανταγωνισµός αναφέρεται σε εκείνες τις δοµές µ της αγοράς που κυµαίνονται µεταξύ του τέλειου ανταγωνισµού και του µονοπωλίου. Μεταξύ

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται

(γ) Τις μορφές στρατηγικής αλληλεπίδρασης που αναπτύσσονται Βασικές Έννοιες Οικονομικών των Επιχειρήσεων - Τα οικονομικά των επιχειρήσεων μελετούν: (α) Τον τρόπο με τον οποίο λαμβάνουν τις αποφάσεις τους οι επιχειρήσεις. (β) Τις μορφές στρατηγικής αλληλεπίδρασης

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης - Οι επιχειρήσεις δεν ανταγωνίζονται μόνο ως προς τις τιμές στις οποίες επιλέγουν να πουλήσουν τα προϊόντα τους. - Ο μη-τιμολογιακός ανταγωνισμός

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΗΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΠΑΤΡΑ 2014 ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2006 0 ΠΕΡΙΕΧΟΜΕΝA Σελίδα ΕIΣΑΓΩΓΗ 3 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΣΥΜΠΡΑΞΕΙΣ: ΠΑΡΑΒΙΑΣΕΙΣ ΑΝΤΑΓΩΝΙΣΜΟΥ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΣΥΜΠΡΑΞΕΙΣ: ΠΑΡΑΒΙΑΣΕΙΣ ΑΝΤΑΓΩΝΙΣΜΟΥ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΣΥΜΠΡΑΞΕΙΣ: ΠΑΡΑΒΙΑΣΕΙΣ ΤΩΝ ΚΑΝΟΝΩΝ ΑΝΤΑΓΩΝΙΣΜΟΥ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος. ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΤΙΤΛΟΣ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Θεωρία Παιγνίων. Εισαγωγικές έννοιες και Τεχνικές

Θεωρία Παιγνίων. Εισαγωγικές έννοιες και Τεχνικές Θεωρία Παιγνίων Εισαγωγικές έννοιες και Τεχνικές Η επιβίωση μας εξαρτάται από την αλληλεπίδραση με άλλα άτομα Η επιβίωση μας εξαρτάται από την αλληλεπίδραση με άλλα άτομα Η επιβίωση μας εξαρτάται από την

Διαβάστε περισσότερα

ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ. A beautiful mind Εργασία α λυκείου

ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ. A beautiful mind Εργασία α λυκείου ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ A beautiful mind Εργασία α λυκείου Γεωργακλής Ιωάννης Δαβία Ιωάννα Κλάγκου Δάφνη Ευάγγελος Ραφτόπουλος Υπέυθ. Καθηγητές : κ. Γκάγκαρη, κ.μαυρόγιαννης ΒΙΟΓΡΑΦΙΑ Την ημέρα του γάμου του με

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

Περιεχόμενα. Ι Παίγνια με τέλεια πληροφόρηση... 33. Πρόλογος 11

Περιεχόμενα. Ι Παίγνια με τέλεια πληροφόρηση... 33. Πρόλογος 11 Περιεχόμενα Πρόλογος 11 1 Εισαγωγή... 21 1.1 Τι είναι η θεωρία παιγνίων;...21 Μια σύντομη ιστορία της θεωρίας παιγνίων...23 John von Neumann...24 1.2 Η θεωρία της ορθολογικής επιλογής...25 1.3 Το επόμενο

Διαβάστε περισσότερα

Οργάνωση καθημερινών ημερίδων

Οργάνωση καθημερινών ημερίδων Οργάνωση καθημερινών ημερίδων 1) Αγώνες ζευγών 1α) Διαθέσιμες κινήσεις: Φιλοσοφία, μηχανισμοί και τα χαρακτηριστικά τους. Οι κινήσεις είναι ένα από τα βασικότερα εργαλεία που έχει ένας διαιτητής στη διάθεσή

Διαβάστε περισσότερα

Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή

Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή τους στις διάφορες αγορές. - Τα οικονομικά υποδείγματα:

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Τίτλος: Ανάλυση των Βασικών Υποδειγμάτων της Θεωρίας Παιγνίων. Ευστράτιος Ι. Χουρδάκης

ΕΡΕΥΝΗΤΙΚΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Τίτλος: Ανάλυση των Βασικών Υποδειγμάτων της Θεωρίας Παιγνίων. Ευστράτιος Ι. Χουρδάκης ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΏΝ ΣΠΟΥΔΩΝ (Master of Science) «ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ» ΕΡΕΥΝΗΤΙΚΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τίτλος:

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑ ΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εφαρµογές Θεωρίας Παιγνίων σε Ασύρµατα ίκτυα ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΑΤΜΗΜΑΤΙΚΟ Μ.Π.Σ. ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ι. ΠΟΛΥΡΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΚΡΑΒΑΣ Αριθµός

Διαβάστε περισσότερα

Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια

Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια Η δραστηριότητα που θα περιγραφεί παρακάτω, σχετίζεται με την απαρίθμηση μιας συλλογής αντικειμένων καθώς και την πράξη της πρόσθεσης. Ο όρος

Διαβάστε περισσότερα

Αλληλεπιδράσεις πρακτόρων. Πώς σχεδιάζουμε κοινωνίες πρακτόρων;

Αλληλεπιδράσεις πρακτόρων. Πώς σχεδιάζουμε κοινωνίες πρακτόρων; Αλληλεπιδράσεις πρακτόρων Πώς σχεδιάζουμε κοινωνίες πρακτόρων; Δεν υπάρχει σύστημα ενός πράκτορα! πράκτορας οργανωσιακή σχέση πρακτόρων αλληλεπίδραση πρακτόρων σφαίρα επιρροής πράκτορα περιβάλλον 2 Δεν

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Στόχοι- Υποστόχοι- Δραστηριότητες Ασημίνα Ασβεστά, Κωνσταντίνα Ζαχαροπούλου, Σοφία Αιζενμπαχ Πείραμα Τύχης Πιθανότητα Ενδεχομένου ΠΕΙΡΑΜΑ ΤΥΧΗΣ Α Β Γ Δ

Διαβάστε περισσότερα

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» Μεταπτυχιακή Διατριβή Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες Στυλιανός Θ. Δρακάτος Επιβλέπων

Διαβάστε περισσότερα

Διάλεξη 5. Αναποτελεσματικότητα Μονοπωλίου VA 24

Διάλεξη 5. Αναποτελεσματικότητα Μονοπωλίου VA 24 Διάλεξη 5 Αναποτελεσματικότητα Μονοπωλίου VA 24 1 Αποτελεσματικότητα κατά Pareto Μια οικονομική κατάσταση είναι αποτελεσματική κατά Pareto αν δεν υπάρχει τρόπος βελτίωσης της θέσης ενός ατόμου χωρίς να

Διαβάστε περισσότερα

Θεωρία Παιγνίων. Γιάννης Ρεφανίδης. http://macedonia.uom.gr/~yrefanid/courses/gametheory/

Θεωρία Παιγνίων. Γιάννης Ρεφανίδης. http://macedonia.uom.gr/~yrefanid/courses/gametheory/ Θεωρία Παιγνίων Γιάννης Ρεφανίδης 1 Γενικά Web site: http://macedonia.uom.gr/~yrefanid/courses/gametheory/ Συγγράμματα: (Σ1) Μια εισαγωγή στη Θεωρία Παιγνίων (μετάφραση), Martin J. Osborne, Κλειδάριθμoς,

Διαβάστε περισσότερα

ΑΝΑΘΕΣΗ ΠΟΡΩΝ ΣΕ ΓΝΩΣΤΙΚΑ ΔΙΚΤΥΑ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΔΗΜΟΠΡΑΣΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΑΘΕΣΗ ΠΟΡΩΝ ΣΕ ΓΝΩΣΤΙΚΑ ΔΙΚΤΥΑ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΔΗΜΟΠΡΑΣΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΑΝΑΘΕΣΗ ΠΟΡΩΝ ΣΕ ΓΝΩΣΤΙΚΑ ΔΙΚΤΥΑ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΔΗΜΟΠΡΑΣΙΩΝ

Διαβάστε περισσότερα

ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ. ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ.

ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ. ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ. ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ.ΔΕ 2004 ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ

Διαβάστε περισσότερα

Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα.

Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα. 2012 Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα. ΔΗΜΗΤΡΗΣ ΜΟΣΧΟΒΙΤΗΣ 03101121 ΣΗΜΜΥ, ΕΜΠ ΑΘΗΝΑ 4/7/2012 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΘΗΝΑ, 2012 Εφαρμογή της Θεωρίας Παιγνίων

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 6: Εκτατική μορφή παίγνιων. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Εκτατική μορφή παίγνιων Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή

ΠΕΡΙΕΧΟΜΕΝΑ. ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή ΕΙΣΑΓΩΓΗ Έννοια και Στόχοι της Μικροοικονομικής Θεωρίας 1. Γενικά...27 2. Το Πρόβλημα της Επιλογής...29 ΚΕΦΑΛΑΙΟ 1 Θεωρία

Διαβάστε περισσότερα

Extensive Games with Imperfect Information

Extensive Games with Imperfect Information Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

Κύματα και φάσεις. Όταν αναφερόμαστε σε μια απλή αρμονική ταλάντωση, που η απομάκρυνση δίνεται από την εξίσωση x=aημ(ωt+φ 0

Κύματα και φάσεις. Όταν αναφερόμαστε σε μια απλή αρμονική ταλάντωση, που η απομάκρυνση δίνεται από την εξίσωση x=aημ(ωt+φ 0 Κύματα και φάσεις. Όταν αναφερόμαστε σε μια απλή αρμονική ταλάντωση, που η απομάκρυνση δίνεται από την εξίσωση x=aημ(ωt+φ 0 ), ονομάζουμε φάση την ποσότητα φ=ωt+φ 0 όπου το φ 0 ονομάζεται αρχική φάση και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Δ.Α.Π.-Ν.Δ.Φ.Κ. ΤΜΗΜΑΤΟΣ ΟΡΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ www.dap-papei.gr 1 ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΔΗΜΟΣΙΟΝΟΜΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

Α2. Α3. ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β1 28 29 Η

Α2. Α3. ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β1 28 29 Η ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 12 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ

Διαβάστε περισσότερα

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000 Θέμα 1 0 Η εταιρία ΑΒΓ σχεδιάζει να επενδύσει σήμερα (στο έτος 0), σε ένα έργο το οποίο θα έχει αρχικό κόστος 00.000, διάρκεια ζωής 5 έτη και αναμένεται να δώσει τις ακόλουθες εισπράξεις: Έτος 1 Έτος 2

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 9 Ιανουάριος 2014 Μορφές αγοράς 1. Τέλειος ανταγωνισμός [Perfect competition] 2. Μονοπωλιακός ανταγωνισμός

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι. Προσφορά-Ζήτηση και Κρατική Παρέμβαση. Αρ. Διάλεξης: 6

Εισαγωγή στην Οικονομική Επιστήμη Ι. Προσφορά-Ζήτηση και Κρατική Παρέμβαση. Αρ. Διάλεξης: 6 Εισαγωγή στην Οικονομική Επιστήμη Ι Προσφορά-Ζήτηση και Κρατική Παρέμβαση Αρ. Διάλεξης: 6 Προσφορά, Ζήτηση και Κυβερνητικές Πολιτικές Σε μια ελεύθερη και χωρίς κανόνες αγορά, οι δυνάμεις της προσφοράς

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Το παιχνίδι και η αξία του στη φυσική αγωγή. Διγγελίδης Νικόλαος Πανεπιστήμιο Θεσσαλίας ΤΕΦΑΑ

Το παιχνίδι και η αξία του στη φυσική αγωγή. Διγγελίδης Νικόλαος Πανεπιστήμιο Θεσσαλίας ΤΕΦΑΑ Το παιχνίδι και η αξία του στη φυσική αγωγή Διγγελίδης Νικόλαος Πανεπιστήμιο Θεσσαλίας ΤΕΦΑΑ Σκοποί της παρουσίασης Η καλύτερη κατανόηση του παιχνιδιού Η κατανόηση της αξίας του παιχνιδιού στη φυσική αγωγή

Διαβάστε περισσότερα

Το Υπόδειγμα IS-LM. (1) ΗΚαμπύληIS (Ισορροπία στην Αγορά Αγαθών)

Το Υπόδειγμα IS-LM. (1) ΗΚαμπύληIS (Ισορροπία στην Αγορά Αγαθών) Το Υπόδειγμα IS-LM Νομισματική και Δημοσιονομική Πολιτική σε Κλειστή Οικονομία - Ταυτόχρονη Ανάλυση Μεταβολών της Ισορροπίας στην Αγορά Αγαθών και στην Αγορά Χρήματος => Υπόδειγμα IS-LM (1) ΗΚαμπύληIS

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ

Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ Τεχνολογία Α! Τάξης Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ Μελέτη Πριν από κάθε κατασκευή προηγούνται : 1. Μελέτη 2. Σχεδίαση *Τι σχήμα να τις δώσω; *Τι μέγεθος θα έχει (διαστάσεις); Σχεδίαση * Ποιοι είναι οι κανόνες

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΑΣΦΑΛΙΣΗΣ 2 Η ΕΝΟΤΗΤΑ ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΑΓΟΡΕΣ

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΑΣΦΑΛΙΣΗΣ 2 Η ΕΝΟΤΗΤΑ ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΑΓΟΡΕΣ Πλάτων Τήνιος ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΑΣΦΑΛΙΣΗΣ ΒΟΗΘΗΜΑΤΑ 2 Η ΕΝΟΤΗΤΑ ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΑΓΟΡΕΣ Σκοπός της ενότητας η επισκόπηση της γενικής οικονομικής θεωρίας και της έννοιας (αλλά και των περιορισμών)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΣΤΗ ΛΗΨΗ ΣΤΡΑΤΗΓΙΚΩΝ ΑΠΟΦΑΣΕΩΝ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΣΤΗ ΛΗΨΗ ΣΤΡΑΤΗΓΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΠΣ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΣΤΗ ΛΗΨΗ ΣΤΡΑΤΗΓΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΠΑΝΤΟΣ ΗΜΗΤΡΙΟΣ Πτυχίο Οικονοµικής Επιστήµης

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Θεωρία Καταναλωτή-Προτιμήσεις Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιμήσεις 3 Οκτωβρίου 2012 1 / 19 Προτιμήσεις καταναλωτών Θέλουμε

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΙΣΑΓΩΓΗ Εξερευνήστε τη μυστηριώδη νήσο La Isla, και κυνηγήστε ζώα που μέχρι πρότινος θεωρούνταν εξαφανισμένα. Το ευγενές Ντόντο, το προσεκτικό Γιγάντιο Φόσα, τον άπιαστο

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr Ερώτηση 1 Την 30 η Σεπτεμβρίου 2013, τα επιτόκια ενός έτους του γιεν Ιαπωνίας και της λίρας Αγγλίας είναι αντιστοίχως i = 1% και i = 4%, ενώ η ισοτιμία όψεως είναι 150 ανά λίρα (S 30-9-13 = 150/ ). Οι

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου

Διαβάστε περισσότερα

Διπλωµατική Εργασία µε τίτλο: Ακαδηµαϊκό έτος 2007-2008

Διπλωµατική Εργασία µε τίτλο: Ακαδηµαϊκό έτος 2007-2008 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Σχολή Μηχανικών Ηλεκτρονικών Υπολογιστών & Πληροφορικής Διπλωµατική Εργασία µε τίτλο: Προσεγγιστικές ισορροπίες Nash Πειραµατική και Θεωρητική εργασία για εύρεση αποδοτικών αλγορίθµων

Διαβάστε περισσότερα

Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης

Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Παρατήρηση: Μόνο σε αυτό το μάθημα όταν λέμε κομμάτι εννοούμε κομμάτι ή πιόνι και όταν λέμε κομμάτια εννοούμε κομμάτια

Διαβάστε περισσότερα

Το 1ο βήμα ανανέωσης. Νέα οθόνη ΚΙΝΟ. Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ

Το 1ο βήμα ανανέωσης. Νέα οθόνη ΚΙΝΟ. Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ ΚΙΝΟ BONUS Το 1ο βήμα ανανέωσης Νέα οθόνη ΚΙΝΟ Επίσημη οθόνη στατιστικών ΚΙΝΟ από τον ΟΠΑΠ Το 2 ο βήμα ανανέωσης Δελτίο με 4 Βήματα για τον «Άπειρο Παίκτη» που παίζει πρώτη φορά Δελτίο με περισσότερες

Διαβάστε περισσότερα

3. Χαρακτηριστικές Παράμετροι Κατανομών

3. Χαρακτηριστικές Παράμετροι Κατανομών . Χαρακτηριστικές Παράμετροι Κατανομών - Αναμενόμενη ή μέση τιμή μιας διακριτής τυχαίας μεταβητής. Θα ήταν αρκετά χρήσιμο να γνωρίζουμε γύρω από ποια τιμή «κυμαίνεται» η τ.μ. Χ. γύρω από την οποία «απώνεται»

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.1: Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση:

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Θέμα (.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Να βρεθεί η ποσότητα που ελαχιστοποιεί το κόστος παραγωγής και στη συνέχεια να υπολογιστεί το ελάχιστο κόστος παραγωγής. (0%) Κριτήριο

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

1. Επιλογή Διαφημιστικής Δαπάνης στη Μονοπωλιακή Αγορά

1. Επιλογή Διαφημιστικής Δαπάνης στη Μονοπωλιακή Αγορά 1. Επιλογή Διαφημιστικής Δαπάνης στη Μονοπωλιακή Αγορά 1Α. Δελεαστική Διαφήμιση στη Μονοπωλιακή Αγορά - Έστω ότι η αγορά ενός αγαθού είναι μονοπωλιακή και η διαφήμιση του προϊόντος είναι δελεαστική δηλαδή

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά 6η Δραστηριότητα Ναυμαχία Αλγόριθμοι αναζήτησης Περίληψη Συχνά ζητάμε από τους υπολογιστές να ψάξουν πληροφορίες στο εσωτερικό μεγάλων αρχείων δεδομένων. Για να το καταφέρουν, απαιτούνται ταχείες και αποτελεσματικές

Διαβάστε περισσότερα

Να απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες.

Να απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες. Οικονομικό Πανεπιστήμιο Αθηνών ΜΠΣ Χρηματοοικονομικής και Τραπεζικής για Στελέχη Μάθημα: Οικονομική για Στελέχη Επιχειρήσεων Εξέταση Δεκεμβρίου 2007 Ονοματεπώνυμο: Να απαντήσετε τα παρακάτω θέματα σύμφωνα

Διαβάστε περισσότερα