Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πακέτο Επιχειρησιακή Έρευνα #02 =============================================================="

Transcript

1 Πακέτο Επιχειρησιακή Έρευνα #0 Tηλ.: Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ============================================================== Παίγνια Μηδενικού Αθροίσµατος - Μεικτές Στρατηγικές ( παραδείγµατα σελίδες) ============================================================== Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων Ιδιαίτερα Μαθήµατα τηλ.: ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία

2 ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A A 4 A 8 6 A4-7 Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: B B B B4 Ελάχιστα Γραµµών Maximin A * A 4 * A 8 6 * A4-7 - Μέγιστα Στηλών Minimax * * * 4 4 Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A 4 A 6 (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές:

3 B B4 y -y A x 4 A -x 6 V(AB)=V(AB4) 4 x+ (-x) = x+ 6 (-x) x+ = 4 x+ 6 < = > x= 7 και -x= 7 V(BA)=V(BA) 4 y+ (-y) = y+ 6 (-y) 4 y+ = y+ 6 < = > y= 7 και -y= 7 Τότε η τιµή του παιγνίου είναι: V= 7 Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = B = ( B B B B 4 ) = ===www.maths.gr

4 Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων Ιδιαίτερα Μαθήµατα τηλ.: ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A A - - A 4 6 A4 - - Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: 4

5 B B B B4 Ελάχιστα Γραµµών Maximin A * A * A 4 6 * A Μέγιστα Στηλών 6 Minimax * * * Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A A (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές: B B4 y -y A x A -x V(AB)=V(AB4) x+ (-x) = x+ (-x) 4 x+ = x+ < = > x= και -x= V(BA)=V(BA) y+ (-y) = y+ (-y)

6 y+ = 4 y+ < = > y= και -y= Τότε η τιµή του παιγνίου είναι: V= Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: 4 A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = 0 0 ===www.maths.gr Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων Ιδιαίτερα Μαθήµατα τηλ.: ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. 6

7 Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A 0-4 A A A Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: B B B B4 Ελάχιστα Γραµµών Maximin A * A * A * A Μέγιστα Στηλών 4 Minimax * * * - Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A -4 A - (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές: 7

8 B B4 y -y A x -4 A -x - V(AB)=V(AB4) -4 x+ (-x) = x+ - (-x) x+ = 4 x < = > x= και -x= V(BA)=V(BA) -4 y+ (-y) = y+ - (-y) 4 6 y+ = y < = > y= 9 και -y= 9 Τότε η τιµή του παιγνίου είναι: V= - Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = ===www.maths.gr 8

9 Άσκηση Νο 4 Ασκήσεις : Θεωρία Παιγνίων Ιδιαίτερα Μαθήµατα τηλ.: ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A 4 4 A - A 9 A Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: 9

10 B B B B4 Ελάχιστα Γραµµών Maximin A 4 4 * A - - * A 9 * A Μέγιστα Στηλών Minimax * * * 4 4 Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A 4 A (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές: B B4 y -y A x 4 A -x V(AB)=V(AB4) 4 x+ (-x) = x+ (-x) x+ = x+ < = > x= και -x= V(BA)=V(BA) 4 y+ (-y) = y+ (-y) 0

11 y+ = 4 y+ < = > y= και -y= Τότε η τιµή του παιγνίου είναι: V= Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = 0 0 ===www.maths.gr Άσκηση Νο Ασκήσεις : Θεωρία Παιγνίων Ιδιαίτερα Μαθήµατα τηλ.: ύο επιχειρήσεις Α και Β µοιράζονται το µεγαλύτερο µερίδιο της αγοράς για ένα συγκεκριµένο προϊόν. Καθεµία σχεδιάζει τη νέα της στρατηγική για τον επόµενο χρόνο προκειµένου να αποσπάσει πωλήσεις από την άλλη. Οι συνολικές πωλήσεις του προϊόντος είναι σχετικά σταθερές. Για κάθε επιχείρηση υπάρχουν τέσσερις δυνατότητες: ) Βελτίωση προϊόντος ) Καλύτερη συσκευασία ) Αυξηµένη διαφηµιστική δαπάνη 4) Μείωση τιµής. Το κόστος των τεσσάρων εναλλακτικών στρατηγικών είναι περίπου ίδιο. Η αύξηση του ποσοστού των πωλήσεων για την επιχείρηση Α

12 σε βάρος της Β για κάθε συνδυασµό στρατηγικών δίνεται στον παρακάτω πίνακα: B B B B4 A 7 A A 7 6 A4 - - Προσδιορίστε την άριστη στρατηγική για κάθε πλευρά και την τιµή του παιγνιδιού. =============== ΛΥΣΗ ==================== (α) Εξετάζουµε αν υπάρχει ισορροπία µε αµιγείς στρατηγικές εφαρµόζοντας το κριτήριο minimax: B B B B4 Ελάχιστα Γραµµών Maximin A 7 * A * A 7 6 * A Μέγιστα Στηλών Minimax * * * 6 6 Άρα δεν υπάρχει ισορροπία µε αµιγείς στρατηγικές (β) ιαγράφουµε κατόπιν τις τυχόν υπάρχουσες υποδεέστερες στρατηγικές: B B4 A 7 A 6 (γ) Υπολογίζουµε τις πιθανότητες για τις µικτές στρατηγικές:

13 B B4 y -y A x 7 A -x 6 V(AB)=V(AB4) 7 x+ (-x) = x+ 6 (-x) 6 x+ = 4 x+ 6 < = > x= και -x= V(BA)=V(BA) 7 y+ (-y) = y+ 6 (-y) y+ = y+ 6 < = > y= και -y= Τότε η τιµή του παιγνίου είναι: V= 4 Οι µεικτές στρατηγικές για τους δύο παίκτες είναι: A = ( A A A A 4 ) = 0 0 B = ( B B B B 4 ) = 0 0 ===www.maths.gr

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3

No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3 Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 0 5 Ασκήσεις παραγώγισης γινοµένου No Άσκηση παραγώγισης γινοµένου

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Άσκηση 1 η 4 η Εργασία ΔEO13 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Μια βιομηχανική επιχείρηση χρησιμοποιεί ένα εργοστάσιο (Ε) για την παραγωγή των προϊόντων

Διαβάστε περισσότερα

Πρόγραμμα Προπτυχιακών Σπουδών (ΠΠΣ) Τμήματος «Διοίκησης Επιχειρήσεων» Πάτρας, ΤΕΙ Δυτικής Ελλάδας

Πρόγραμμα Προπτυχιακών Σπουδών (ΠΠΣ) Τμήματος «Διοίκησης Επιχειρήσεων» Πάτρας, ΤΕΙ Δυτικής Ελλάδας Πρόγραμμα Προπτυχιακών Σπουδών (ΠΠΣ) Τμήματος «Διοίκησης Επιχειρήσεων» Πάτρας, ΤΕΙ Δυτικής Ελλάδας Μαθήματα Τα ΠΠΣ περιλαμβάνει πενήντα ένα (51) μαθήματα, οργανωμένα ως εξής: Είκοσι τέσσερα (24) μαθήματα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ (Κυριακή, 17-06-2007, 13.30-17:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ (Κυριακή, 17-06-2007, 13.30-17:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών Θεµατική Ενότητα ιοίκηση Επιχειρήσεων & Οργανισµών ΕΟ Ποσοτικές Μέθοδοι Ακαδηµαϊκό Έτος 006-7 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ (Κυριακή, 7-06-007,.0-7:00)

Διαβάστε περισσότερα

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value)

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Σύμφωνα με αυτή την τεχνική θα πρέπει να επιλέγουμε επενδυτικά σχέδια τα οποία έχουν Καθαρή Παρούσα Αξία μεγαλύτερη του μηδενός. Συγκεκριμένα δίνεται

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή

Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή τους στις διάφορες αγορές. - Τα οικονομικά υποδείγματα:

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΕΟ13 Ποσοτικές Μέθοδοι Ακαδηµαϊκό Έτος: 2007-8 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα Γενικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες

Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» Μεταπτυχιακή Διατριβή Το πρόβλημα της ισορροπίας Nash σε κοινοβουλευτικές συμμαχίες Στυλιανός Θ. Δρακάτος Επιβλέπων

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft:

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Specisoft ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: NPV & IRR: Αξιολόγηση & Ιεράρχηση Επενδυτικών Αποφάσεων Από Αβραάμ Σεκέρογλου, Οικονομολόγo, Συνεργάτη της Specisoft Επισκεφθείτε το Management

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης 1.1. Τι είναι η Οικονομική της Διοίκησης 1.2. Τι παρέχει η οικονομική θεωρία στην Οικονομική της Διοίκησης 1.3. Οι σχέσεις της οικονομικής της

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Οδηγός των νέων δελτίων

Οδηγός των νέων δελτίων Οδηγός των νέων δελτίων 4-7 Νέα εποχή Η ΟΠΑΠ Α.Ε. στο πλαίσιο της δυναμικής της ανάπτυξης, προχωρά στην αναμόρφωση και ανανέωση των παιχνιδιών της. Με ακόμη πιο λειτουργικό σχεδιασμό, μοντέρνα εμφάνιση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 Επιτροπή προπτυχιακών σπουδών: Κ. Βασιλάκης Κ. Γιαννόπουλος

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα

Πληροφοριακά Συστήµατα Παρουσίαση ιατµηµατικού Μεταπτυχιακού στα Πληροφοριακά Συστήµατα Αναστάσιος Α. Οικονοµίδης, Καθηγητής Πρόεδρος.Π.Μ.Σ. στα Πληροφοριακά Συστήµατα Γιατί ΤΠΕ? (Τεχνολογίες Πληροφορικής & Επικοινωνιών) ΤΠΕ

Διαβάστε περισσότερα

I.C.B.S. METAΠTYXIAKO TMHMA ΠΡΟΓΡΑΜΜΑ: DMS ΜΑΘΗΜΑ: ΜΑΝΑΤΖΜΕΝΤ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ ΑΤΟΜΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΡΟΣ Α (70% του βαθµού)

I.C.B.S. METAΠTYXIAKO TMHMA ΠΡΟΓΡΑΜΜΑ: DMS ΜΑΘΗΜΑ: ΜΑΝΑΤΖΜΕΝΤ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ ΑΤΟΜΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΡΟΣ Α (70% του βαθµού) I.C.B.S. METAΠTYXIAKO TMHMA ΠΡΟΓΡΑΜΜΑ: DMS ΜΑΘΗΜΑ: ΜΑΝΑΤΖΜΕΝΤ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ ΑΤΟΜΙΚΗ ΕΡΓΑΣΙΑ ΜΕΡΟΣ Α (70% του βαθµού) Ετοιµάστε µια αναφορά προς τη διοίκηση, µε µέγιστο αριθµό λέξεων 3000 (+/- %), χωρίς

Διαβάστε περισσότερα

Εισοδήματος και Απασχόλησης Determination of Income and Employment

Εισοδήματος και Απασχόλησης Determination of Income and Employment ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Προσδιορισμός Εισοδήματος και Απασχόλησης Determination of Income and Employment 1. Κεϋνσιανή θεωρία - Υπόδειγμα. Keynesian Model 1 Βασικές αρχές: Το μέγεθος του Εθνικού εισοδήματος (παραγόμενου

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΟΙ ΣΥΝΙΣΤΩΣΕΣ ΤΗΣ ΜΑΘΗΤΙΚΗΣ ΕΠΙ ΟΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΟΙ ΣΥΝΙΣΤΩΣΕΣ ΤΗΣ ΜΑΘΗΤΙΚΗΣ ΕΠΙ ΟΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΟΙ ΣΥΝΙΣΤΩΣΕΣ ΤΗΣ ΜΑΘΗΤΙΚΗΣ ΕΠΙ ΟΣΗΣ Εισαγωγή Στο κεφάλαιο αυτό επιχειρούµε να εξάγουµε τις συνιστώσες της µαθητικής επίδοσης, χρησιµοποιώντας παραγοντική

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ. ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ.

ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ. ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ. ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ ΙΩΑΝΝΑ ΝΙΚΟΛΟΠΟΥΛΟΥ Διπλωματική εργασία ΠΜΣ.ΔΕ 2004 ΣΤΡΑΤΗΓΙΚΑ ΠΑΙΓΝΙΑ ΚΑΙ ΥΠΟΔΕΙΓΜΑΤΑ ΟΛΙΓΟΠΩΛΙΟΥ: ΜΙΑ ΕΦΑΡΜΟΓΗ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις

Διαβάστε περισσότερα

ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΠΙΜΕΛΕΙΑ: ρ. ΑΠΟΣΤΟΛΟΣ ΑΣΙΛΑΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 1 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το µάθηµα αυτό έχει σκοπό

Διαβάστε περισσότερα

Παραδείγµατα δυνάµεων

Παραδείγµατα δυνάµεων ΥΝΑΜΕΙΣ Παραδείγµατα Ορισµός της δύναµης Χαρακτηριστικά της δύναµης Μάζα - Βάρος Μέτρηση δύναµης ράση - αντίδραση Μέτρηση δύναµης Σύνθεση - ανάλυση δυνάµεων Ισορροπία δυνάµεων 1 Ανύψωση βαρών Παραδείγµατα

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ - ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΑΝΟΥΑΡΙΟΥ-ΦΕΒΡΟΥΑΡΙΟΥ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2013-2014

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ - ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΑΝΟΥΑΡΙΟΥ-ΦΕΒΡΟΥΑΡΙΟΥ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2013-2014 ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ - ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΑΝΟΥΑΡΙΟΥ-ΦΕΒΡΟΥΑΡΙΟΥ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2013-2014 ΗΜΕΡΟΜΗΝΙΑ ΩΡΕΣ Α ΕΞΑΜΗΝΟ (Γ - Αµφ.) Γ ΕΞΑΜΗΝΟ (Γ - Αµφ.)

Διαβάστε περισσότερα

Τρίτη 01/09/2015 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΜΑΘΗΜΑΤΑ ΔΙΔΑΣΚΟΝΤΕΣ ΕΞΑΜΗΝΟ. 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος Γ. Τετάρτη 02/09/2015

Τρίτη 01/09/2015 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΜΑΘΗΜΑΤΑ ΔΙΔΑΣΚΟΝΤΕΣ ΕΞΑΜΗΝΟ. 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος Γ. Τετάρτη 02/09/2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Σ.Α.Χ.Μ. ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 2015 Τρίτη 01/09/2015 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος

Διαβάστε περισσότερα

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ)

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) Α1. ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ ΦΥΣΙΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Tο Πρόγραµµα Μεταπτυχιακών Σπουδών του Τµήµατος Μαθηµατικών του Πανεπιστηµίου Κρήτης είναι ένα από τα πρώτα οργανωµένα µεταπτυχιακά

Διαβάστε περισσότερα

KAINOTOMIA Μονόδρομος για Επιβίωση και Ανάπτυξη. Κώστας Θεοφανίδης Aθήνα, 20.03.14 Business Development Πρόεδρος ΣΥΝΔΡΩ ktheofanides@projectyou.

KAINOTOMIA Μονόδρομος για Επιβίωση και Ανάπτυξη. Κώστας Θεοφανίδης Aθήνα, 20.03.14 Business Development Πρόεδρος ΣΥΝΔΡΩ ktheofanides@projectyou. KAINOTOMIA Μονόδρομος για Επιβίωση και Ανάπτυξη η Κώστας Θεοφανίδης Aθήνα, 20.03.14 Business Development Πρόεδρος ΣΥΝΔΡΩ ktheofanides@projectyou.gr To πρόβλημα μείναμε πίσω είμαστε συντηρητικοί ενώ είμαστε

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Εργασία ΔΕΟ 11. www.arnos.gr www.oktonia.com www.uni-learn.gr

Εργασία ΔΕΟ 11. www.arnos.gr www.oktonia.com www.uni-learn.gr Εργασία ΔΕΟ 11 1.1 Προγραμματισμός είναι η λειτουργία του προσδιορισμού των αντικειμενικών στόχων ενός οικονομικού οργανισμού και των μέσων που απαιτούνται για την υλοποίησή τους. Ενώ ο σχεδιασμός αφορά

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

2 ο Κ Ε Φ Α Λ Α Ι Ο Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

2 ο Κ Ε Φ Α Λ Α Ι Ο Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ 2 ο Κ Ε Φ Α Λ Α Ι Ο Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις της µορφής «σωστό λάθος» Να χαρακτηρίσετε µε Σ (σωστό) ή µε Λ (λάθος) καθεµιά από τις παρακάτω προτάσεις.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός ΚΕΦΑΛΑΙΟ 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟ ΕΙΓΜΑ ΑΚΡΑΙΩΝ ΑΓΟΡΩΝ ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός A1. Το υπόδειγµα των εγχειριδίων Στον Πλούτο των Εθνών (1776) ο Adam Smith παρουσίασε το φηµισµένο πλέον επιχείρηµά του

Διαβάστε περισσότερα

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...11 1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) 1.1 Εισαγωγή...29 1.2 Γεωμετρική Προσέγγιση Λύσης Απλών Προβλημάτων LP... 30 1.3 Η Μέθοδος Simplex Λύσης Προβλημάτων Γραμμικού

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Εκπαίδευση

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Εκπαίδευση ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1 Ονοματεπώνυμο... Κοσσιέρη Ευαγγελία Όνομα πατέρα... Γεώργιος Όνομα μητέρας... Αικατερίνη Τόπος γεννήσεως... Αθήνα Οικογενειακή κατάσταση... Έγγαμη kjnnnbbvvghgf Διεύθυνση επικοινωνίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Εγκαταστάσεις. Μελέτη, σχεδιασμός και εγκατάσταση, με βάση πάντα τις Ευρωπαϊκές οδηγίες ασφαλείας

Εγκαταστάσεις. Μελέτη, σχεδιασμός και εγκατάσταση, με βάση πάντα τις Ευρωπαϊκές οδηγίες ασφαλείας Υπηρεσίες Εγκαταστάσεις Μελέτη, σχεδιασμός και εγκατάσταση, με βάση πάντα τις Ευρωπαϊκές οδηγίες ασφαλείας Για την εγκατάσταση νέων ανελκυστήρων, η Lift Technics μελετά, σχεδιάζει και εγκαθιστά τον ανελκυστήρα

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

Προσφέρουμε στους συνεργάτες μας την ασφάλεια και την δύναμη μιας μακροπρόθεσμης συνεργασίας

Προσφέρουμε στους συνεργάτες μας την ασφάλεια και την δύναμη μιας μακροπρόθεσμης συνεργασίας Προσφέρουμε στους συνεργάτες μας την ασφάλεια και την δύναμη μιας μακροπρόθεσμης συνεργασίας ΖΗΣΕ ΤΗΝ ΕΜΠΕIΡΙΑ EXPERT Το πιο σημαντικό περιουσιακό στοιχείο της Expert είναι το όνομά της. Παρέχει στους

Διαβάστε περισσότερα

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Z ΜΕΤΡΑ ΓΙΑ ΤΗΝ ΟΛΙΚΗ ΑΠΑΓΟΡΕΥΣΗ ΤΟΥ ΚΑΠΝΙΣΜΑΤΟΣ ΣΤΟΥΣ ΔΗΜΟΣΙΟΥΣ ΧΩΡΟΥΣ ΤΡΟΠΟΠΟΙΗΣΗ ΤΩΝ ΝΟΜΩΝ 3730/2008 ΚΑΙ 3370/2005

ΚΕΦΑΛΑΙΟ Z ΜΕΤΡΑ ΓΙΑ ΤΗΝ ΟΛΙΚΗ ΑΠΑΓΟΡΕΥΣΗ ΤΟΥ ΚΑΠΝΙΣΜΑΤΟΣ ΣΤΟΥΣ ΔΗΜΟΣΙΟΥΣ ΧΩΡΟΥΣ ΤΡΟΠΟΠΟΙΗΣΗ ΤΩΝ ΝΟΜΩΝ 3730/2008 ΚΑΙ 3370/2005 ΚΕΦΑΛΑΙΟ Z ΜΕΤΡΑ ΓΙΑ ΤΗΝ ΟΛΙΚΗ ΑΠΑΓΟΡΕΥΣΗ ΤΟΥ ΚΑΠΝΙΣΜΑΤΟΣ ΣΤΟΥΣ ΔΗΜΟΣΙΟΥΣ ΧΩΡΟΥΣ ΤΡΟΠΟΠΟΙΗΣΗ ΤΩΝ ΝΟΜΩΝ 3730/2008 ΚΑΙ 3370/2005 Κωδικοποίηση Άρθρο 17 Νόμου 3868/2010 (ΦΕΚ 129Α /3.8.2010): Όπως ισχύει: Άρθρο

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα.

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Η εξέταση αποτελείται από δύο

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 25210 60435

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ολιγοπώλιο Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ο ατελής ανταγωνισµός αναφέρεται σε εκείνες τις δοµές µ της αγοράς που κυµαίνονται µεταξύ του τέλειου ανταγωνισµού και του µονοπωλίου. Μεταξύ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Πρόγραµµα Μεταπτυχιακών Σπουδών ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΥΣΙΚΗΣ (ΡΑ ΙΟΗΛΕΚΤΡΟΛΟΓΙΑΣ) ΣΤΑΤΙΣΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΑΠΑΣΧΟΛΗΣΗ ΤΩΝ ΑΠΟΦΟΙΤΩΝ ΤΟΥ Π.Μ.Σ.

Διαβάστε περισσότερα

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Γραπτή Εργασία 1 Χρηματοδοτική Διοίκηση. Γενικές οδηγίες

Γραπτή Εργασία 1 Χρηματοδοτική Διοίκηση. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 31 Χρηματοοικονομική Διοίκηση Ακαδημαϊκό Έτος: 2009-10 Γραπτή Εργασία 1 Χρηματοδοτική Διοίκηση

Διαβάστε περισσότερα

ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Α ΑΘΗΝΑΣ ΓΑΛΑΤΣΙΟΥ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΚΑΙ ΠΛΗΡΟΦΟΡΗΣΗ ΣΕ ΘΕΜΑΤΑ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Α ΑΘΗΝΑΣ ΓΑΛΑΤΣΙΟΥ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΚΑΙ ΠΛΗΡΟΦΟΡΗΣΗ ΣΕ ΘΕΜΑΤΑ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Α ΑΘΗΝΑΣ http://1kesyp-a-athin.att.sch.gr ΓΑΛΑΤΣΙΟΥ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΚΑΙ ΠΛΗΡΟΦΟΡΗΣΗ ΣΕ ΘΕΜΑΤΑ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΗΜΕΡΩΣΗ ΜΑΘΗΤΩΝ ΛΥΚΕΙΟΥ ΓΙΑ ΤΗΝ ΕΠΙΛΟΓΗ

Διαβάστε περισσότερα

Βιολογία Κατεύθυνσης Γ Λυκείου

Βιολογία Κατεύθυνσης Γ Λυκείου Βιολογία Κατεύθυνσης Γ Λυκείου Επιμέλεια: Δημήτρης Κοτρόπουλος ΘΕΜΑ A Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω ημιτελείς προτάσεις A1 έως A5 και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

Στην Γ' Λυκείου τα µαθήµατα γενικής παιδείας µειώνονται σε 5 και οι µαθητές παράλληλα µε αυτά παρακολουθούν µία εκ των τριών οµάδων προσανατολισµού:

Στην Γ' Λυκείου τα µαθήµατα γενικής παιδείας µειώνονται σε 5 και οι µαθητές παράλληλα µε αυτά παρακολουθούν µία εκ των τριών οµάδων προσανατολισµού: Στην Γ' Λυκείου τα µαθήµατα γενικής παιδείας µειώνονται σε 5 και οι µαθητές παράλληλα µε αυτά παρακολουθούν µία εκ των τριών οµάδων προσανατολισµού: Ανθρωπιστικές Σπουδές Θετικές- Τεχνολογικές Σπουδές

Διαβάστε περισσότερα

Ενημερωτικό πακέτο προς υποψήφιους συνεργάτες. Φεβρουάριος 2015

Ενημερωτικό πακέτο προς υποψήφιους συνεργάτες. Φεβρουάριος 2015 Ενημερωτικό πακέτο προς υποψήφιους συνεργάτες Φεβρουάριος 2015 Περιεχόμενα Εισαγωγή στην γενική ιδέα των Gaming Halls Λειτουργία των Gaming Halls Ενδεικτικό P&L ενός Gaming Hall Κριτήρια επιλογής και προφίλ

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

Τα 4P Προώθηση Προϊόντων. Νικόλαος Α. Παναγιώτου Λέκτορας Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών

Τα 4P Προώθηση Προϊόντων. Νικόλαος Α. Παναγιώτου Λέκτορας Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Τα 4P Προϊόντων Νικόλαος Α. Παναγιώτου Λέκτορας Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών 1 @ Νοέμβριος 2004 Περιεχόμενα ιαδικασία Βασικά Στοιχεία ς ιαφήμιση 2 ιαδικασία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ιδάσκων: ΜΑΘΗΜΑ: Οικονοµικές, Εµπορικές και Παραγωγικές

Διαβάστε περισσότερα

Προπονητικός προγραµµατισµός. Θεωρητικό Υπόβαθρο για τον Προγραµµατισµό της Προπόνησης. Συστατικά προπονητικού προγραµµατισµού

Προπονητικός προγραµµατισµός. Θεωρητικό Υπόβαθρο για τον Προγραµµατισµό της Προπόνησης. Συστατικά προπονητικού προγραµµατισµού ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΕΙ ΙΚΟΤΗΤΑ ΚΟΛΥΜΒΗΣΗΣ Η ΕΞΑΜΗΝΟ ΠΡΟΠΟΝΗΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΠΡΟΠΟΝΗΤΙΚΗΣ Θεωρητικό Υπόβαθρο για τον Προγραµµατισµό

Διαβάστε περισσότερα