CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo."

Transcript

1 Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición Media Moda Cuartís e mediana Diagramas de caixa e bigotes 4. Medidas de dispersión Rango e desviación media Desviación típica Coeficiente de variación Obxectivos Distinguir os distintos tipos de variables estatísticas. Agrupar en intervalos os datos dun estudo. Facer a táboa estatística asociada a un conxunto de datos. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Calcular a media, a moda, a mediana e os cuartís dun conxunto de datos. Que son e como se calculan os parámetros de dispersión: o rango ou percorrido, a varianza e a desviación típica, o coeficiente de variación. Autor: Aurelio Conde Casas, Manuel González Morales Versión en galego: José Manuel Sánchez González Baixo licenza Creative Commons Se non se indica o contrario. Estatística -1 -

2 Antes de empezar Observa a escena da dereita. Nela móstrase a ocupación dunha praza por un grupo de manifestantes. Saberías dicir o número aproximado de persoas que hai na praza? Isto denomínase estimar. Usa a axuda para calculares o devandito número. Cando remates... Pulsa para ires á páxina seguinte. 1. Facer estatística 1.a. Necesidade Le na pantalla o porqué da necesidade de facer estatística. Observa a escena con atención e realiza varias estimacións do número de células de cada tipo que teñen os marcianos analizados. EXERCICIO. Contesta: Para que serve unha enquisa? Realiza o exercicio que se propón na escena para estimar a cantidade de glóbulos de cada cor do marciano. Compara a túa estimación cos valores reais. Completa a seguinte táboa: Estimación Valores reais Diferenzas Cando remates... Pulsa para ires á páxina seguinte. Estatística -2 -

3 1.b. Poboación e mostra Le na pantalla a explicación teórica deste apartado. Completa: Cando se fai un estudo o investigador decide se analizará toda a poboación ou unha elixida previamente. é o conxunto de individuos, con algunha característica común, sobre o que se fai un estudo estatístico A é un subconxunto da poboación. Debe elixirse que sexa representativa de toda a poboación na característica estudada. Observa con atención a escena. Compara os resultados que se obteñen con diferentes tamaños da mostra. Completa a seguinte táboa: nº de irmáns Tamaño mostra: Tamaño mostra: Total alumnos: Cantidade % Cantidade % Cantidade % Sen irmáns 1 irmán 2 irmáns 3 irmáns 4 irmáns Cal é máis representativa? EXERCICIOS 1. Cantas persoas supoñen unha mostra do 10% dunha poboación de habitantes? E dunha de habitantes? 2. Unha empresa de sondaxes estatísticas ten capacidade para entrevistar a persoas por semana. Se dispón de 4 semanas, a que porcentaxe dunha poboación de habitantes pode entrevistar para obter unha mostra? Cando remates... Pulsa para ires á páxina seguinte. Estatística -3 -

4 1.c. Atributos e variables Le na pantalla a explicación teórica deste apartado. Completa: Unha é cada unha das propiedades ou características que podemos estudar. Variables cualitativas ou. Os valores da variable non son números senón, exprésanse con. A cor, a forma, o sexo,... son exemplos de variables cualitativas. Variables. Os datos exprésanse numericamente e poden ser:. Cada unha das variables solo pode tomar valores (1, 2, 3,...). O nº de irmáns, o nº ventás de casa, o nº colexios da túa poboación,.... Poden tomar calquera valor dun intervalo dado. O noso peso, altura, forza, non é posible medilas con números enteiros, a densidade do aire, a velocidade media dos fórmula 1 nunha carreira,... Contesta as preguntas da escena para comprobares se comprendiches os conceptos de variable cualitativa, variable cuantitativa discreta e variable cuantitativa continua. EXERCICIO 3. Co fin de coñecer mellor a forma de viaxar dunha poboación, prepararon unha enquisa. Algunhas das preguntas trataron sobre: Nº de días de viaxe, diñeiro empregado, número de vultos, zonas xeográficas, medio de transporte, natureza da viaxe (negocios, turismo, familiar, saúde ) e nº de persoas. Clasifica estas variables estatísticas. Cando remates... Pulsa para ires á páxina seguinte. Estatística -4 -

5 2. Reconto e gráficos 2.a. Reconto de datos Le na pantalla a explicación teórica deste apartado e practica coa escena. Completa: Frecuencia é o nº de veces que aparece un dato. Á de x i chamarémola f i. Frecuencia relativa, é o entre a frecuencia e o nº total de datos. Frecuencia acumulada dun dato é o das frecuencias absolutas dos valores que son menores ou iguais ca el, indicarémola con F i. Tamén se poden calcular as frecuencias relativas acumuladas. Pulsa en para facer outros exercicios. EXERCICIO 4. Fai un reconto dos seguintes datos: Na táboa deben aparecer as frecuencias absolutas, frecuencias relativas, frecuencias acumuladas e as frecuencias relativas acumuladas. Valores Frecuencia absoluta F. absoluta acumulada Frecuencia relativa F. relativa acumulada Cando remates... Pulsa para ires á páxina seguinte. Estatística -5 -

6 2.b. Diagrama de barras e de sectores Le na pantalla a explicación teórica deste apartado. Para que serven os gráficos estatísticos? Que é un diagrama de sectores? A que tipo de variables é aplicable? Como se constrúe un diagrama de barras? Practica coa escena e, cando comprendas ben como se constrúen os distintos tipos de gráficos, realiza o seguinte exercicio. EXERCICIO 5. Fai un reconto dos seguintes datos, un gráfico de sectores e outro de barras. Indica o ángulo de cada sector. Pelota, máscara, pelota, máscara, máscara, bici, máscara, bici, bici, máscara, máscara, máscara, máscara, videoxogo, máscara, pelota, videoxogo, pelota, videoxogo, pelota, pelota, videoxogo, pelota, máscara. X i f i graos Videoxogo Máscara Bici Pelota Cando remates... Pulsa para ires á páxina seguinte. Estatística -6 -

7 2.c. Agrupación de datos en intervalos Le na pantalla a explicación teórica deste apartado. Completa: Que outro nome reciben os intervalos nos que se agrupan os datos cando o número destes se fai tan grande como o tamaño da mostra? Con que valor representamos a todos os datos dun mesmo intervalo? Como se chama o devandito valor? Para representar graficamente os datos cando veñen agrupados en intervalos úsase o. Cada valor represéntase por un de anchura o intervalo correspondente e coa altura proporcional ao seu. Observa con atención a escena. Pulsando en poderás comprobar como cambian as frecuencias dos intervalos cando se xeran novos datos. Pulsando en poderás cambiar o número de intervalos. Presta especial atención aos intervalos, as marcas de clase, as frecuencias e ao histograma en cada caso. EXERCICIOS 6. Agrupa os seguintes datos en 10 grupos. Agrupa os mesmos datos, agora, en 5 grupos e fai un gráfico para cada agrupación Agrupa os datos seguintes en 5 intervalos de igual amplitude, fai un gráfico e un polígono de frecuencias. 7,2 6 6,3 9,8 9,1 9,3 5,7 6,7 8,4 5,7 3,1 1,4 5,4 1,1 4,8 2,5 0,1 4 5,3 1,3 3,6 1,9 5,2 1,7 Cando remates... Pulsa para ires á páxina seguinte. Estatística -7 -

8 3. Medidas de centralización e posición 3.a. A Media Le na pantalla a explicación teórica deste apartado. Completa: Para calcular a media, se son poucos os datos, todos e entre o. Se son moitos, terémolos agrupados; entón súmanse os produtos de cada dato polo seu e divídese esta suma polo número total de datos. Indícase con. Completa: x = = Observa na escena como se calcula a media dependendo de se os datos están ou non agrupados. Presta especial atención á construción da táboa de datos. En, cambia o número de intervalos e verás que a media, aínda cos mesmos datos, varía. Despois... Pulsa en para faceres uns exercicios. 8. Calcula a media en cada caso: a) 4, 6, 8 b) 4, 6, 8, 6 c) 100, 120, 180, 200 EXERCICIOS 9. Calcula a media dos seguintes datos Calcula a media dos seguintes datos 2,4 3 1,1 4 3,5 0,7 0 2,8 3,8 0,2 2,8 1,9 0,6 3,8 3,1 4 2,8 0,2 0,4 3,1 1,5 1,9 1,8 3,1 Cando remates... Pulsa para ires á páxina seguinte. Estatística -8 -

9 3.b. A Moda Le na pantalla a explicación teórica deste apartado. Completa: A moda, Mo, dunha distribución estatística é o valor da variable que máis se, o de maior. Observa a escena e realiza varios exemplos ata que comprendas ben o concepto de moda. Despois... Pulsa en para faceres uns exercicios. EXERCICIO 11. Determina a moda para os datos EXERCICIO de Reforzo a) Determina a moda nas seguintes secuencias de datos: A, A, B, C, B, C, B, C, B, C, B, A, A, A, A 4, 3, 2, 3, 1, 2, 0, 2, 0, 1, 2, 3, 1, 2, 4, 0, 1, 1, 4, 1, 1, 4, 0, 4, 2, 0, 4, 1 2, 4, 0, 1, 1, 4, 1, 1, 4, 0, 4, 2, 0, 4, 4, 3, 2, 3, 1, 2, 0, 2, 0, 1, 2, 3, 1, 1 4, 1, 1, 4, 0, 4, 2, 0, 4, 1, 4, 3, 2, 3, 1, 2, 0, 2, 0, 1, 2, 3, 1, 2, 4, 0, 1, 1 Cando remates... Pulsa para ires á páxina seguinte. Estatística -9 -

10 3.c. A mediana e os cuartís Le na pantalla a explicación teórica deste apartado. Completa: A mediana e os cuartís, como a media, só se poden calcular cando a variable é. A, Me, é o valor que ocupa a posición unha vez ordenados os datos en orde ; é dicir, o valor que é maior que o 50% e menor que o outro 50%. A mediana divide a distribución en dúas partes con igual nº de datos. Se a dividimos en catro partes, obtemos os, 1º, 2º e 3º, que se indican respectivamente Q 1, Q 2 e Q 3. Ordenados os datos, o primeiro cuartil, é maior que o % destes; o terceiro cuartil, maior que o %, e o segundo coincide coa. Practica coa escena e presta atención a como se calculan a mediana e os cuartís no caso dunha variable estatística discreta. Despois... Pulsa en para practicares un pouco. EXERCICIO 12. Calcula a mediana, o primeiro e terceiro cuartil dos seguintes datos: Cando remates... Pulsa para ires á páxina seguinte. Estatística -10 -

11 3.d. Diagramas de caixa e bigotes A partir do valor da mediana e os cuartís pódense representar as distribucións estatísticas mediante os chamados diagramas de caixa e bigotes. Observa na animación como se fai e despois fai un seguindo os pasos na escena da dereita. Anota tamén aquí o exercicio da escena A táboa mostra o consumo diario de auga, en ml, dos 20 alumnos dunha clase. Pulsa Paso 1 e ordena en forma ascendente os datos da táboa Unha vez ordenados, pulsa Paso2 e sitúa a mediana movendo o punto vermello sobre o eixe horizontal. Pulsa Paso 3 e sitúa o máximo e o mínimo movendo os puntos turquesa sobre o eixe horizontal. Pulsa Paso 4 e sitúa os cuartís movendo os puntos carmesís sobre o eixe horizontal. Pulsa Paso 5 e debuxa o diagrama utilizando os puntos calculados para marcar as liñas verticais. Pulsa no botón para facer un exercicio. Na escena tes dous tipos de exercicios, pasa dun tipo a outro pulsado nos botóns correspondentes. Analiza o seguinte diagrama de caixa e bigotes. Usa o punto vermello para identificar os valores que corresponden á mediana, os cuartís, o mínimo e o máximo. Introduce os valores nas casas respectivas e verifica que as túas respostas sexan correctas. Pulsa outros datos para facer outro exercicio. Copia un a continuación Q 1 = M e = Q 3 = mín.= máx.= Analiza o seguinte diagrama de caixa e bigotes, mostra os minutos que tarda en facer efecto un medicamento nunha poboación. Utiliza o punto vermello para guiarte sobre a gráfica, interpreta a información que presenta e responde á pregunta formulada. Pulsa outra pregunta para cambiala. Copia catro a continuación. A qué porcentaxe da poboación lle fixo efecto o medicamento en menos de min? % Cantos minutos transcorreron para que o medicamento fixese efecto no % da poboación? min Cantos minutos tardou o medicamento en comezar a facer efecto na poboación? min A qué porcentaxe da poboación lle fixo efecto o medicamento en min ou menos? % Estatística -11 -

12 4. Medidas de dispersión 4.a. Rango e Desviación media Le na pantalla a explicación teórica deste apartado. Completa: As medidas de indican se os datos están máis ou menos respecto das medidas de. ou percorrido, é o entre o maior e o menor valor da variable, indica a lonxitude do intervalo no que se achan todos datos., é a media dos valores absolutos das diferenzas entre a media e os diferentes datos. Observa a escena e asegúrate de que comprendes ben o concepto Despois... Pulsa en para veres uns exemplos. EXERCICIO 13. Calcula o rango e a desviación media dos datos: Calcula a desviación media dos datos tabulados seguintes: x i f i [0,200) [200,400) [400,600) [600,800) [800,1000) Cando remates... Pulsa para ires á páxina seguinte. Estatística -12 -

13 4.b. Varianza e desviación típica Le na pantalla o texto. Completa: É outra forma de medir se os datos están ou non á media e é a máis utilizada. A é a media dos cadrados das desviacións. A desviación típica é a raíz cadrada positiva da. Para designala empregaremos a letra grega "sigma", σ. σ = É importante que entendas o significado destas medidas. Canto sexan, máis estarán os datos. Os intervalos arredor da media de amplitude 2 ou 4 veces a desviación típica teñen importancia por. Observa a escena e fíxate como se tabulan os datos. Despois... Pulsa en para faceres uns exercicios. 15. Calcula a media e a desviación típica en a) 200, 250 EJERCICIO b) 175, 275 Cando remates... Pulsa para ires á páxina seguinte. Estatística -13 -

14 4.c. Coeficiente de variación Le na pantalla a explicación teórica deste apartado. Completa: É o entre a desviación típica e a media, utilízase para comparar as dispersións de datos de distinta media. Observa a escena e despois realiza o exercicio desta pantalla. 16. Calcula a media e a desviación típica en: a) 7, 5, 3, 2, 4, 5 EXERCICIOS b) 20, 25, 20, 22, Cal das dúas distribucións anteriores presenta maior dispersión? 18. Calcula a media e a desviación típica dos datos agrupados seguintes: X i f i Cal é o coeficiente de variación da distribución anterior? Cando remates... Pulsa para ires á páxina seguinte. Estatística -14 -

15 Lembra o máis importante - RESUMO 1. Poboación: 2. Mostra: 3. Variables estatísticas: Exemplos Cuantitativa: Cualitativa Discreta: Cualitativa Continua: Completa a seguinte táboa a medida que avanzas polos seguintes conceptos escribindo as súas definicións e facendo os cálculos: 4. Táboa de valores X i f i F i % X i fi xi X ( ) 2 X xi x i X f i ( ) 2 X x i f i TOTAL 5. Gráficos. Tipos de gráficos: Definicións: 6. Moda Resultados do exemplo 7. Rango 8. Mediana 9. Cuartil 1º 10. Cuartil 3º 11. Media 12. Desviación media 13. Desviación típica 14. Coeficiente de variación Pulsa para ires á páxina seguinte Estatística -15 -

16 Para practicar Nesta unidade atoparás Estatística. Reconto e Cálculos e Estatística. Datos do INE. Fai polo menos un de cada clase e, unha vez resolto, comproba a solución. Estatística. Reconto e cálculos DATOS 1. Fai un reconto dos seguintes datos 2. Cando hai eleccións, todos os cidadáns maiores de 18 poden votar. Os datos obtidos constitúen unha mostra? Que opinas ao respecto? 3. Clasifica as seguintes variables estatísticas: Nº de fillos, Flor preferida, Peso, Temperatura media, Sabor, Altura, Velocidade, Aceleración, Nº de válvulas, Nº de prazas, Tipo de vehículo, Nº de rodas, Carga neta e Tipo de tapizaría. 4. Agrupa os datos en intervalos de amplitude 10 e fai o reconto 5, 12, 4, 23, 34, 6, 14, 25, 11, 1, 37, 24, 31, 21, 4, 7 MODA E MEDIANA 5. Cal é a moda en cada grupo? A = { } B = { } C = { } Estatística -16 -

17 6. Cal é a mediana en cada caso? A = { } B = { } C = { } D = { } E = { } 7. Agrupa os datos {1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4} e determina a moda e a mediana. 8. Temos 20 datos ordenados de menor a maior e o 10º, 11º e 12º son os datos 30, 40 e 40. Cal é a mediana? MEDIA 9. Que número hai que engadir a cada un dos seguintes números para ter de media 7? a) 3 b) 4 c) Calcula a media dos seguintes datos: x1=10 f1= x2=12 f2= x3=14 f3= 11. Cal é a media en cada caso? A = B = C = Estatística -17 -

18 12. 4 datos teñen por media 5. Canto ha de valer un 5º dato para que a media pase a ser 6? 13. Que dato sobra para que a media da serie 3, 4, 5, 6, 7, 8 sexa 5? CUARTÍS E DESVIACIÓN MEDIA 14. Pon exemplos de igual media e distinta desviación media. 15. Determina a desviación media en cada caso: A = B = 16. Determina os cuartís dos datos 1, 2, 3, 4, 5, 6, 7, 8, 9, En 100 datos ordenados de menor a maior, os datos 74, 75 e 76 son 100, 120 e 130. Calcula Q En 50 datos ordenados de menor a maior, os datos 10º, 11º, 12º, 13º e 14º son 22, 24, 24, 26 e 28. Calcula Q1. Estatística -18 -

19 DESVIACIÓN TÍPICA E COEFICIENTE DE VARIACIÓN 19. En tres casos coa mesma media e distinta desviación, que grupo de datos está máis disperso? 20. Determina o CV en cada caso. a) X = 10, σ = 1 b) X = 10, σ = 0.1 c) X = 10, σ = 5 Expresa o resultado en porcentaxes. 21. Determina o CV sabendo que X = e σ =. 22. Cal é a desviación típica en cada caso? A = (5, 5) B = (4, 6) C = (10, 0) 23. Calcula a desviación típica para os datos seguintes: x1=10 f1= x2=12 f2= x3=14 f3= Pulsa para ires á páxina seguinte Estatística -19 -

20 Estatística. Datos do INE POBOACIÓN 24. A partir de que idade hai máis mulleres que homes? Que porcentaxe de españolas teñen 85 ou máis anos? Entre os 20 e os 44 anos, que porcentaxe de poboación española hai? Os nacementos dos últimos 20 anos foron crecendo ou diminuíndo? EDUCACIÓN 25. En que zonas xeográficas se len menos libros? Cal é a opción máis elixida? Que zona, con máis dun 60% de persoas que len libros, está rodeada de zonas con menos porcentaxe de lectura? Lese máis na zona Norte ou na zona Sur? Estatística -20 -

21 SAÚDE 26. A depresión afecta á mesma porcentaxe de homes que mulleres? Indica algunha zona xeográfica con máis de 1000 mortes cada Indica algunha zona cunha mortalidade por debaixo da media. Que doenza ten maior porcentaxe de poboación? CONDICIÓNS DE VIDA 27. Alguén que gaste en alimentación como no gráfico, canto gasta en peixe de cada 500 euros? En que gastamos máis diñeiro para alimentarnos? Indica unha zona onde o gasto medio por persoa sexa inferior á media. Indica as zonas con maior gasto medio por persoa. Estatística -21 -

22 TRABALLO 28. En que período de tres anos diminuíu máis rápido o paro? Dende o 2001, en que ano diminuíu máis o paro? Nos 20 anos do gráfico, a muller tivo algunha vez menos paro que o home? A partir de que ano a taxa de actividade da muller superou o 40%? TURISMO 29. Onde te aloxarías para atopar un belga por cada 3 franceses? De que nacionalidade de procedencia hai maior ocupación nos hoteis de España? Que dous países teñen maior presenza turística en España? En que tipo de pernoctación hai máis turistas dos Países Baixos que doutras nacionalidades? Pulsa para ires á páxina seguinte Estatística -22 -

23 Autoavaliación Completa aquí cada un dos enunciados que van aparecendo no ordenador e resólveos; despois, introduce o resultado para comprobares se a solución é correcta. Conta os que hai. Que frecuencia ten o valor? Calcula a media. x i f i x i f i Calcula a mediana x i fi F i % Cos datos do exercicio 4, calcula o primeiro cuartil. Estatística -23 -

24 Cos datos do exercicio 4, calcula o terceiro cuartil. Calcula a amplitude do rango. x i f i Calcula a desviación media. x i f i x i f i X - x i fi Calcula a desviación típica. 2 x i f i x i f i (X - x i) fi Cos datos do exercicio 9, calcula o coeficiente de variación, en tanto por un. Estatística -24 -

25 Para practicar máis 1. Cantas persoas supoñen unha mostra do 5% dunha poboación de habitantes? E dunha de 1000 habitantes? 2. Dunha poboación de individuos estudáronse varias características en 150 individuos. Que porcentaxe do total foi estudada? 3. Un veterinario estuda as seguintes características nunha mostra de animais dunha granxa tipo de animal: peso, cor dos ollos, temperatura corporal, número de compañeiros e metros cadrados por animal. 4. Fai un reconto dos seguintes datos, un gráfico de sectores e outro de barras. Indica o ángulo de cada sector. a b c a c c d c d b d a d a b b c c a a b a b d 5. Fai un reconto dos seguintes datos e un diagrama de barras con polígono de frecuencias Agrupa os seguintes datos en 10 grupos. Agrupa os mesmos datos, agora, en 5 grupos Calcula a media en cada caso: a) 14,16, 18 b) 24, 26, 28, 26 c) 1000, 1200, 1800, Calcula a media dos seguintes datos Calcula a media dos seguintes datos 10 1, ,5 5,50 15,5 6,5 4,5 4 8,5 7,5 1, ,5 7,5 4,5 14, Determina a moda para os datos Calcula a mediana, o primeiro e o segundo cuartil dos datos do exercicio anterior. 12. Calcula de desviación media en cada caso: a) 14, 16, 18 b) 34, 36, 38, 36 c) 1000, 1200, 1800, Calcula o rango e a desviación media dos datos: Calcula a desviación media dos seguintes datos tabulados: 15. Calcula a media e a desviación típica en a) 2000, 2500 b)1750, 2750 c) 2500, 2500 Estatística -25 -

26 16. Calcula a media e a desviación típica dos datos: De cada millón de viaxeiros, cantos corresponden a cada sector? 17. Calcula o coeficiente de variación dos datos do exercicio anterior. 18. Calcula a media e a desviación típica dos datos: Calcula o coeficiente de variación dos datos do exercicio anterior. 20. Calcula a media e a desviación típica dos seguintes datos agrupados: 23. Cantos condutores había no ano 2002? Cantos eran homes e cantas mulleres? 21. Fai os cálculos para un millón de habitantes en cada comunidade. 24. Entre que anos aumentaron máis os detidos por infraccións penais? Estatística -26 -

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2013 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos Puntuación máxima de cada un dos exercicios: Álxebra 3 puntos; Análise 3,5 puntos;

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos. BLOQUE DE ÁLXEBRA (Puntuación máxima 3 puntos) 1 0 0 1-1 -1 Sexan as matrices

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2014 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio 3 Polinomios Obxectivos Nesta quincena aprenderás a: Achar a expresión en coeficientes dun polinomio e operar con eles. Calcular o valor numérico dun polinomio. Recoñecer algunhas identidades notables,

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

O MÉTODO CIENTÍFICO. ten varias etapas 2. BUSCA DE REGULARIDADES. cifras significativas

O MÉTODO CIENTÍFICO. ten varias etapas 2. BUSCA DE REGULARIDADES. cifras significativas PROGRAMACIÓN DE AULA MAPA DE CONTIDOS 1. OBTENCIÓN DA INFORMACIÓN O MÉTODO CIENTÍFICO ten varias etapas 2. BUSCA DE REGULARIDADES 3. EXPLICACIÓN DAS LEIS PROGRAMACIÓN DE AULA E mediante utilizando na análise

Διαβάστε περισσότερα

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU Xuño 015 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

CALCULO DA CONSTANTE ELASTICA DUN RESORTE

CALCULO DA CONSTANTE ELASTICA DUN RESORTE 11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

O SOL E A ENERXÍA SOLAR

O SOL E A ENERXÍA SOLAR O SOL E A ENERXÍA SOLAR Resumo: Cos exercicios que se propoñen nesta unidade preténdese que os alumnos coñezan o Sol un pouco mellor. Danse as ferramentas necesarias para calcular a enerxía solar que se

Διαβάστε περισσότερα

A actividade científica. Tema 1

A actividade científica. Tema 1 A actividade científica Tema 1 A ciencia trata de coñecer mellor o mundo que nos rodea. Para poder levar a cabo a actividade científica necesitamos ter un método que nos permita chegar a unha conclusión.

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

O galego e ti. unidade 1

O galego e ti. unidade 1 unidade 1 Saúde o seu alumnado e preséntese: Ola, chámome Na primeira actividade da unidade, os seus alumnos e alumnas van ter a oportunidade de aprender diferentes maneiras de presentarse. Polo momento,

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B)

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B) 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A o B ) de cada bloque. Todos os problemas puntúan do mesmo xeito,

Διαβάστε περισσότερα

Atlas de ondas. de Galicia

Atlas de ondas. de Galicia Atlas de ondas de Galicia Edita: XUNTA DE GALICIA Consellería de Medio Ambiente, Territorio e Infraestruturas (MeteoGalicia, Área de predición numérica) Instituto Enerxético de Galicia (INEGA) Ano: 2009

Διαβάστε περισσότερα

ANÁLISE DO SECTOR DO TRANSPORTE E DA LOXÍSTICA

ANÁLISE DO SECTOR DO TRANSPORTE E DA LOXÍSTICA ANÁLISE DO SECTOR DO TRANSPORTE E DA LOXÍSTICA Actividade de Interese Estatístico (AIE13): Análise estatística de sectores produtivos e da estrutura económica en xeral recollida no Programa estatístico

Διαβάστε περισσότερα

AVALIACIÓN DE DIAGNÓSTICO

AVALIACIÓN DE DIAGNÓSTICO (Para cubrir polo centro educativo) Código do centro: Nome do centro: (Para cubrir pola persoa que aplica a proba) Número de identificación do alumno ou alumna: (Este número debe coincidir co número de

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

A decadencia dun mito estético

A decadencia dun mito estético 1 A decadencia dun mito estético O rectángulo de moda fala galego 1.- PRESENTACIÓN Dende a antiguidade clásica os gregos crían que a proporción era a clave da beleza. A proporción que constituía a base

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA PROBLEMAS TERMOQUÍMICA 1. Para o proceso Fe 2O 3 (s) + 2 Al (s) Al 2O 3 (s) + 2 Fe (s), calcule: a) A entalpía da reacción en condicións estándar e a calor desprendida

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 2 Xeometría Índice 1. Introdución... 3 1.1 Descrición da unidade

Διαβάστε περισσότερα

PAU MATEMÁTICAS II APLICADAS ÁS CCSS

PAU MATEMÁTICAS II APLICADAS ÁS CCSS PAU 2011-2012 MATEMÁTICAS II APLICADAS ÁS CCSS Circular informativa curso 2011-2012 Como directora do Grupo de Traballo de Matemáticas Aplicadas ás Ciencias Sociais e no nome de todo o grupo, póñome en

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1 UNIÓNS ENTRE ÁTOMOS, AS MOLÉCULAS E OS CRISTAIS Até agora estudamos os átomos como entidades illadas, pero isto rara vez ocorre na realidade xa que o máis frecuente é que os átomos estea influenciados

Διαβάστε περισσότερα

PARA O TRANSPORTE DE ESTRADA

PARA O TRANSPORTE DE ESTRADA Transporte GUÍA EUROPEA DE MELLORES PRÁCTICAS SOBRE SUXEICIÓN DE CARGAS PARA O TRANSPORTE DE ESTRADA Normas e guias europes para a estiba e suxeicion de cargas Página 2 Índice Capítulo 1 Información xeral

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 1.1 Concepto de corrente eléctrica...2 1.1 Concepto de corrente eléctrica...2 1.2 Características dun circuíto de corrente

Διαβάστε περισσότερα

2.6 Teoría atómica (unha longa historia)

2.6 Teoría atómica (unha longa historia) 2.6 Teoría atómica (unha longa historia) Milleiros de resultados experimentais avalan a idea de que as partículas que forman os gases, os sólidos e os líquidos, en todo o universo, están constituídas por

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Catálogodegrandespotencias

Catálogodegrandespotencias www.dimotor.com Catálogogranspotencias Índice Motores grans potencias 3 Motores asíncronos trifásicos Baja Tensión y Alta tensión.... 3 Serie Y2 Baja tensión 4 Motores asíncronos trifásicos Baja Tensión

Διαβάστε περισσότερα

13 Estrutura interna e composición da Terra

13 Estrutura interna e composición da Terra 13 composición da Terra EN PORTADA: Un mensaxeiro con diamantes En Kimberley (África do Sur) atópase unha das minas de diamantes máis importantes do planeta. En honor a esa cidade, déuselle o nome de kimberlita

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

1. Formato da proba [CS.PE.B02]

1. Formato da proba [CS.PE.B02] Páxina 1 de 9 [CS.PE.02] 1. Formato da proba Formato A proba consta de vinte cuestións, distribuídas deste xeito: Problema 1: tres cuestións tipo test. Problema 2: tres cuestións tipo test. Problema 3:

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

A onda posterior influe na onda frontal

A onda posterior influe na onda frontal Xullo Xermade A onda posterior influe na onda frontal Onda de presión cando o cono vai hacia atras Onda de presión cando o cono vai hacia diante λ = v/f λ f = v/λ Caixa doméstica Caixa profesional

Διαβάστε περισσότερα

REACCIÓNS DE TRANSFERENCIA DE PROTÓNS

REACCIÓNS DE TRANSFERENCIA DE PROTÓNS REACCIÓNS DE TRANSFERENCIA DE PROTÓNS 1. Concepto de ácido e base segundo as teorías de Arrhenius e Brönsted-Lowry. 2. Concepto de par ácido-base conxugado. 3. Forza relativa dos ácidos e bases. Grao de

Διαβάστε περισσότερα

Rura s. prevención de riscos laborais. Curso de capacitación para o desempeño de nivel básico. Instituto Galego de Seguridade e Saúde Laboral

Rura s. prevención de riscos laborais. Curso de capacitación para o desempeño de nivel básico. Instituto Galego de Seguridade e Saúde Laboral Instituto Galego de Seguridade e Saúde Laboral http://issga.xunta.es PREVENCIÓN DE RISCOS LABORAIS Curso de capacitación para o desempeñeo de nivel básico Instituto Galego de Seguridade e Saúde Laboral

Διαβάστε περισσότερα

Coordenadas astronómicas. Medida do tempo

Coordenadas astronómicas. Medida do tempo Astronomía Básica 5 Coordenadas astronómicas. Medida do tempo Josefina F. Ling Departamento de Matemática Aplicada Facultade de Matemáticas Grao de Óptica e Optometria Vicerreitoría de ESTUDANTES, Cultura

Διαβάστε περισσότερα

A APLICACIÓN DA LEI DE DEPENDENCIA EN GALICIA: EFECTOS SOBRE A XERACIÓN DE EMPREGO

A APLICACIÓN DA LEI DE DEPENDENCIA EN GALICIA: EFECTOS SOBRE A XERACIÓN DE EMPREGO A APLICACIÓN DA LEI DE DEPENDENCIA EN GALICIA: EFECTOS SOBRE A XERACIÓN DE EMPREGO MELCHOR FERNÁNDEZ FERNÁNDEZ / DIANA FERNÁNDEZ MÉNDEZ / ALBERTO MEIJIDE VECINO Universidade de Santiago de Compostela RECIBIDO:

Διαβάστε περισσότερα