Κεφάλαιο 14: Πρόσθεση Στροφορμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 14: Πρόσθεση Στροφορμών"

Transcript

1 Κεφάλαιο 14: Πρόσθεση Στροφορμών Περιεχόμενα Κεφαλαίου Αφού δοθεί ο ορισμός ολικής στροφορμής θα γίνει η συσχέτιση της βάσης ολικής στροφορμής (jm j) με τη βάση των επιμέρους στροφορμών (m 1m ). Οι συντελεστές (σταθερές) που συσχετίζουν τις δύο βάσεις είναι οι συντελεστές μετάβασης Glebsch-Gordon τους οποίους θα μελετήσουμε σε ειδικές περιπτώσεις σύνθεσης στροφορμών (l=1 s=1/ και s 1=1/ s =1/). (Ταμβάκης 003 Τραχανάς 005β Τραχανάς 008 Binney & Skinner 013 Fitzpatrick 010 Griffiths 004 Gasiorowicz 003 Peleg et al. 010). 14. Πρόσθεση Στροφορμών 14.1 Η Ολική Στροφορμή J Έστω σωμάτιο με τροχιακή στροφορμή L=(L x L y L z) και spin S=(S x S y S z). Ορίζουμε το άθροισμα J=L+S των δύο στροφορμών. Θα δούμε ότι η ολική στροφρομή J ικανοποιεί σχέσεις μετάθεσης στροφορμής. Οι σχέσεις μετάθεσης της τροχιακής στροφορμής L εκφράζονται περιεκτικά ως: Αντίστοιχα για το spin έχουμε: Ισχύει ακόμα λόγω ανεξαρτησίας των δύο στροφορμών: L L = iħl. (14.1) S S = iħs. (14.) [L i S j ] = 0 (14.3) Επομένως για τις σχέσεις μετάθεσης των συνιστωσών της ολικής στροφορμής έχουμε: J J = (L + S) (L + S) = L L + S S + L S + S L = = L L + S S = iħl + iħs = iħj. (14.4) Επομένως για την ολική στροφορμή ισχύουν οι ίδιες σχέσεις μετάθεσης που ισχύουν για τις επιμέρους στροφορμές από τις οποίες συντέθηκε η ολική στροφορμή: J J = iħj. (14.5) Άσκηση 1: Με χρήση των σχέσεων μετάθεσης που εκφράζονται μέσω της (14.3) δείξτε ότι το μέτρο της ολικής στροφορμής J = J x + J y + J z μετατίθεται με μια συνιστώσα (πχ J z ) και επομένως έχει κοινό σύστημα ιδιοκαταστάσεων (βάση) με αυτή. Με βάση το αποτέλεσμα της παραπάνω άσκησης ισχύει ότι: J z ψ jmj = m j ħψ jmj J ψ jmj = j(j + 1)ħ ψ jmj (14.6) όπου το j παίρνει ακέραιες και ημιακέραιες τιμές και το m j παίρνει τις τιμές: j j + 1 j 1 j. (14.7) 33

2 Άσκηση : Αποδείξτε ότι το m j παίρνει τις τιμές που δίνονται από τη (14.7). Θα βρούμε τώρα τις ιδιοκαταστάσεις των J J z συναρτήσει των ιδιοκαταστάσεων των L L z και S S z.. Εκφράζουμε πρώτα το J συναρτήσει τελεστών για τους οποίους ξέρουμε τον τρόπο που δρουν στις ιδιοκαταστάσεις των L L z και S S z.. Έχουμε: J = (L + S) (L + S) = L + S + L S (14.8) Αντικαθιστούμε τώρα το γινόμενο των τελεστών L S με τελεστές που έχουν καθορισμένη δράση στις ιδιοκαταστάσεις των L L z και S S z. Από τη σχέση: L + S + L S + = (L x + il y )(S x is y ) + (L x il y )(S x + is y ) = = (L x S x + L y S y il x S y + il y S x ) +(L x S x + L y S y + il x S y il y S x ) = (L x S x + L y S y ) (14.9) έχουμε: J = L + S + L z S z + L + S + L S +. (14.10) Άσκηση 3: Αποδείξτε τη σχέση (14.10). Από τη σχέση (14.10) προκύπτουν οι παρακάτω σχέσεις μετάθεσης για τον τελεστή J : [J L ] = 0. [J S ] = 0. [J L z ] 0. [J S z ] 0. (14.11) Συμπεραίνουμε λοιπόν ότι η ολική στροφορμή J έχει κοινές ιδιοκαταστάσεις με το μέτρο της τροχιακής στροφορμής στο τετράγωνο L και με το μέτρο του spin στο τετράγωνο S αλλά όχι και με τις προβολές στον άξονα z L z και S z. Ακόμα η προβολή της ολικής στροφορμής στον άξονα z J z= L z+ S z έχει κοινές ιδιοκαταστάσεις με τα μέτρα όλων των στροφορμών και των προβολών τους στον άξονα z (J L L z και S S z.) αφού για παράδειγμα: [J z L z ] = [J z S z ] = 0. (14.1) Άρα υπάρχουν δύο σύνολα μετατιθέμενων μεγεθών με κοινές ιδιοκαταστάσεις. Σε κάθε σύνολο τα μεγέθη μπορούν να μετρηθούν ταυτόχρονα χωρίς αβεβαιότητα. Το πρώτο σύνολο είναι: ενώ το δεύτερο: L S L z S z (14.13) L S J J z (14.14) Παρατηρούμε ότι το μέτρο της ολικής στροφορμής δεν μπορεί να μετρηθεί ταυτόχρονα με τις προβολές στον άξονα z των επιμέρους στροφορμών αφού οι αντίστοιχοι τελεστές δεν μετατίθενται (σχέσεις 14.11). Οι κοινές ιδιοκαταστάσεις του πρώτου συνόλου μετατιθέμενων μεγεθών [(14.13) (βάση ] ικανοποιούν τις σχέσεις ιδιοτιμών: 34

3 L ψ ls;mms S ψ ls;mms L z ψ ls;mms S z ψ ls;mms = l(l + 1)ħ ψ ls;mms = s(s + 1)ħ ψ ls;mms = m ħ ψ ls;mms = m s ħ ψ ls;mms. (14.15) Οι ιδιοκαταστάσεις αυτές είναι και ιδιοκαταστάσεις του J z και μάλιστα ισχύει: J z ψ ls;mms = (L z + S z )ψ ls;mms = (m + m s )ħψ ls;mms = m j ħψ ls;mms. (14.16) Επομένως για το m j του συνόλου () ισχύει η σύνδεση με τους κβαντικούς αριθμούς του συνόλου : m j = m + m s. (14.17) Σε αντιστοιχία με τις σχέσεις (14.15) η βάση () ικανοποιεί τις σχέσεις ιδιοτιμών: L () ψ ls;jmj S () ψ ls;jmj J () ψ ls;jmj () J z ψ ls;jmj = l(l + 1)ħ () ψ ls;jmj = s(s + 1)ħ () ψ ls;jmj = j(j + 1)ħ () ψ ls;jmj () = m j ħψ ls;jmj. (14.18) Θα δούμε σε επόμενα κεφάλαια ότι σε ορισμένες Hamiltonians εμφανίζεται ο τελεστής της ολικής στροφορμής και επομένως είναι σημαντικό να εκφράσουμε τις ιδιοκαταστάσεις της βάσης () συναρτήσει των καταστάσεων της βάσης που είναι ήδη γνωστές για το άτομο του υδρογόνου. ψ l1 ;m±1 = Y lm χ ±. (14.19) 14. Συντελεστές Clebsch-Gordan Θα εκφράσουμε τις ιδιοκαταστάσεις της ολικής στροφορμής [βάση ()] ως γραμμικό συνδυασμό καταστάσεων της βάσης. Για δεδομένο m j της βάσης οι καταστάσεις που μπορούν να συμμετέχουν στον γραμμικό συνδυασμό είναι αυτές που ικανοποιούν τη σχέση (14.17). Επομένως για την κατάσταση της βάσης () με κβαντικούς αριθμούς l ½ j m j=m+1/ χρησιμοποιούμε γραμμικό συνδυασμό δύο καταστάσεων της βάσης ως εξής: ψ l1 ;lm+1 = αψ l1 ;m1 + βψ l1 ;m+1 1 (14.0) όπου οι σταθερές α και β μπορούν να έχουν πραγματικές τιμές και ικανοποιούν τη σχέση κανονικοποίησης: α + β = 1. (14.1) Για να βρούμε τις σταθερές α και β δρούμε και στα δυο μέλη της σχέσης (14.0) με τον τελεστή J χρησιμοποιώντας και τη σχέση (14.10) που ουσιαστικά καθορίζει τον τρόπο δράσης του J στις ιδιοκαταστάσεις των επιμέρους στροφορμών [βάση ]. Η δράση αυτή βασίζεται και στη δράση των τελεστών ανύψωσης και μείωσης για τις στροφορμές που όπως έχουμε δει είναι της μορφής: L + Y lm = [l(l + 1) m(m + 1)] 1 ħy lm+1 L Y lm = [l(l + 1) m(m 1)] 1 ħy lm 1. (14.) 35

4 S + χ sms = [s(s + 1) m s (m s + 1)] 1 ħχ sms +1 S χ sms = [s(s + 1) m s (m s 1)] 1 ħχ sms 1. (14.3) Για το spin με s=1/ οι σχέσεις αυτές παίρνουν τη μορφή: S + χ + = S χ = 0 S ± χ = ħχ ±. (14.4) Επομένως από τις σχέσεις (14.0) (14.10) (14.) και (14.4) έχουμε: J (αy lm χ + + βy lm+1 χ ) = = (L + S + L z S z + L + S + L S + )(αy lm χ + + βy lm+1 χ ) j(j + 1)ħ (αy lm χ + + βy lm+1 χ ) = = α (l(l + 1)ħ Y lm χ ħ Y lm χ + + my lm χ + + (l(l + 1) m(m + 1)) 1 ħ Y lm χ + ) + +β (l(l + 1)ħ Y lm+1 χ (m + 1)Y lm+1 χ (l(l + 1) m(m + 1)) 1 ħ Y lm χ + ) (14.5) (j(j + 1) l(l + 1) 3 m) α (l(l + 1) m(m + 1))1 β = 0 4 (j(j + 1) l(l + 1) 3 + m(m + 1)) β (l(l + 1) m(m + 1))1 α = 0 4 Άρα οι σχέσεις από τις οποίες μπορούν να προκύψουν οι σταθερές α και β είναι: (j(j + 1) l(l + 1) 3 m) α (l(l + 1) m(m + 1))1 β = 0 4 (j(j + 1) l(l + 1) 3 + m(m + 1)) β (l(l + 1) m(m + 1))1 α = 0 4 (14.6) Άσκηση 4: Αποδείξτε τις σχέσεις (14.6). Αν θέσουμε: οι σχέσεις (1.6) γράφονται: x = j(j + 1) l(l + 1) 3 4. (14.7) (x m)α [l(l + 1) m(m + 1)] 1 β = 0 [l(l + 1) m(m + 1)] 1 α + (x + m + 1)β = 0 (14.8) που οδηγεί σε: 36

5 α β = [(l m)(l + m + 1)]1 x + m + 1 = x m [(l m)(l + m + 1)] 1 (l m)(l + m + 1) = (x m)(x + m + 1) l + lm + l lm m m = x + xm + x xm x m x = l l(l + 1) = x(x + 1) x = l 1 (14.9) Επομένως για να υπάρχει λύση ο κβαντικός αριθμός j δεν μπορεί να πάρει οποιαδήποτε τιμή. Για x=l η τιμή που μπορεί να πάρει ο j προκύπτει ως εξής: x = l j + j l l 3 4 l = 0 j + j (l + l ) = 0 j = 1 ± 1 + 4l + 8l + 3 = 1 ± (l + 1) j>0 j = l + 1 (14.30) Η άλλη τιμή του j προκύπτει παρόμοια ως: x = l 1 j = l 1 (14.31) Γενικά αν αντί για τους κβαντικούς αριθμούς l s = 1/ έχουμε σύνθεση γενικών στροφορμών με κβαντικούς αριθμούς j 1 και j τότε οι τιμές που μπορεί να πάρει ο κβαντικός αριθμός της ολικής στροφορμής j αποδεικνύεται ότι είναι μεταξύ (π.χ. Τραχανάς 008): j min = j 1 j j max = j 1 + j (14.3) Για παράδειγμα αν j 1=5 και j =3/ τότε οι τιμές που μπορεί να πάρει ο κβαντικός αριθμός της ολικής στροφορμής είναι j = Η απόδειξη της (14.3) γίνεται με χρήση της σχέσης m j = m j1 + m j και εύρεση όλων των δυνατών m j που αντιστοιχούν σε ζεύγος m j1 m j. Μετά από τα m j βρίσκουμε και τα αντίστοιχα j. Από την πρώτη ισότητα της (14.9): α β = [(l m)(l + m + 1)]1 x m (14.33) προκύπτει ότι πράγματι οι σταθερές α και β μπορούν να επιλεγούν ώστε να είναι πραγματικές (έχουν την ίδια μιγαδική φάση) και επομένως η σχέση κανονικοποίησης είναι η (14.1). Θέτοντας x=l (j=l+1/) στη σχέση (14.33) και χρησιμοποιώντας τη σχέση κανονικοποίησης (14.1) βρίσκουμε: () ψ l+1 m+1 1 l + m + 1 = ( l + 1 ) ψ m1 1 l m + ( l + 1 ) ψ m+1 1 (14.34) Ο κβαντικός αριθμός m j έχει γραφεί με τη μορφή m + 1/ για να υποδηλώσει την ισχύ της σχέσης (14.17). Η παράμετρος m προσδιορίζεται από την απαίτηση m j = m + 1/. Θα μπορούσαμε να είχαμε χρησιμοποιήσει και την παραμετροποίηση m j = m 1/ (δείτε άλυτη άσκηση ). Όμοια εφόσον θέσουμε x = l 1 (j = l 1/) στη σχέση (14.33) και χρησιμοποιήσουμε τη σχέση κανονικοποίησης (14.1) βρίσκουμε: 37

6 () ψ l 1 m+1 l m = ( l + 1 ) 1 ψ m1 1 l + m + 1 ( l + 1 ) ψ (14.35) m+1 1 Οι σχέσεις (14.34) (14.35) καθορίζουν τη μετάβαση από τη βάση των επιμέρους στροφορμών l s=1/ στη βάση () της ολικής στροφορμής μέσω των συντελεστών μετάβασης α και β. Οι συντελεστές αυτοί λέγονται συντελεστές Clebsch-Gordan. Οι σχέσεις (14.34) και (14.35) μπορούν εύκολα να αντιστραφούν και να βρεθούν έτσι οι σχέσεις που καθορίζουν την αντίστροφη μετάβαση [από τη βάση () στη βάση των επιμέρους στροφορμών]. Οι σχέσεις αυτές είναι: ψ m1 ψ m l + m + 1 = ( l + 1 ) 1 l m = ( l + 1 ) () ψ l+1 m+1 () ψ l+1 m+1 1 l m + ( l + 1 ) 1 l + m + 1 ( l + 1 ) () ψ l 1 m+1 () ψ l 1 m+1. (14.36) Οι σχέσεις (14.34) (14.35) και (14.36) μπορούν να συνοψιστούν επιγραμματικά στον παρακάτω πίνακα: l + 1 m + 1 l 1 m + 1 j m j m 1 m m m s (l + m + 1)/(l + 1) (l m)/(l + 1) (l m)/(l + 1) (l + m + 1)/(l + 1) Πίνακας 14.1: Οι συντελεστές Clebsch-Gordan για την σύνθεση των στροφορμών l ½ Παραδείγματα Σύνθεσης Στροφορμών Ως ένα παράδειγμα εφαρμογής των σχέσεων (14.34) και (14.35) θεωρούμε την περίπτωση l=1. Στην περίπτωση αυτή οι σχέσεις (14.34) και (14.35) οδηγούν στις σχέσεις μετάβασης από τη βάση στη βάση (): () ψ 3 1 () ψ 3 ±3 = 3 ψ 01 = ψ ±1± ψ 1 1 () ψ 1 1 = 1 3 ψ 01 3 ψ 1 1 (14.37) () ψ 1 1 = 3 ψ ψ 0 1 () ψ 3 1 = 1 3 ψ ψ 0 1 Ενώ οι αντίστροφες σχέσεις (14.36) δίνουν: 38

7 ψ 1 1 ψ ±1±1 = 1 3 ψ 3 = ψ 3 () 1 () ±3 3 ψ 1 () 1 ψ 01 ψ 0 1 = 3 ψ 3 = 3 ψ 3 () 1 () ψ 1 () ψ 1 () 1 (14.38) ψ 11 = 1 3 ψ 3 () ψ 1 () 1. Επομένως στην περίπτωση αυτή ο πίνακας 14.1 των συντελεστών Clebsch-Gordan παίρνει τη μορφή: m m s j m j Πίνακας 14.: Οι συντελεστές Clebsch-Gordan για σύνθεση στροφορμών με κβαντικούς αριθμούς l=1 s=1/ Ένα άλλο ενδιαφέρον παράδειγμα αποτελεί η περίπτωση σύνθεσης στροφορμών που είναι και οι δυο spin με s=1/ (s 1=s =1/). Στην περίπτωση αυτή εξακολουθεί να ισχύει ο πίνακας συντελεστών 14.1 με l=s 1=1/ s=s =1/. Στην περίπτωση αυτή η ολική στροφορμή είναι το ολικό spin: Η βάση στην περίπτωση αυτή ορίζεται από τις σχέσεις ιδιοτιμών: S = S 1 + S (14.39) S 1 χ s1 s ;m s 1 m s S χ s1 s ;m s 1 m s S 1z χ s1 s ;m s 1 m s S z χ s1 s ;m s 1 m s S z χ s1 s ;m s 1 m s = s 1 (s 1 + 1)ħ χ s1 s ;m s 1 m s = s (s + 1)ħ χ s1 s ;m s 1 m s = m s1 ħχ s1 s ;m s 1 m s = m s ħχ s1 s ;m s 1 m s = m s ħχ s1 s ;m s 1 m. s (14.40) ενώ η βάση () ορίζεται από τις σχέσεις ιδιοτιμών: 39

8 S () 1 χ s1 s ;sm s S () χ s1 s ;sm s S () χ s1 s ;sm s () S z χ s1 s ;sm s = s 1 (s 1 + 1)ħ () χ s1 s ;sm s = s (s + 1)ħ () χ s1 s ;sm s = s(s + 1)ħ () χ s1 s ;sm s () = m s ħχ s1 s ;sm s. (14.41) με: s 1z s z = ± 1. m s = m s1 + m s. (14.4) Από τον πίνακα 14.1 προκύπτουν οι συντελεστές Clebsch-Gordon για την παραπάνω σύνθεση στροφορμών ως: m s1 m s / 1/ (14.43) 00 1/ 1/ 11 1 s m s Επομένως οι καταστάσεις με κβαντικό αριθμό ολικής στροφορμής j=s 1+s =1 (καταστάσεις triplet) προκύπτουν από τις καταστάσεις της βάσης ως: () 1 χ 10 = () χ 1 1 (χ 1 1 = χ χ 1 () χ 11 = χ1 1 1 ) (14.44) ενώ η κατάσταση με κβαντικό αριθμό ολικής στροφορμής j=s 1-s =0 (κατάσταση singlet) προκύπτει από τις καταστάσεις της βάσης ως: () 1 χ 00 = (χ 1 1 χ 1 1 ). (14.45) 14.4 Σύνοψη Για την περιγραφή συστημάτων που συντίθενται από υποσυστήματα με στροφορμή μπορούν να χρησιμοποιηθούν δύο βάσεις καταστάσεων: η βάση των επιμέρους στροφορμών και η βάση της ολικής στροφορμής. Οι δύο βάσεις συνδέονται με χρήση των συντελεστών Glebsch-Gordan. 40

9 Οι συντελεστές Glebsch-Gordan δίνουν την πιθανότητα μέτρησης τιμών για τις επιμέρους στροφορμές όταν έχει μετρηθεί αρχικά η ολική στροφορμή (οπότε αρχικά το σύστημα περιγράφεται από ιδιοκατάσταση της ολικής στροφορμής). Οι συντελεστές Glebsch-Gordon υπολογίστηκαν σε απλές περιπτώσεις συστημάτων όπου η μία από τις δύο επιμέρους στροφορμές αντιστοιχεί σε spin ½. 41

10 Κριτήρια αξιολόγησης (Λαγανάς 005α Λαγανάς 005β Τραχανάς 005 Constantinescu & Magyari 1971 Peleg et αl. 010 Squires 1995 Tamvakis 005). Κριτήριο αξιολόγησης 1 Ηλεκτρόνιο σε άτομο υδρογόνου βρίσκεται στην κατάσταση: R 1 ( 1 3 Y 10 χ Y 11 χ ) (14.46) Βρείτε τις πιθανές τιμές και τις αντίστοιχες πιθανότητες που αντιστοιχούν σε μέτρηση των μεγεθών L L z S S z J J z. Ποιά είναι η πυκνότητα πιθανότητας να βρεθεί το σωμάτιο στη θέση r θ φ; Ποιά είναι η αντίστοιχη πυκνότητα πιθανότητας να βρεθεί το σωμάτιο σε θέση r με spin πάνω; Λύση Έχουμε και για τις δύο καταστάσεις που υπερτίθενται l=1. Επομένως για το L θα μετρηθεί η τιμή ћ 1(1+1)= ћ με πιθανότητα 1. Για το L z θα μετρήσουμε 0 με πιθανότητα 1/3 και ћ με πιθανότητα /3. Έχουμε και για τις δύο καταστάσεις που υπερτίθενται s=1/. Επομένως για το S θα μετρηθεί η τιμή ћ 1/(1/+1)=3/4 ћ με πιθανότητα 1. Για το J θα πρέπει να εκφράσουμε την κατάσταση στη βάση () j m j. Με χρήση των σχέσεων (14.39) έχουμε: ψ = R 1 ( 1 3 Y 10 χ Y 11 χ ) = = R 1 ( 1 3 ψ ψ 1 1 ) = () 1 = R 1 [ 1 3 ( β ψ 3 = R 1 ( 3 ψ () ( 1 3 ψ ψ 1 () ψ 1 () 1 () 1 ). ) () 1 3 ψ 1 )] = (14.47) Επομένως για το J θα μετρήσουμε ћ 3/(3/+1)=15/4 ћ με πιθανότητα 8/9 και θα μετρήσουμε ћ 1/(1/+1)=3/4 ћ με πιθανότητα 1/9. Ακόμα για το J z θα μετρήσουμε ½ ћ με πιθανότητα 1. Η πυκνότητα πιθανότητας να βρεθεί το σωμάτιο στη θέση r θ φ είναι: P(r θ φ) = R 1 (1 3 Y Y 11 ) r sin θ (14.48) Η πυκνότητα πιθανότητας να βρεθεί το σωμάτιο στη θέση r θ φ με spin πάνω είναι: P(r θ φ) = R 1 (1 3 Y Y 11 ) r sin θ (14.49) Κριτήριο αξιολόγησης Δύο σωμάτια με spin ½ αλληλεπιδρούν σύμφωνα με τη Hamiltonian: 4

11 H = A s 1 s (14.50) όπου Α είναι η δεδομένη σταθερά. Βρείτε τις ενεργειακές ιδιοτιμές του συστήματος και τον αντίστοιχο εκφυλισμό. Λύση Το ολικό spin του συστήματος είναι της μορφής: Άρα η Hamiltonian εκφράζεται συναρτήσει του ολικού spin ως: S = (s 1 + s ) = s 1 + s + s 1 s (14.51) και οι ιδιοτιμές δίνονται από τη σχέση: H = A (S s 1 s ) (14.5) E = A ħ (S(S + 1) s 1 (s 1 + 1) s (s + 1)) = A ħ (S(S + 1) 3 ) (14.53) Οι δυνατές τιμές του S είναι 0 και 1 με εκφυλισμούς (S+1) (1 και 3 αντίστοιχα). Άλυτες Ασκήσεις 1. Θεωρήστε δύο ηλεκτρόνια σε κατάσταση s=0 (singlet). a. Μέτρηση της z συνιστώσας του spin του ενός ηλεκτρονίου δίνει την τιμή S z=ћ/. Ποιά η πιθανότητα να μετρηθεί η ίδια συνιστώσα του άλλου ηλεκτρονίου στην τιμή ћ/; b. Μέτρηση της y συνιστώσας του spin του ενός ηλεκτρονίου δίνει την τιμή S y=ћ/. Ποιά η πιθανότητα να μετρηθεί η x συνιστώσα του spin του άλλου ηλεκτρονίου στην τιμή S x=-ћ/; c. Αν το ηλεκτρόνιο 1 είναι στην κατάσταση χ + + sina 1 e iβ 1χ το ηλεκτρόνιο στην κατάσταση cosa χ + + sina e iβ χ ποιά είναι η πιθανότητα να βρεθεί το σύστημα σε κατάσταση ολικού spin s=1 (triplet);. Βρείτε τους συντελεστές Glebsch-Gordon με την παραμετροποίηση l1/jm-1/. 43

12 Βιβλιογραφία/Αναφορές Λαγανάς E. (005α). Κβαντομηχανικη Ι Θεωρια - Μεθοδολογία - Λυμένες ασκήσεις. χ.τ.: Αρνός. Λαγανάς E. (005β). Κβαντομηχανικη ΙΙ Θεωρια - Μεθοδολογία - Λυμένες ασκήσεις. χ.τ.: Αρνός. Μοδινός Α. (1994). Εισαγωγή στην κβαντική θεωρία της ύλης. Αθήνα: Εκδόσεις Παπασωτηρίου. Ταμβάκης Κ. (003). Εισαγωγή στην Κβαντομηχανική. Αθήνα: Leader Books. Τραχανάς Σ. (005). Προβλήματα Κβαντομηχανικής. Ηράκλειο: Πανεπιστημιακές Εκδόσεις Κρήτης. Τραχανάς Σ. (008). Κβαντομηχανικη ΙI. Ηράκλειο: Πανεπιστημιακές Εκδόσεις Κρήτης. Binney J. & Skinner D. (013). The Physics of Quantum Mechanics. Oxford: Oxford University Press. Constantinescu F. Magyari E. (1971). Problems in Quantum Mechanics (Paperback). Oxford: Pergamon Press. Fitzpatrick R. (010). Quantum Mechanics. Ανακτήθηκε 30 Οκτωβρίου 015 από Gasiorowicz S. (003). Κβαντική Φυσική (3η αμερικάνικη έκδοση). Αθήνα: Εκδόσεις Κλειδάριθμος. Griffiths D. J. (004). Introduction to Quantum Mechanics (nd edition). Upper Saddle River NJ: Prentice Hall. Peleg Y. Pnini R. Zaarur E. Hecht E. (010). Schaum s Outline of Quantum Mechanics (Schaum s Outlines) (nd edition). McGraw-Hill. Squires G.L. (1995). Problems in Quantum Mechanics: with solutions. Cambridge: Cambridge University Press. Tamvakis K. (005). Problems and Solutions in Quantum Mechanics. New York: Cambridge University Press. 44

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Πρόσθεση Στροφορμών Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κεφάλαιο 9: Συστήματα Πολλών σωματίων

Κεφάλαιο 9: Συστήματα Πολλών σωματίων Κεφάλαιο 9: Συστήματα Πολλών σωματίων Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό, είναι τα εξής (Βαγιονάκης, 1996 Μοδινός, 1994 Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013

Διαβάστε περισσότερα

Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο

Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο Περιεχόμενα Κεφαλαίου Στο κεφάλαιο αυτό, θα θεωρήσουμε ως αδιατάρακτη Hamiltonian, εκείνη του ατόμου του υδρογόνου και θα μελετήσουμε τρία είδη διαταραχών.

Διαβάστε περισσότερα

Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών

Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό είναι τα εξής (Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013 Fitzpatrick,

Διαβάστε περισσότερα

Κεφάλαιο 17: Θεωρία Χρονοεξαρτώμενων Διαταραχών

Κεφάλαιο 17: Θεωρία Χρονοεξαρτώμενων Διαταραχών Κεφάλαιο 17: Θεωρία Χρονοεξαρτώμενων Διαταραχών Περιεχόμενα Κεφαλαίου Στο κεφάλαιο αυτό θα εισαχθεί μία γενική μέθοδος μελέτης συστημάτων με χρονοεξαρτώμενη Hailtonian. Θα παρουσιαστεί η μέθοδος εύρεσης

Διαβάστε περισσότερα

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Α. Καρανίκας και Π. Σφήκας Σημειώσεις IX: Πρόσθεση στροφορμών Υπάρχουν πάμπολα φυσικά συστήματα στα οποία η κίνηση των επί μέρους σωματιδίων ή τα spin

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Δομή Διάλεξης Λεπτή Υφή: Άρση εκφυλισμού λόγω σύζευξης spin με μαγνητικό πεδίο τροχιακής στροφορμής και λόγω σχετικιστικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό

Διαβάστε περισσότερα

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 1 Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 2 Βρείτε την δράση των τελεστών του spin S x, S y, S z, στις ιδιοκαταστάσεις του S z +1/2>, =1/2> Η αναπαράσταση των S x, S y, S z, στις ιδιοκαταστάσεις

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις V: Εύρεση παραγόντων Clebsch-Gordan Όπως έχομε δεί στην τάξη, όταν έχομε δύο στροφορμές, J και J, π.χ. επειδή έχομε

Διαβάστε περισσότερα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις

Διαβάστε περισσότερα

Δύο διακρίσιμα σωμάτια με σπιν s 1

Δύο διακρίσιμα σωμάτια με σπιν s 1 Δύο διακρίσιμα σωμάτια με σπιν και Σύνδεση της βάσης των ιδιοκαταστάσεων του τετραγώνου και της z συνιστώσας του ολικού σπιν με τη βάση που αποτελείται από τα τανυστικά γινόμενα των καταστάσεων των δύο

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα

Λυμένες ασκήσεις στροφορμής

Λυμένες ασκήσεις στροφορμής Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των

Διαβάστε περισσότερα

Αρμονικός Ταλαντωτής

Αρμονικός Ταλαντωτής Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται

Διαβάστε περισσότερα

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)

Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΛΕΑΝΔΡΟΣ ΠΕΡΙΒΟΛΑΡΟΠΟΥΛΟΣ Καθηγητής Πανεπιστημίου Ιωαννίνων. Εισαγωγή στην Κβαντική θεωρία

ΛΕΑΝΔΡΟΣ ΠΕΡΙΒΟΛΑΡΟΠΟΥΛΟΣ Καθηγητής Πανεπιστημίου Ιωαννίνων. Εισαγωγή στην Κβαντική θεωρία ΛΕΑΝΔΡΟΣ ΠΕΡΙΒΟΛΑΡΟΠΟΥΛΟΣ Καθηγητής Πανεπιστημίου Ιωαννίνων Εισαγωγή στην Κβαντική θεωρία Εισαγωγή στην Κβαντική Θεωρία Συγγραφή Λέανδρος Περιβολαρόπουλος Κριτικός αναγνώστης Θεοχάρης Κοσμάς Συντελεστές

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες

Διαβάστε περισσότερα

Εύρεση των ιδιοτιμών της στροφορμής

Εύρεση των ιδιοτιμών της στροφορμής Εύρεση των ιδιοτιμών της στροφορμής Χρησιμοποιώντας την άλγεβρα της στροφορμής, θα υπολογίσουμε τις ιδιοτιμές του τετραγώνου της και της -συνιστώσας της. Μπορούμε, ωστόσο, να θέσουμε το πρόβλημα γενικότερα,

Διαβάστε περισσότερα

Εισαγωγικά Θέματα - Λειτουργία Μαθήματος Διδάσκων: Λ. Περιβολαρόπουλος

Εισαγωγικά Θέματα - Λειτουργία Μαθήματος Διδάσκων: Λ. Περιβολαρόπουλος Κβαντομηχανική Ι Εισαγωγικά Θέματα - Λειτουργία Μαθήματος Διδάσκων: Λ. Περιβολαρόπουλος Στοιχεία Διδάσκοντα Λέανδρος Περιβολαρόπουλος Καθηγητής Θεωρητικής Φυσικής-Κοσμολογίας Γραφείο Φ2-303 Ώρες Γραφείου:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D) Ατομική δομή Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (1D) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2 2m 2 ψ + V r ψ = Εψ Τελεστής Λαπλασιανής για σφαιρικές

Διαβάστε περισσότερα

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι Κβαντικός περιστροφέας που J J J H y z τοποθετείται y z περιγράφεται μέσα σε από τη ομογενές, Χαμιλτονιανή χρονοανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα z, δηλαδή B B ez, με B >. Αν

Διαβάστε περισσότερα

Σχετικιστικές συμμετρίες και σωμάτια

Σχετικιστικές συμμετρίες και σωμάτια Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών

Διαβάστε περισσότερα

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 6-7 Κβαντομηχανική Ι 6o Σετ Ασκήσεων Άσκηση a) Τρόπος α : Λύνουμε όλους (ή έστω μερικούς από) τους συνδυασμούς [l i, r j ]: [l x, x] = [l y, y] = [l z, x] = i ħ y Κ.ο.κ., και συμπεραίνουμε

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετηθεί μια εφαρμογή σχετικά με τις βασικές

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση

Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου

Διαβάστε περισσότερα

Η άλγεβρα της στροφορμής

Η άλγεβρα της στροφορμής Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει κάποιες

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης. Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΜΗΜΑ ΥΤΙΚΗ ΣΟΜΕΑ ΘΕΩΡΗΣΙΚΗ ΥΤΙΚΗ ΚΒΑΝΣΙΚΗ ΘΕΩΡΙΑ. Ασκήσεις και Προβλήματα. Α. Π. Λύκκας

ΠΑΝΕΠΙΣΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΜΗΜΑ ΥΤΙΚΗ ΣΟΜΕΑ ΘΕΩΡΗΣΙΚΗ ΥΤΙΚΗ ΚΒΑΝΣΙΚΗ ΘΕΩΡΙΑ. Ασκήσεις και Προβλήματα. Α. Π. Λύκκας ΠΑΝΕΠΙΣΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΜΗΜΑ ΥΤΙΚΗ ΣΟΜΕΑ ΘΕΩΡΗΣΙΚΗ ΥΤΙΚΗ ΚΒΑΝΣΙΚΗ ΘΕΩΡΙΑ Ασκήσεις και Προβλήματα Α. Π. Λύκκας Επιβλέπων Καθηγητής : Λ. Περιβολαρόπουλος Ιωάννινα 2013 Περιεχόμενα Κεφάλαιο 1 : υστήματα Πολλών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Συστήματα Πολλών Σωματίων

Συστήματα Πολλών Σωματίων Συστήματα Πολλών Σωματίων Δομή Διάλεξης Βασικές γενικεύσεις: Κυματοσυνάρτηση-Ενέργεια συστήματος πολλών σωματίων Μη αλληλεπιδρώντα σωμάτια: Μέθοδος χωριζόμενων μεταβλητών Σύστημα δύο αλληλεπιδρώντων σωματίων:

Διαβάστε περισσότερα

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί Κβαντικοί αριθμοί Στην κβαντομηχανική εισάγονται τρεις κβαντικοί αριθμοί για τον καθορισμό της κατανομής του ηλεκτρονιακού νέφους (ατομικού τροχιακού). Οι κβαντικοί αυτοί αριθμοί προκύπτουν από την επίλυση

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Κβαντικές Καταστάσεις

Κβαντικές Καταστάσεις Κβαντικές Καταστάσεις Δομή Διάλεξης Σύντομη ιστορική ανασκόπηση Ανασκόπηση Πιθανότητας Το Πλάτος Πιθανότητας Πείραμα διπλής οπής Κβαντικές καταστάσεις (ket) Ο δυίκός χώρος (bra) Σύνοψη Κβαντική Φυσική

Διαβάστε περισσότερα

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017 Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας) Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014

Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014 Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014 Ισοσπίν 27/3/2014 Τι θα συζητήσουµε σήµερα 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η αρχική ιδέα του Heisenberg για πρωτόνιο και νετρόνιο 2. Φορµαλισµός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα

Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα Το πιο απλό κβαντομηχανικό ρεαλιστικό σύστημα, το οποίο λύνεται ακριβώς, είναι το άτομο του Υδρογόνου (1 πρωτόνιο και 1 ηλεκτρόνιο) Το δυναμικό στην περίπτωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα Άσκηση. (Βοήθημα θεωρίας) Εάν ένα κλασικό άνυσμα r μετατοπισθεί κατά a, θα προκύψει το άνυσμα r = r + a. a Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα r

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει κάποιες εφαρμογές που αφορούν

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναδείξει την ερμιτιανότητα

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

Κύριος κβαντικός αριθμός (n)

Κύριος κβαντικός αριθμός (n) Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn

Διαβάστε περισσότερα

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,

Διαβάστε περισσότερα

Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017

Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017 Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Το Ισοτοπικό σπιν Μαθηµα 5ο 3/3/217 Ισοσπίν 3/3/217 Τι θα συζητήσουµε σήµερα Ισοσπίν 3/3/217 2 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: 016-017 Ε. Βιτωράτος Υπολογισμός της ενέργειας αλληλεπίδρασης σπιν-τροχιάς στην περίπτωση του υδρογόνου Η τιμή της ενέργειας αλληλεπίδρασης σπιν-τροχιάς

Διαβάστε περισσότερα

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ

Διαβάστε περισσότερα

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2

Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2 Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού Jˆ Jˆ Jˆ περιστροφέα με Χαμιλτονιανή Hˆ = x y z και ολική στροφορμή j = x y z είναι οι ιδιοκαταστάσεις των τριών συνιστωσών της στροφορομής

Διαβάστε περισσότερα

Εφαρμογές κβαντικής θεωρίας

Εφαρμογές κβαντικής θεωρίας Εφαρμογές κβαντικής θεωρίας Στοιχειώδες μαθηματικό υπόβαθρο Σχέση Euler Χρησιμοποιώντας τη σχέση Euler, ένα αρμονικό κύμα της μορφής Acos(kx) (πραγματική συνάρτηση), μπορεί να γραφτεί ως Re[Ae ikx ] που

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.

Διαβάστε περισσότερα