ΒΑΘΜΟΣ = θ - θ. Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: ΒΑΘΜΟΣ της θερμομετρικής μας κλίμακας είναι το μέγεθος

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΑΘΜΟΣ = θ - θ. Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: ΒΑΘΜΟΣ της θερμομετρικής μας κλίμακας είναι το μέγεθος"

Transcript

1 Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: Μικροσκοπικά ξέρουμε ότι είναι ανάλογη της μέσης κινητικής ενέργειας του μορίου ΜΑΚΡΟΣΚΟΠΙΚΑ ΕΙΝΑΙ ΕΝΑ ΜΕΓΕΘΟΣ ΠΟΥ ΜΑΣ ΔΕΙΧΝΕΙ ΠΟΣΟ «ΖΕΣΤΟ» ΕΙΝΑΙ ΤΟ ΣΩΜΑ Αυτό μπορούμε να το μετρήσουμε, χρησιμοποιώντας το γεγονός, ότι κάποιες ιδιότητες των σωμάτων (π.χ. διαστάσεις) μεταβάλλονται με τη μεταβολή της θερμοκρασίας. Για να μετρήσουμε λοιπόν τη θερμοκρασία μας χρειάζεται ένα σώμα (θερμομετρικό σώμα ΘΣ), ένα μέγεθος του οποίου (θερμομετρικό μέγεθος ΘΜ) μεταβάλλεται με τη μεταβολή της θερμοκρασίας. Έστω λ το ΘΜ. Διαλέγουμε σημεία αναφοράς και ορίζουμε (αυθαίρετα) τις θερμοκρασίες τους θ και θ. ΒΑΘΜΟΣ της θερμομετρικής μας κλίμακας είναι το μέγεθος λ - λ ΒΑΘΜΟΣ θ - θ Θερμοκρασία τήξης του πάγου: θ Θερμοκρασία βρασμού του νερού: θ Θερμοκρασία τήξης του πάγου: θ Θερμοκρασία βρασμού του νερού: θ Πρέπει να έχουμε τέτοιο ΘΣ και τέτοιο ΘΜ ώστε: Α) Να έχουμε ευκολία και ακρίβεια μετρήσεων. Β) Και το ΘΣ και το ΘΜ να παραμένουν αναλλοίωτα. Γ) Να έχουμε τη δυνατότητα αναπαραγωγής ΘΣ και μετρήσεων Δ) Να μπορούμε να δουλεύουμε σε ευρεία κλίμακα θερμοκρασιών. Όλα αυτά μας οδηγούν μονοσήμαντα στο να επιλέξουμε σαν ΘΣ το ΙΔΑΝΙΚΟ ΑΕΡΙΟ και σαν ΘΜ είτε τη p, είτε το και να χρησιμοποιήσουμε για τον προσδιορισμό του Τ την ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ. Απαιτούμε να ισχύει Τ -Τ Από τις μετρήσεις μας βρίσκουμε p /p.66 Με πράξεις παίρνουμε Τ 7.5, Τ 7.5. Ορίζουμε ως θερμοκρασίες αναφοράς και πάλι τη θερμοκρασία τήξης του πάγου (p,, T ) και τη θερμοκρασία βρασμού του νερού (p,, T ) Έστω ότι επιλέγουμε να έχουμε

2 Ορίσαμε την θερμοκρασία Τ από τη μέση κινητική ενέργεια mυ kt Από τον ορισμό αυτό φαίνεται ότι ΔΕΝ ΜΠΟΡΟΥΜΕ ΝΑ ΕΧΟΥΜΕ αρνητικές θερμοκρασίες, όμως δεν αποκλείεται να έχουμε μηδενική μέση κινητική ενέργεια, δηλαδή μηδενική θερμοκρασία ΤΟΣΟ Ο ΤΡΙΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ, ΟΣΟ ΚΑΙ ΟΙ ΑΡΧΕΣ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ, ΑΠΟΔΕΙΚΝΥΟΥΝ ΟΤΙ Η ΘΕΡΜΟΚΡΑΣΙΑ ΔΕΝ ΜΠΟΡΕΙ ΝΑ ΓΙΝΕΙ ΜΗΔΕΝΙΚΗ Ξέρουμε από τη Φυσική Ι (Δυναμική Συστήματος Σωματιδίων) ότι η εσωτερική ενέργεια ενός συστήματος σωματιδίων είναι η κινητική ενέργεια των σωματιδίων στο σύστημα του ΚΜ και η ενέργεια αλληλεπίδρασης των σωματιδίων. Στο ιδανικό αέριο δεν έχουμε αλληλεπιδράσεις μεταξύ των μορίων. Επομένως στην περίπτωση αυτή θα έχουμε να κάνουμε μόνο με κινητική ενέργεια στο σύστημα του ΚΜ Αυτό βέβαια στην περίπτωση των σχετικά απλών σωματιδίων (μονοατομικό αέριο) Τι γίνεται όμως στην περίπτωση που τα μόρια ΔΕΝ ΕΙΝΑΙ ΑΠΛΑ (μονοατομικά;) ΜΗΠΩΣ ΥΠΑΡΧΕΙ ΚΑΠΟΙΟΣ ΓΕΝΙΚΟΣ ΚΑΝΟΝΑΣ; ΑΡΙΘΜΟΣ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ: Ο αριθμός των ανεξάρτητων μεταβλητών που μας δίνουν τη δυνατότητα να προσδιορίσουμε πλήρως την κατάσταση ενός συστήματος σημειακό σωματίδιο,, υ, υ, υ σημειακά σωματίδια,,,,, υ, υ, υ, υ, υ, υ σημειακά σωματίδια,,,,, υ, υ, υ, υ, υ, υ Ενέργεια περιστροφής Περιστροφή γύρω από τον άξονα I ω Ας εξετάσουμε τώρα την περίπτωση ενός διατομικού μορίου. Μπορούμε να υποθέσουμε ότι αποτελείται από άτομα τα οποία αλληλεπιδρούν (εδώ δεν μπορούμε να αγνοήσουμε τις δυνάμεις). Ενέργεια περιστροφής Περιστροφή γύρω από τον άξονα I ω Κινητική ενέργεια mυ Δυναμική ενέργεια k

3 Μόριο Περιστροφικοί Μεταφορικοί Ταλαντωτικοί. ΜΕΓΙΣΤΗ ΜΕΣΗ ΕΝΕΡΓΕΙΑ Μονοατομικό kt/ Διατομικό 7kT/ Τριατομικό 6 kt/ Πείραμα: η CC(T) Διατομικό C 5 R 7 R (Τ ) Για παράδειγμα ένα γραμμομόριο (mole) μονοατομικού αερίου. Υπάρχουν A μόρια. Κάθε μόριο έχει βαθμούς ελευθερίας Επομένως η εσωτερική του ενέργεια είναι: U A kt / (/) A kt (/)RT Δεν διεγείρονται πάντα ΟΛΟΙ οι βαθμοί ελευθερίας. Στις συνηθισμένες θερμοκρασίες, κατά κανόνα, οι ταλαντωτικοί βαθμοί ελευθερίας ΔΕΝ είναι διηγερμένοι. όμως

4 Θεωρία C /R (C P -C )/R He:.59. A:.5.8 :.5.5 O :.5. Cl :..9 CO :.. H :..6 Πείραμα Μονατομικά (Καλή συμφωνία) Διατομικά CO 5 Πολυατομικά (>) 8. Με τι ισούται η ολική μέση κινητική ενέργεια μορίων (σκληρού) διατομικού αερίου που περιέχεται σε όγκο l, αν η πίεσή του είναι ίση με p,7 5 Pa Διευκρινίζουμε ότι όταν λέμε σκληρό, εννοούμε ότι ΔΕΝ είναι διηγερμένοι οι ταλαντωτικοί βαθμοί ελευθερίας των μορίων. Αυτό είναι συνηθισμένο φαινόμενο στις συνθήκες του περιβάλλοντός μας. Από τη βασική εξίσωση της κινητικής θεωρίας των αερίων m p < kt kt p kt Επειδή / p kt Για την μεταφορική κίνηση των Ν μορίων παίρνουμε EMET kt p p 9.Θραύσμα από κατεστραμένο δορυφόρο προσκρούει στην επιφάνεια ενός διαστημοπλοίου και ανοίγει μικρή οπή εμβαδού S σε απρόσιτο σημείο. Με συνολικό όγκο του εσωτερικού του διατημοπλοίου, σταθερή θερμοκρασία Τ και πίεση P o να υπολογίστε πόσο χρόνο θα έχουν οι αστροναύτες για να φορέσουν τα σκάφανδρα τους πριν η πίεση του αέρα πέσει στομισό οπότε και θαχάσουν τις αισθήσεις τους. Η molar μάζα του αέρα είναι Μ. Για την περιστροφική κίνηση των Ν μορίων παίρνουμε Επομένως Συνέχεια Θεωρίας EΟΛ EΜΕΤ + EΠΕΡ EΠΕΡ kt p p p p + 5 p 7 J Ο αριθμός μορίων d σε χρόνο d που περνούν προς τα έξω* δίδεται d Sd 8kT m (*) μόνο έξω? Ο χώρος έξω είναι κενός και με Τσταθ η μέση ταχύτητα των μορίων δεν αλλάζει d Sd d d l d d

5 e - p kt P P e - Η πίεση θα πέσει από P P / στο ζητούμενο χρόνο l M l 8RT S 8RT S M P - - P e e Λογαριθμίζω Π.χ. για εμβαδόν τρύπας Χ cm θερμοκρασία ΤΚ, συνολικό όγκο m, ο χρόνος είναι μόλις: l l ά l + 8kT m 8 AkT m A 8RT M m,776 m - 6,8s 6m,* 9 8*8,*,776* *,675 A A q q 5 A q A 5 q r O q 7 q q A A 7 A q 6 A 6 Παρατηρούμε για χρόνο (κατά διαστήματα Δ) το σωματίδιο Brow. Για την τελική μετατόπιση έχουμε: r q Επαναλαμβάνουμε πολλές φορές το ίδιο. Θα έχουμε: < r < r? j j < r q < q + < q q Επειδή όλες οι σειρές των πειραμάτων είναι ισοδύναμες: < q a < q a Το α είναι σταθερά που εξαρτάται από το χρόνο Δ. Κάθε παρατήρηση σε κάθε πείραμα είναι ανεξάρτητη από τις άλλες. Επομένως τα μεγέθη q και q j είναι ανεξάρτητα. Έτσι: < qq j < q >< q j Ο ολικός χρόνος ενός πειράματος είναι, επομένως ο αριθμός των βημάτων σε κάθε παρατήρηση θα είναι /Δ < r a a λ Δ Όπου το λ είναι μια σταθερά που εξαρτάται από τις συνθήκες του πειράματος (διάρκεια βήματος, είδος ρευστού κ.τ.λ.) ΕΠΟΜΕΝΩΣ Η ΜΕΣΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΣΗΜΕΙΟ ΕΚΚΙΝΗΣΗΣ ΑΥΞΑΝΕΙ ΜΕ ΤΗΝ ΠΑΡΟΔΟ ΤΟΥ ΧΡΟΝΟΥ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

Συνέπειες κατανομής ταχυτήτων

Συνέπειες κατανομής ταχυτήτων Σνέπειες κατανομής ταχτήτων Ατμόσφαιρες πλανητών Κατανομή Boltza* Πίεση Θερμοκρασία Εσωτερική Ενέργεια Θερμοχωρητικότητες - Βαθμοί Ελεθερίας Κίνηση Brow* (*) Μη εξεταστέα ύλη Υποθέτομε, πως η ατμόσφαιρα

Διαβάστε περισσότερα

3/2 dp = f ( υ d ) υ mυ / 2 kt 4 π υ e 2 k π T

3/2 dp = f ( υ d ) υ mυ / 2 kt 4 π υ e 2 k π T m d P = f ( υ) dυ = 4π -mυ / kt υ e dυ πkt N u 3/ Η συνάρτηση f(υ) είναι ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ 3/ m f ( υ) = 4π υ e πkt -mυ / kt Είναι θετική Για υ0 τείνει στο μηδέν Για υ τείνει στο μηδέν Επομένως

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 Ιδανικό αέριο περιέχεται σε όγκο 1 δοχείου συνολικού όγκου με θερμομονωτικά τοιχώματα. Στο υπόλοιπο κομμάτι

Διαβάστε περισσότερα

Κεφάλαιο 7. Θερμοκρασία

Κεφάλαιο 7. Θερμοκρασία Κεφάλαιο 7 Θερμοκρασία Θερμοδυναμική Η θερμοδυναμική περιλαμβάνει περιπτώσεις όπου η θερμοκρασία ή η κατάσταση ενός συστήματος μεταβάλλονται λόγω μεταφοράς ενέργειας. Η θερμοδυναμική ερμηνεύει με επιτυχία

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 1. ΝΟΜΟΣ OYLE-MRIOTTE = σταθ. (όταν Τ = σταθ.) (1) Ο νόμος των oyle Mariotte εφαρμόζεται σε ισόθερμη μεταβολή (Τ = σταθ.) π.χ. στην μεταβολή Α T 1

Διαβάστε περισσότερα

Η πυκνότητα του νερού σε θερμοκρασία 4 C και ατμοσφαιρική πίεση (1 atm) είναι ίση με 1g/mL.

Η πυκνότητα του νερού σε θερμοκρασία 4 C και ατμοσφαιρική πίεση (1 atm) είναι ίση με 1g/mL. Πυκνότητα Πυκνότητα ορίζεται το φυσικό μέγεθος που δίνεται από το πηλίκο της μάζας του σώματος προς τον αντίστοιχο όγκο που καταλαμβάνει σε σταθερές συνθήκες πίεσης (όταν πρόκειται για αέριο). Ο Συμβολισμός,

Διαβάστε περισσότερα

MIKΡΕΣ ΟΠΕΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

MIKΡΕΣ ΟΠΕΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmiras.weebly.cm MIKΡΕΣ ΟΠΕΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Μικρές Οπές. Ασκήσεις ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmiras.weebly.cm

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1.1. Νόμος του Boyle (ισόθερμη μεταβολή) Η πίεση ορισμένης ποσότητας αερίου, του

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Για να έχουμε επιτάχυνση, τι από τα παρακάτω πρέπει να συμβαίνει: i) Το μέτρο της ταχύτητας να

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1 Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1 Ορμή και Δύναμη Η ορμή p είναι διάνυσμα που ορίζεται από

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α (Στο θέμα Α να χαρακτηρίσετε τις προτάσεις ως σωστές με το γράμμα Σ ή ως λανθασμένες με το γράμμα Λ, χωρίς αιτιολόγηση.) A1. Δύο σώματα Κ και Λ εκτοξεύονται οριζόντια

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική. δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική. δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ + + + + κινητική δυναμική Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ)

Διαβάστε περισσότερα

Κεφάλαιο 20. Θερμότητα

Κεφάλαιο 20. Θερμότητα Κεφάλαιο 20 Θερμότητα Εισαγωγή Για να περιγράψουμε τα θερμικά φαινόμενα, πρέπει να ορίσουμε με προσοχή τις εξής έννοιες: Θερμοκρασία Θερμότητα Θερμοκρασία Συχνά συνδέουμε την έννοια της θερμοκρασίας με

Διαβάστε περισσότερα

Α3. Όταν η πίεση ορισμένης ποσότητας ιδανικού αερίου διπλασιάζεται υπό σταθερή θερμοκρασία, τότε η μέση κινητική ενέργεια των μορίων του αερίου:

Α3. Όταν η πίεση ορισμένης ποσότητας ιδανικού αερίου διπλασιάζεται υπό σταθερή θερμοκρασία, τότε η μέση κινητική ενέργεια των μορίων του αερίου: ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 04-01-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.-ΚΟΡΚΙΔΑΚΗΣ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =

Διαβάστε περισσότερα

ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.)

ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.) ΘΕΜΕΛΙΩΔΗ ΜΕΓΕΘΗ Προκύπτουν άμεσα. Δεν ορίζονται με τη βοήθεια άλλων μεγεθών Μήκος: έχει μονάδα μέτρησης το ΜΕΤΡΟ (m) Χρόνος: έχει μονάδα μέτρησης το ΔΕΥΤΕΡΟΛΕΠΤΟ (s ή sec) Μάζα: έχει μονάδα μέτρησης το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

11 η Διάλεξη Κινητική θεωρία των αερίων, Κίνηση Brown, Διάχυση. Φίλιππος Φαρμάκης Επ. Καθηγητής. Εισαγωγικά

11 η Διάλεξη Κινητική θεωρία των αερίων, Κίνηση Brown, Διάχυση. Φίλιππος Φαρμάκης Επ. Καθηγητής. Εισαγωγικά η Διάλεξη Κινητική θεωρία των αερίων, Κίνηση Brown, Διάχυση Φίλιππος Φαρμάκης Επ. Καθηγητής Εισαγωγικά Οι ιδιότητες των αερίων (πίεση,θερμοκρασία) πως εξηγούνται; Σύνδεση μικρόκοσμου και μακρόκοσμου Κλασική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια

Διαβάστε περισσότερα

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1) 1)Συνήθως οι πτήσεις των αεροσκαφών γίνονται στο ύψος των 15000 m, όπου η θερμοκρασία του αέρα είναι 210 Κ και η ατμοσφαιρική πίεση 10000 N / m 2. Σε αεροδρόμιο που βρίσκεται στο ίδιο ύψος με την επιφάνεια

Διαβάστε περισσότερα

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο [1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση

Διαβάστε περισσότερα

=5L θερμαίνεται υπό σταθερή πίεση

=5L θερμαίνεται υπό σταθερή πίεση 1) Ένας μαθητής γεμίζει τους πνεύμονες του που έχουν όγκο 5,8L, με αέρα σε πίεση 1atm. O μαθητής πιέζει το στέρνο κρατώντας το στόμα του κλειστό και μειώνει την χωρητικότητα των πνευμόνων του κατά 0,8L.

Διαβάστε περισσότερα

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Κεφάλαιο 1 ο :ΝΟΜΟΙ ΑΕΡΙΩΝ ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Επιμέλεια ύλης: Γ.Φ.ΣΙΩΡΗΣ- Φυσικός - 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. 1. Να διατυπώσετε το νόμο του Robert Boyle και να κάνετε το αντίστοιχο

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ

Διαβάστε περισσότερα

Περιστροφική Κινηματική

Περιστροφική Κινηματική Περιστροφική Κινηματική Μεταφορική κίνηση Περιστροφική κίνηση Τα Τρία Είδη Κίνησης Τι Χαρακτηριστικό έχει κάθε μια από τις κινήσεις που θα εμφανιστούν Συνδυασμένη κίνηση Περιστροφική Κινηματική Ανακεφαλαίωση

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22 Λυμένες ασκήσεις Στατιστική Θερμοδυναμική Οκτώβριος ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ Άσκηση.: Το άθροισμα καταστάσεων της δονητικής κίνησης των μορίων του Ι αποτελείται από

Διαβάστε περισσότερα

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας ΚΕΦΑΛΑΙΟ 6 ο ΘΕΡΜΟΤΗΤΑ 6.1 Θερμόμετρα και μέτρηση θερμοκρασίας 1. Τι ονομάζεται θερμοκρασία; Το φυσικό μέγεθος που εκφράζει πόσο ζεστό ή κρύο είναι ένα σώμα ονομάζεται θερμοκρασία. 2. Πως μετράμε τη θερμοκρασία;

Διαβάστε περισσότερα

Κινητική θεωρία ιδανικών αερίων

Κινητική θεωρία ιδανικών αερίων Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Β. συντελεστής απόδοσης δίνεται από τη σχέση e = 1

ΔΙΑΓΩΝΙΣΜΑ Β. συντελεστής απόδοσης δίνεται από τη σχέση e = 1 ΔΙΑΩΝΙΣΜΑ Β Θέµα ο Α Να δείξετε ότι η καταστατική εξίσωση των ιδανικών αερίων µπορεί να πάρει τη µορφή ρ P = RT, όπου ρ η πυκνότητα του αερίου και M η M γραµµοµοριακή του µάζα Ξεκινώντας από τη σχέση της

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

= 5L θερµαίνεται υπό σταθερή πίεση µέχρι να

= 5L θερµαίνεται υπό σταθερή πίεση µέχρι να ) Ένας µαθητής γεµίζει τους πνεύµονες του που έχουν όγκο,8l, µε αέρα σε πίεση at O µαθητής πιέζει το στέρνο κρατώντας το στόµα του κλειστό και µειώνει την χωρητικότητα των πνευµόνων του κατά,8l Πόση θα

Διαβάστε περισσότερα

Περι-Φυσικής. Θέµα Α. Θετικής & Τεχν. Κατεύθυνσης - Επαναληπτικό ΙΙ. Ονοµατεπώνυµο: Βαθµολογία % (α) η ϑερµοκρασία του παραµένει σταθερή.

Περι-Φυσικής. Θέµα Α. Θετικής & Τεχν. Κατεύθυνσης - Επαναληπτικό ΙΙ. Ονοµατεπώνυµο: Βαθµολογία % (α) η ϑερµοκρασία του παραµένει σταθερή. Θετικής & Τεχν. Κατεύθυνσης - Επαναληπτικό ΙΙ Ηµεροµηνία : Μάης 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες] Α.1. Στην

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 13/11/2011

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 13/11/2011 ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 91911 949422 ΖΗΤΗΜΑ 1 ο ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 1/11/2011

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Λεωφ Κηφισίας 56, ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα PhD Τηλ: 10 69 97 985, e-mail: edlag@otenetg, wwwedlagg Λεωφ Κηφισίας 56, Τηλ: 10 69 97 985, wwwedlagg ΛΥΜΕΝΑ

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος)

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος) Αν σε σύστημα που διατηρείται σε σταθερές συνθήκες κάνουμε Ν παρατηρήσεις και από αυτές στις Ν Α παρατηρήθηκε το γεγονός Α, τότε λέμε ότι η πιθανότητα να συμβεί αυτό το γεγονός δίνεται από τη σχέση: P

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΟΡΙΣΜΟΙ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΤΥΠΟΛΟΓΙΟ ΟΡΙΣΜΟΙ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΤΥΠΟΛΟΓΙΟ ΟΡΙΣΜΟΙ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Τα σημαντικότερα στοιχεία της επιστημονικής μεθόδου είναι η παρατήρηση, η υπόθεση, το πείραμα, η γενίκευση και η πρόβλεψη νέων φαινομένων. Για να μελετήσουμε πλήρως

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 1//1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ. αντιστοιχεί στο αέριο με τη μεγαλύτερη ποσότητα ύλης. Δικαιολογήσατε την απάντηση σας.

ΝΟΜΟΙ ΑΕΡΙΩΝ. αντιστοιχεί στο αέριο με τη μεγαλύτερη ποσότητα ύλης. Δικαιολογήσατε την απάντηση σας. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Στο παρακάτω διάγραμμα να βρείτε την ισόθερμη καμπύλη του αντιστοιχεί στο αέριο με τη μεγαλύτερη ποσότητα ύλης. Δικαιολογήσατε την απάντηση σας. 2. Ο όγκος δεδομένης ποσότητας ιδανικού

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

Φυσική Ομάδαs Προσανατολισμού Θετικών Σπουδών

Φυσική Ομάδαs Προσανατολισμού Θετικών Σπουδών ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Λύσεις των ασκσεων Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Φυσικ Ομάδαs Προσανατολισμού Θετικών Σπουδών ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ. Διδάσκων : Καθηγητής Γ. Φλούδας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ. Διδάσκων : Καθηγητής Γ. Φλούδας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Κεφάλαιο 9 Γραμμική Ορμή. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 9 Γραμμική Ορμή. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 9 Γραμμική Ορμή Περιεχόμενα Κεφαλαίου 9 Σχέση Ορμής και Δύναμης Διατήρηση της ορμής Κρούση και Ώθηση Διατήρηση ενέργειας και ορμής στις κρούσεις Ελαστικές κρούσεις σε μία διάσταση Ανελαστικές

Διαβάστε περισσότερα

13 Γενική Μηχανική 2 Δυνάμεις Nόμοι του Newton 15/9/2014

13 Γενική Μηχανική 2 Δυνάμεις Nόμοι του Newton 15/9/2014 3 Γενική Μηχανική Δυνάμεις Nόμοι του Newton 5/9/04 Η Φυσική της Α Λυκείου σε 8.00 sec. Η έννοια της Δύναμης Οι νόμοι της κίνησης Η έννοια της δύναμης Όταν ένα αντικείμενο αλλάζει την ταχύτητά του (είτε

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ B θετικών σπουδών

γραπτή εξέταση στη ΦΥΣΙΚΗ B θετικών σπουδών η εξεταστική περίοδος από 9/0/5 έως 9/04/5 γραπτή εξέταση στη ΦΥΣΙΚΗ θετικών σπουδών Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση..

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «Κινητική Θεωρία των Αερίων» ο κεφάλαιο: «O 1 ος θερµοδυναµικός νόµος» ΘΕΜΑ 1 Ο 1Α Ερωτήσεις πολλαπλής επιλογής. Σηµειώστε τη σωστή από τις προτάσεις που ακολουθούν. 1) Κατά την

Διαβάστε περισσότερα

13 Γενική Μηχανική 2 Δυνάμεις Nόμοι του Newton 15/9/2014

13 Γενική Μηχανική 2 Δυνάμεις Nόμοι του Newton 15/9/2014 13 Γενική Μηχανική Δυνάμεις Nόμοι του Newton 15/9/014 Η Φυσική της Α Λυκείου σε 8.100 sec. Η έννοια της Δύναμης Οι νόμοι της κίνησης Η έννοια της δύναμης Όταν ένα αντικείμενο αλλάζει την ταχύτητά του (είτε

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΡΙΤΗ 5 ΜΑΪΟΥ 004 ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο 1.1. Φορτισμένο σωματίδιο αφήνεται ελεύθερο μέσα σε ομογενές ηλεκτρικό πεδίο χωρίς την επίδραση της βαρύτητας. Το σωματίδιο: α. παραμένει ακίνητο. β. εκτελεί ομαλή κυκλική κίνηση.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 30// ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις Α.- Α.4

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ 91 Α. ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1. Εισαγωγή-Τι είναι ενέργεια; ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ Ενέργεια ονομάζουμε το φυσικό μέγεθος του οποίου η ύπαρξη και οι μεταβολές αποτελούν το κοινό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: νόμοι αερίων, θερμοδυναμική) ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1 4 να γράψετε στο

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 30 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ (αφιερωμένη στη μνήμη του Ανδρέα Παναγή) Γ ΛΥΚΕΙΟΥ (Α Φάση) Κυριακή, 20 Δεκεμβρίου 2015 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από έξι (6) σελίδες και πέντε

Διαβάστε περισσότερα

Οδηγίες προς υποψηφίους

Οδηγίες προς υποψηφίους ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 11 ΑΠΡΙΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς αϖό τις ϖαρακάτω ερωτήσεις

Διαβάστε περισσότερα

2. Να αποδείξετε ότι δυο ισόθερμες καμπύλες δεν είναι δυνατό να τέμνονται.

2. Να αποδείξετε ότι δυο ισόθερμες καμπύλες δεν είναι δυνατό να τέμνονται. Λυμένα παραδείγματα 1.Οι ισόθερμες καμπύλες σε δυο ποσοτήτων ιδανικού αερίου, n 1 και n 2 mol, στην ίδια θερμοκρασία Τ φαίνονται στο διπλανό διάγραμμα. Να αποδείξετε ότι είναι n 2 > n 1. ΑΠΑΝΤΗΣΗ: Παίρνουμε

Διαβάστε περισσότερα

Θερμότητα - διαφάνειες , Σειρά 1

Θερμότητα - διαφάνειες , Σειρά 1 Θερμότητα - διαφάνειες 007-8, Σειρά Βιβλιογραφία (ενδεικτική) H.D. Young, Πανεπιστημιακή Φυσική Τόμος Α, (5-, 5-, 5-3, 5-5, 5-6, 6-, 6-, 6-4, 7-, 7-, 7-3, 7-4, 7-5, 7-6, 7-7,7-8) Σημειώσεις καθ. Κου Δ.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 9: ΘΕΡΜΟΚΡΑΣΙΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 9: ΘΕΡΜΟΚΡΑΣΙΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 9: ΘΕΡΜΟΚΡΑΣΙΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

Διαγώνισμα B Λυκείου Σάββατο 22 Απριλίου 2017

Διαγώνισμα B Λυκείου Σάββατο 22 Απριλίου 2017 Διαγώνισμα Λυκείου Σάββατο Απριλίου 07 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. Αξιολόγηση : Θέμα Α Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 013 Θεωρητικό Μέρος Β Λυκείου 9 Μαρτίου 013 Θέμα 1 ο A. Ένα σωματίδιο με μάζα m και ηλεκτρικό φορτίο q επιταχύνεται από διαφορά δυναμικού V, κινούμενο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ ΑΣΚΗΣΗ Ένα αντικείμενο εκτελεί απλή αρμονική κίνηση με πλάτος 4, cm και συχνότητα 4, Hz, και τη χρονική στιγμή t= περνά από το σημείο ισορροπίας και κινείται προς τα δεξιά. Γράψτε

Διαβάστε περισσότερα

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1 . 1. Η απλή αρµονική ταλάντωση είναι κίνηση: α. ευθύγραµµη οµαλή β. ευθύγραµµη οµαλά µεταβαλλόµενη γ. οµαλή κυκλική δ. ευθύγραµµη περιοδική. Η φάση της αποµάκρυνσης στην απλή αρµονική ταλάντωση: α. αυξάνεται

Διαβάστε περισσότερα

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k! Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 1 9713934 & 1 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις

Επαναληπτικές ασκήσεις Επαναληπτικές ασκήσεις a a a Τ Τ x Τ Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτελείται από 3 mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δεν αλληλεπιδρούν μεταξύ τους. Τα μόρια αυτά

Διαβάστε περισσότερα

Φυσική Κατεύθυνσης Β Λυκείου.

Φυσική Κατεύθυνσης Β Λυκείου. Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης Κριτήριο Αξιολόγησης - 26 Ερωτήσεις Θεωρίας Κεφ. 4 ο ΑΡΧΕΣ ΤΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ - ΦΥΣΙΚΗ Ομάδας Προσανατολισμού Θετικών Σπουδών Β Λυκείου επιμέλεια ύλης: Γ.Φ.Σ ι ώ ρ η ς ΦΥΣΙΚΟΣ 1. Σε μια αδιαβατική εκτόνωση

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Κεφάλαιο 1. Κίνηση σε μία διάσταση

Κεφάλαιο 1. Κίνηση σε μία διάσταση Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 82 ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1. Η πίεση του αέρα στα λάστιχα ενός ακίνητου αυτοκινήτου με θερμοκρασία θ 1 =7 ο C είναι P 1 =3 atm. Κατά την

Διαβάστε περισσότερα

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Ενδεικτικές Λύσεις Θέµα Α Α.1. Στην άκρη ενός τραπεζιού ϐρίσκονται δύο σφαίρες Σ 1 και Σ 2. Κάποια χρονική

Διαβάστε περισσότερα

α. 0 β. mωr/2 γ. mωr δ. 2mωR (Μονάδες 5) γ) στην ισόθερμη εκτόνωση δ) στην ισόχωρη ψύξη (Μονάδες 5)

α. 0 β. mωr/2 γ. mωr δ. 2mωR (Μονάδες 5) γ) στην ισόθερμη εκτόνωση δ) στην ισόχωρη ψύξη (Μονάδες 5) ΜΑΘΗΜΑ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ Φυσική Β Λυκείου Προσανατολισμού Γκικόντης Λαμπρος ΗΜΕΡΟΜΗΝΙΑ 5 - - 07 ΔΙΑΡΚΕΙΑ ώρες ΘΕΜΑ ο Α. Στις παρακάτω ερωτήσεις -5 να επιλέξετε τη σωστή απάντηση. Α. Μικρό σώμα μάζας m εκτελεί

Διαβάστε περισσότερα