(S k R n ) (C k R m )

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(S k R n ) (C k R m )"

Transcript

1 KΕΦΑΛΑΙΟ 7 υναµικός Προγραµµατισµός 7.1 ΕΙΣΑΓΩΓΗ Η θεωρία αποφάσεων διακρίνεται σε δύο µεγάλες κατηγορίες, µε βάση το αν ο υπεύθυνος απόφασης είναι µοναδικός φορέας ή πολλοί φορείς. Μέχρι τώρα αναπτύχθηκαν µέθοδοι της πρώτης κατηγορίας, οι οποίες µπορεί να διακριθούν σε στατικές ή µονοσταδιακές και σε σειριακές ή πολυσταδιακές όπου ο χρόνος µπορεί να είναι διακριτός ή συνεχής. Στο στατικό πρόβληµα αφορά την ελαχιστοποίηση της συνάρτησης κόστους που είναι µια συνάρτηση του διανύσµατος µεταβλητών απόφασης min J(u) u R n u Στο σειριακό πρόβληµα το διάνυσµα των µεταβλητών κατάστασης του συστήµατος εξελίσσεται στον χρόνο ή στον χώρο σύµφωνα µε ένα σύστηµα εξισώσεων στις οποίες εµπλέκονται και οι µεταβλητές απόφασης. Η συνάρτηση κόστους είναι το άθροισµα του κόστους µετάβασης σε κάθε σταδίου και τελικά εξαρτάται από τη (γνωστή) αρχική κατάσταση και τις τιµές των µεταβλητών απόφασης σε κάθε στάδιο. Για το µη γραµµικό σύστηµα x + 1 = f (x, u ) µε συνάρτηση κόστους µετάβασης g = g (x, u ) το συνολικό κόστος είναι N-1 J( u) = G N (x ) + g (x,u ) = G Φ (x,u) + J(x,u) 4 3 Κόστος N N ( N 0 ) κόστος τελική ς κατάστασης = 0 κόστοςενδιάµεσης κατάστασης συνάρτηση µόνο των αποφάσεων u Ζητείται να βρεθεί η σειρά αποφάσεων (πολιτική) u που ελαχιστοποιεί το κόστος: min J(u) u Η λύση του παραπάνω προβλήµατος αναπτύχθηκε ήδη στο Κεφάλαιο 3 σαν εφαρµογή για εξάσκηση 3.4 για τον βέλτιστο έλεγχο, χρησιµοποιώντας κλασσικές µεθόδους βελτιστοποίησης. Η προσέγγιση αυτή απαιτεί οι συναρτήσεις να είναι συνεχείς και παραγωγίσιµες και να µην υπάρχουν περιορισµοί. Ο δυναµικός προγραµµατισµός (.Π.) είναι µια µέθοδος που διαχωρίζει το πρόβληµα πολυσταδιακής βελτιστοποίησης σε µια σειρά προβληµάτων µονοσταδιακής βελτιστοποίησης που µπορεί να επιλυθούν µε µια από τις ήδη

2 γνωστές µεθόδους. Ο διαχωρισµός γίνεται µε τέτοιο τρόπο ώστε η βέλτιστη λύση του αρχικού προβλήµατος να µπορεί να προκύψει από τις βέλτιστες λύσεις των επί µέρους προβληµάτων, η µέθοδος επίλυσης των οποίων δεν επηρεάζει το αποτέλεσµα. Παράδειγµα 7.1 Έστω ένας ταµιευτήρας και x = στάθµη του νερού στον ταµιευτήρα τη χρονική στιγµή (µεταβλητή κατάστασης), η στάθµη x 0 τη χρονική στιγµή 0 είναι γνωστή r = εισροή νερού στον ταµιευτήρα τη χρονική στιγµή, (µεταβλητή εισόδου), γνωστή για = 0, Ν u = εκροή από τον ταµιευτήρα τη χρονική στιγµή (µεταβλητή απόφασης), ζητούµενο για = 0, Ν Εξίσωση κατάστασης (ισοζύγιο µάζας ταµιευτήρα): x +1 = x - u + r = 0, Ν-1 και x 0 γνωστό g (x, u ) = κόστος απόφασης για εκροή u τη στιγµή Συνολικό Κόστος = J(u) = g (x ) N N 123 κόστος τελική ς κατάστασης + N-1 Την χρονική στιγµή : είναι γνωστή η κατάσταση x λαµβάνεται η απόφαση u υπολογίζεται το κόστος g (x, u ) δηµιουργείται η νέα κατάσταση x +1 g (x,u ) = 0 κόστος ενδιάµεσης µετάβασης 7.2 ΑΛΓΟΡΙΘΜΟΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ορισµός: Πολιτική π = {µ 0,, µ Ν-1 } είναι ένα σύνολο συναρτήσεων που προσδιορίζει τις τιµές των µεταβλητών απόφασης u από τις τιµές των µεταβλητών κατάστασης x, δηλαδή u = µ (x ) Το πρόβληµα είναι να ελαχιστοποιηθεί το κόστος για όλες τις δυνατές πολιτικές π min J (x0) = J (x0) π π Έστω S = το σύνολο όλων των δυνατών καταστάσεων τη χρονική στιγµή (S R n ) C = το σύνολο όλων των δυνατών αποφάσεων τη χρονική στιγµή (C R m )

3 Για κάθε x S u = µ (x ) C U (x ) = το σύνολο όλων των εφικτών αποφάσεων τη χρονική στιγµή, αν η κατάσταση είναι x (δηλαδή λαµβάνει υπόψη τους περιορισµούς του προβλήµατος, U (x ) C ). Ορισµός: Αποδεκτή Πολιτική π = {µ 0,, µ Ν-1 } είναι ένα σύνολο συναρτήσεων που έχουν πεδίο τιµών το σύνολο U (x ) ή µ : S C και µ (x ) U (x ) x S Αναδροµική µορφή του Κόστους Μετάβασης Θεώρηµα: Το κόστος ενδιάµεσης µετάβασης εξαρτάται µόνο από την τρέχουσα κατάσταση τη χρονική στιγµή και παίρνει τη µορφή (η υπογράµµιση των διανυσµάτων παραλείπεται στο εξής) J (x ) = g (x, u ) + J +1 (f (x, u )) Απόδειξη J Ν = g Ν (x Ν ) = J Ν (x Ν ) J Ν-1 = g Ν (x Ν ) + g Ν-1 (x Ν-1, u Ν-1 ) = g Ν-1 (x Ν-1, u Ν-1 ) + J Ν (x Ν ) = g Ν-1 (x Ν-1, µ Ν-1 (x Ν-1 )) + J Ν (f Ν(x Ν-1, µ Ν-1 (x Ν-1 ))) = J Ν-1(x Ν-1 ) J Ν-2 = g Ν (x Ν ) + g Ν-1 (x Ν-1, u Ν-1 ) + g Ν-2 (x Ν-2, u Ν-2 ) = g Ν-2 (x Ν-2, u Ν-2 ) + J Ν-1(x Ν-1 ) = g Ν-2 (x Ν-2, µ Ν-2 (x Ν-2 )) + J Ν-1 (f Ν-1(x Ν-2, µ Ν-2 (x Ν-2 ))) = J Ν-2(x Ν-2 ) κ.λπ. Σύµφωνα µε το προηγούµενο θεώρηµα το πρόβληµα ελαχιστοποίησης σε κάθε στάδιο γράφεται J Ν (x Ν ) = g Ν (x Ν ) J (x ) = min [g (x, u ) + J +1 (f (x, u ))] = N-1, N-2,...,0 u U (x ) όπου J (x ) = J (x ) = βέλτιστο κόστος για το πρόβληµα αρχίζοντας από την κατάσταση x τη χρονική στιγµή και έτσι J 0 (x 0 ) = J (x 0 ) = ελάχιστο κόστος µετάβασης από x 0 σε x Ν Θεώρηµα (Βασικό του.π.) Εάν π = { µ 0,..., µ Ν-1 } έτσι ώστε µ (x ) επιτυγχάνει το ελάχιστο για κάθε x τότε η π είναι η βέλτιστη πολιτική 3

4 Αλγόριθµος (προς τα πίσω) J Ν (x Ν ) = g Ν (x Ν ) Για = N-1, N-2,...,0 Για κάθε x S Για κάθε u U (x ) υπολόγισε το J (x ) = g (x, u ) + J +1 (x +1 ) και ελαχιστοποίησε το ως προς u J (x ) Αρχή Βελτιστότητας Εάν η { µ 0,..., µ Ν-1 } είναι βέλτιστη για το αρχικό πρόβληµα, τότε η {µ,..., µ Ν-1 } είναι βέλτιστη για το πρόβληµα που αρχίζει τη στιγµή Η αρχή αυτή προτάθηκε από τον R. Bellman, ο οποίος από τις αρχές της δεκαετίας του 1950 ανέπτυξε τη θεωρία του.π. σε 60 βιβλία και 600 άρθρα περιοδικών. Είναι χαρακτηριστικό της ιδιοµορφίας της εργασίας του ότι η πρώτη δηµοσίευση του για το.π. απορρίφθηκε σαν απλοϊκή. Το Θεώρηµα και η Αρχή Βελτιστότητας σηµαίνουν ότι η βέλτιστη πολιτική θα αποφέρει ελάχιστο κόστος µετάβασης στην τελική κατάσταση από οποιοδήποτε ενδιάµεσο στάδιο. Η απόδειξη της Αρχής της Βελτιστότητας χρησιµοποιεί τις εξής δύο προτάσεις: 1) min [h 1 (x) + h 2 (x, y)] = min [h 1 (x) + min h 2 (x, y)] x y 2) x, y min [h(x, µ(x)] = µ min [h(x,u)] u Απόδειξη µε µαθηµατική επαγωγή προς τα πίσω Για i = N J Ν (x Ν ) = g Ν (x Ν ) = J (x Ν ) Έστω ισχύει για i+1 Για i έχουµε J i+1 (x i+1 ) = J (x i+1 ) = J (x i ) = {µ i,..., µ -Ν -1} min {µ i+ 1,..., µ -Ν -1} N-1 min [g N (x N ) + = i N-1 [g N (x N ) + = i+ 1 g (x, µ (x ))] g (x, µ (x ))]

5 5 = min [g i (x i, µ i (x i )) + g N (x N ) + {µ i,..., µ -Ν -1} N-1 = i+ 1 g (x, µ (x ))] συνάρτηση του µ i συνάρτηση του µ i+1,..,µ Ν-1 χρησιµοποιώντας την (1) = min g i (x i, µ i (x i )) + µ i min {µ i+ 1,..., µ -Ν -1} N-1 [g N (x N ) + = i+ 1 = min g i (x i, µ i (x i )) + J (x i+1 ) µ i = min g i (x i, µ i (x i )) + J i+1 (x i+1 ) µ i χρησιµοποιώντας την (2) = min g i (x i, u i ) + J i+1 ( f i(x i, u i )) = J i (x i) u i Ui (x i ) g (x, µ (x ))] Πολυπλοκότητα Αλγόριθµος.Π. C x S x N Εξαντλητικός υπολογισµός για κάθε S C C S Για Ν στάδια π = { µ 0,..., µ Ν-1 } { C S } Ν = C S Ν Εποµένως ο αλγόριθµος.π. είναι πολύ ταχύτερος, όµως για µεγάλο αριθµό µεταβλητών απόφασης και πολλά στάδια ο υπολογιστικός φόρτος µπορεί να είναι τεράστιος ( curse of dimensionality ). Παράδειγµα Συντοµότερη διαδροµή σε δίκτυο Ζητείται ο αγωγός µε το ελάχιστο κόστος ανάµεσα στα Α-Ζ όπου τα κόστη µετάβασης είναι όπως αναγράφονται στην εικόνα: A C 1 D 1 B B 2 11 C B 3 14 C 3 14 κανένας βρόγχος δεν έχει αρνητικό κόστος (αλλοιώς το κόστος ελαχιστοποιείται επαναλαµβάνοντας τον βρόγχο αυτόν πολλές φορές πριν την άφιξη) αν η σύνδεση ij δεν υπάρχει θέτουµε c ij = άπειρο λαµβάνεται c ii = 0 D 2 D Z

6 κατάσταση x = κόµβος στο στάδιο στάδιο µετάβαση µεταξύ κόµβων έλεγχος απόφαση ποιά είναι η επόµενη κατάσταση δυναµική εξίσωση x +1 = u κόστος g (x, u ) = c x u = cij αν x N = A 0 αν x N = Z J (x ) = min [ c + J +1 (u )] ή J (i) = αλγόριθµος.π. J Ν (x Ν ) = g Ν (x Ν ) = u x u κόστος να φτάσουµε στον κόµβο j ξεκινώντας από τον i στάδιο κατάσταση απόφαση νέα κατάσταση κόστος min [c ij + J +1 (j)] = βέλτιστο j κόστος µέχρι τώρα ολικό κόστος i j j c ij J j 4 D 1 Z Z D 2 Z Z D 3 Z Z C 1 D 1 D D 2 D D 3 D C 2 D 1 D D 2 D D 3 D C 3 D 1 D D 2 D D 3 D B 1 C 1 C C 2 C C 3 C B 2 C 1 C C 2 C C 3 C B 3 C 1 C C 2 C C 3 C A B 1 B B 2 B B 3 B Βέλτιστη πολιτική: Α [10] Β 1 [8] C 1 [8] D 1 [9] Z f =35 ή Α [10] Β 1 [9] C 3 [7] D 1 [9] Z f =35 Εξαντλητικός υπολογισµός: 3 3 = n N-1 N 3 υναµικός Προγραµµατισµός: 3x3x2 + 3x2 = (N-2) n 2 + 2n (N ο αριθµός των σταδίων, n ο αριθµός των κόµβων σε κάθε ενδιάµεσο στάδιο)

7 7 Παράδειγµα Σύστηµα Ύδρευσης Συνολική διαθέσιµη ποσότητα νερού Q = 5. Ζητείται να γίνει βέλτιστη διάθεση σε τρεις καταναλωτές j = 1, 2, 3 όταν είναι γνωστό ότι b j x j Οφέλη B = a (1 e ) Κόστη d C = c j j x j j j a j b j c j d j Η λύση θα προκύψει σε 3 στάδια, όπου σε κάθε στάδιο θα ληφθεί απόφαση για έναν καταναλωτή. Μεταβλητή κατάστασης S j = διαθέσιµο νερό στο στάδιο j Μεταβλητή απόφασης x j = νερό που διατέθηκε στον j καταναλωτή (στάδιο) Εξίσωση κατάστασης S j+1 = S j - x j Αντικειµενική συνάρτηση g (x ) = a (1 e j j j b jx j ) c j x d j j Αλγόριθµος υναµικού Προγραµµατισµού J Ν (S Ν ) = g Ν (S Ν ) = 0 J j (x j ) = max [g j (x j ) + J j+1 ( S j - x j )] j = N-1, N-2,...,0 x j S 1 = 5 S 2 = S 1 - x 1 S 3 = S 2 - x 2 S 4 = S 3 x 3 Στάδιο 1 x 1 g 1 (x 1 ) Στάδιο 2 x 2 g 2 (x 2 ) Στάδιο 3 x 3 g 3 (x 3 ) x 1 = 0 x 2 = 1 x 3 = 4 f = 18

8 S 3 x 3 S 4 g 3 (x 3,S 3 ) J 4 (S 4 ) J 3 (S 3 ) J 3 (S 3 ) x S 2 x 2 S 3 g 2 (x 2, S 2 ) J 3 (S 3 ) J 2 (S 2 ) J 2 (S 2 ) x S 1 x 1 S 2 g 1 (x 1, S 1 ) J 2 (S 2 ) J 1 (S 1 ) J 1 (S 1 ) x

9 9 Αλγόριθµος προς τα µπρος J +1 (s +1 ) = max [g (x, s ) + J (s )] x S 1 x 1 S 2 g 1 (x 1, S 1 ) J 1 (S 1 ) J 2 (S 2 ) J 2 (S 2 ) S S 2 x 2 S 3 g 2 (x 2, S 2 ) J 2 (S 2 ) J 3 (S 3 ) J 3 (S 3 ) S S 3 x 3 S 4 g 3 (x 3, S 3 ) J 3 (S 3 ) J 4 (S 4 ) J 4 (S 4 ) S

10 Παράδειγµα 7.4 υναµικός Προγραµµατισµός µε πολλές µεταβλητές κατάστασης Ένας εργολάβος χρησιµοποιεί ζεύγη προωθητή-εκσκαφέα για να διεκπεραιώνει εκσκαφές. Καθώς ο προωθητής ή ο εκσκαφέας παλιώνει, το ετήσιο κέρδος από το ζεύγος µειώνεται, εξαιτίας του αυξηµένου κόστους συντήρησης. Απλοποιώντας το πρόβληµα, ας υποθέσουµε ότι ο εργολάβος δε χρησιµοποιεί τον προωθητή πάνω από 4 έτη και τον εκσκαφέα πάνω από 2 έτη και ότι το εκτιµώµενο καθαρό κέρδος από το ζεύγος, ανάλογα µε την ηλικία των µηχανηµάτων, είναι όπως στον πίνακα: Ηλικία προωθητή Ηλικία εκσκαφέα Καθαρό κέρδος (χιλιάδες $) Το κόστος ενός νέου προωθητή ή εκσκαφέα είναι $9,000 και $3,000 αντίστοιχα. Αντικαταστάσεις στο τέλος του έτους i χρεώνονται στο ίδιο έτος. Στο τέλος κάθε έτους ο εργολάβος επιλέγει µια από τις εξής τέσσερις πολιτικές: Κόστος (χιλιάδες $) Κ Καµµία αντικατάσταση 0 Π Αντικατάσταση µόνο του προωθητή 9 Ε Αντικατάσταση µόνο του εκσκαφέα 3 Αντικατάσταση και των δύο 12 Να προσδιοριστεί η πολιτική αντικατάστασης που µεγιστοποιεί το κέρδος για µια δεδοµένη χρονική περίοδο (ορίζοντας σχεδιασµού Ν). Να επιλυθεί το πρόβληµα για Ν = 4. Η λύση θα προκύψει σε 4 στάδια, όπου σε κάθε στάδιο θα ληφθεί η απόφαση αντικατάστασης. Μεταβλητή κατάστασης: S i = [s 1i s 2i ] T = ηλικία προωθητή 1 ή εκσκαφέα 2 στην αρχή του έτους i υνατές αποφάσεις: U i = {Κ, Π, Ε, } = σύνολο αποφάσεων στο τέλος του έτους i Μεταβλητές απόφασης: u i = [u 1i u 2i ] T = µεταβολή στην ηλικία προωθητή 1 ή εκσκαφέα 2 λόγω της απόφασης αντικατάστασης στο τέλος του έτους i, εποµένως U i = {Κ, Π, Ε, } = {[0,0] Τ, [-(s 1i + 1), 0] Τ, [0, -(1 + s 2i )] Τ, [-(s 1i + 1), -(1 + s 2i )] Τ } Εξίσωση κατάστασης S i+1 = S i u i

11 Αντικειµενική συνάρτηση g i (S i, x i ) = Κέρδος από την κατάσταση S i - Κόστος απόφασης x i 11 Αλγόριθµος υναµικού Προγραµµατισµού J Ν (S Ν ) = g Ν (S Ν ) = 0 J i (x i ) = max [g i (S i, x j ) + J j+1 (S i+1 )] j = N-1, N-2,...,0 1 x i S 3 x 3 S 4 g 3 (x 3, S 3 ) J 4 (S 4 ) J 3 (S 3 ) J 3 (S 3 ) x 3 [0,0] Κ [1,1] Κ [1,0] Κ [2,1] Κ [2,0] Κ [3,1] Κ [3,0] Κ [4,1] Κ [0,1] Κ [1,2] Κ [1,1] Κ [2,2] Κ [2,1] Κ [3,2] Κ [3,1] Κ [4,2] Κ Είναι προφανές ότι οι καταστάσεις αυτές δεν είναι δυνατές µε βάση τους κανόνες αντικατάστασης των µηχανηµάτων. Όµως επειδή η τελική κατάσταση δεν ενδιαφέρει, η βέλτιστη πολιτική για το τελευταίο έτος είναι να µη γίνει καµιά αντικατάσταση πράγµα που έχει µηδενικό κόστος. S 2 x 2 S 3 g 2 (x 2, S 2 ) J 3 (S 3 ) J 2 (S 2 ) J 2 (S 2 ) x 2 [0,0] Κ [1,1] Κ Π [0,1] Ε [1,0] [0,0] [1,0] Κ [2,1] Κ Π [0,1] Ε [2,0] [0,0] [2,0] Κ [3,1] Κ Π [0,1] Ε [3,0] [0,0] [3,0] Κ --- Π [0,1] Π Ε ---- [0,0] [0,1] Κ ---- Ε [1,0] Ε [0,0] [1,1] Κ ---- Ε [2,0] Ε [0,0]

12 [2,1] Κ ---- Ε [3,0] Ε [0,0] [3,1] Κ ---- Ε ---- [0,0] S 1 x 1 S 2 g 1 (x 1, S 1 ) J 2 (S 2 ) J 1 (S 1 ) J 1 (S 1 ) x 1 [0,0] Κ [1,1] Κ Π [0,1] Ε [1,0] Ε [0,0] [1,0] Κ [2,1] Π [0,1] Π Ε [2,0] [0,0] [2,0] Κ [3,1] Π [0,1] Π Ε [3,0] [0,0] [3,0] Κ --- Π [0,1] Π Ε ---- [0,0] [0,1] Κ ---- Ε [1,0] Ε [0,0] [1,1] Κ ---- Ε [2,0] [0,0] [2,1] Κ ---- Ε [3,0] [0,0] [3,1] Κ ---- Ε ---- [0,0] S 0 x 0 S 1 g 0 (x 0, S 0 ) J 1 (S 1 ) J 0 (S 0 ) J 0 (S 0 ) x 0 [0,0] Κ [1,1] Κ Π [0,1] Ε [1,0]

13 [0,0] [1,0] Κ [2,1] Κ Π [0,1] Π Ε [2,0] [0,0] [2,0] Κ [3,1] Π [0,1] Π Ε [3,0] [0,0] [3,0] Κ --- Π [0,1] Π Ε ---- [0,0] [0,1] Κ ---- Ε [1,0] Ε [0,0] Κ ---- [1,1] Ε [2,0] Ε [0,0] [2,1] Κ ---- Ε [3,0] [0,0] [3,1] Κ ---- Ε ---- [0,0] Εποµένως η πολιτική αντικατάστασης που µεγιστοποιεί το κέρδος για ορίζοντα σχεδιασµού Ν = 4 είναι: [0,0] Κ [1,1] [0,0] Κ [1,1] = $24 χιλιάδες Παρατηρήσεις (1) Ο αλγόριθµος προς τα πίσω είναι σαφές ότι µπορεί να επεκταθεί για οποιοδήποτε ορίζοντα σχεδιασµού. (2) Μια πιο λεπτοµερής ανάλυση µπορεί να χρησιµοποιήσει αποπληθωρισµό των καθαρών εσόδων. (3) Σε µια γενικότερη ανάλυση τα κόστη αντικατάστασης και οι δυνατότητες παραγωγής µπορεί να µεταβάλλονται για κάθε έτος (Bellman R., and S.E. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1962, σ. 118).

14 Παράδειγµα 7.5 Αντικειµενική συνάρτηση µε µορφή γινοµένου Η επαναληπτική σχέση του αλγόριθµου του δυναµικού προγραµµατισµού µπορεί να προκύπτει σαν γινόµενο του κόστους µετάβασης για κάθε στάδιο. Για παράδειγµα, σε συστήµατα που αποτελούνται από πολλές συνιστώσες σε σειρά (κινητήρας-αντλία-στρόβιλος) η συνολική απόδοση είναι το γινόµενο των αποδόσεων των επί µέρους στοιχείων, οι οποίες είναι αυξανόµενες συναρτήσεις του κόστους. Ας υποθέσουµε ότι υπάρχουν διαθέσιµες C χρηµατικές µονάδες για τη λειτουργία ενός συστήµατος µε n συνιστώσες. Η απόδοση της i συνιστώσας είναι E i = E i (C i ). Ζητείται να προσδιοριστούν τα κόστη C i ώστε η απόδοση του συστήµατος H C) = E ( C ) να είναι µέγιστη, όπου C = n C i i= 1 n ( i i i= 1 Για ένα σύστηµα µε δύο συνιστώσες Η 2 (C) = E 2 (C 2 ) H 1 (C - C 2 ) ενώ γενικά ισχύει Η n (C) = E n (C n ) H n-1 (C C n ) Σε µια απλή περίπτωση εάν ισχύει E i (C i ) = a C i + b ή (µε a =1, b = 0) E i (C i ) = C i έχουµε: n = 1 n = 2 max Η 1 (C) = E 1 (C 1 ) = C 1 Η 1 (C) = C c 1 maxη 2 (C) = E 2 (C 2 ) H 1 (C - C 2 ) = C 2 (C - C 2 ) C 2 = C/2, c 2 Η 2 (C) = (C/2) 2 Έστω ότι για n = -1 ισχύει Η -1 (C) = C -1 1 n = maxη (C) = E (C ) H C C -1 (C C ) = C c -1, Η (C) = (C/) Απόδειξη: d Η (C ) = dc 2 C C -1 1 C C C C C -1-1 Η µέγιστη απόδοση είναι C C + C -1 2 (-1) n 1 = -1 1 = 0 C C C + C = 0 C = C/ C = C/

15 15 H C ( C) = C C -1 1 C = ( -1) C -1 H C ( C) = Εποµένως µε µαθηµατική επαγωγή, ισχύει C n = C/n, Η C n (C) = n, n = 1, 2, 3. n 1 C = C 7.3 ΓΡΑΜΜΙΚΟΣ-ΤΕΤΡΑΓΩΝΙΚΟΣ ΕΛΕΓΧΟΣ Ας υποθέσουµε γραµµική δυναµική εξίσωση συστήµατος και τετραγωνικό κριτήριο κόστους x +1 = A x + B u x 0 γνωστό, x R n u R m N-1 J = ½ x N T Q N x N + = 0 {½ x T Q x + ½ u T R u } ποινή κατάστασης ποινή απόφασης Q 0, R > 0 π J π 0 (για ελαχιστοποίηση οι µεταβλητές κατάστασης και απόφασης πρέπει να είναι κοντά στο µηδέν) Αλγόριθµος.Π. J N (x N ) = ½ x T N Q N x N J (x ) = min {½ x T Q x + ½ u T R u + J +1 (A x + B u ) } u για = N-1 J N-1 (x N-1 ) = = min {½ x N-1 T Q N-1 x N-1 + ½ u N-1 T R N-1 u N-1 + u N-1 ½ (A N-1 x N-1 + B N-1 u N-1 ) T Q N (A N-1 x N-1 + B N-1 u N-1 ) } min {½ x T N-1 Q N-1 x N-1 + ½ u T N-1 R N-1 u N-1 + u N-1 ½ (x T N-1 A T N-1 Q N A N-1 x N-1 )+ ½ (x T N-1 A T N-1 Q N B N-1 u N-1 )+ ½ (u T N-1 B T N-1 Q N A N-1 x N-1 )+ ½ (u T N-1 B T N-1 Q N B N-1 u N-1 )} (οι διαγώνιοι όροι είναι ίσοι ως ανάστροφοι και βαθµωτοί διαστάσεων (1,1)) = min {½ x T N-1 (Q N-1 + A T N-1 Q N A N-1 )x N-1 + u N-1 1

16 ½ u N-1 T (R N-1 + B N-1 T Q N B N-1 )u N-1 +(x N-1 T A N-1 T Q N B N-1 u N-1 )} dj N-1 /du N-1 = 0 = (R N-1 + B N-1 T Q N B N-1 )u N-1 + B N-1 T Q N A N-1 x N-1 u N-1 = - (R N-1 + B N-1 T Q N B N-1 ) -1 B N-1 T Q N A N-1 x N-1 = L N-1 x N-1 χρησιµοποιώντας αυτή την εξίσωση στη συνάρτηση J N-1 προκύπτει J N-1 (x N-1 ) = ½ x N-1 T K N-1 x N-1 όπου K N-1 = A N-1 T [Q N - Q N B N-1 (R N-1 + B N-1 T Q N B N-1 ) -1 B N-1 T Q N ] A N-1 + Q N-1 συµµετρικός πίνακας και K N-1 0, καθόσον J N-1 0 για = N-2 J N-2(x N-2 ) = min {½ x N-2T Q N-2 x N-2+ ½ u N-2T R N-2 u N-2 + u N-2 ½ (A N-2 x N-2 + B N-2 u N-2 ) T K N-1 (A N-2 x N-2 + B N-2 u N-2 ) } αλλαγές Ν-1 Ν-2, Q N Κ N-1 οπότε γενικά u = - (R + B T K +1 B ) -1 B T K +1 A x = L x J (x ) = ½ x T K x όπου K N = Q N K = A T [K +1 - K +1 B (R + B T K +1 B ) -1 B T K +1 ] A + Q (1) δοµή του προβλήµατος: γραµµικοί περιορισµοί και τετραγωνική συνάρτηση κόστους (2) η βέλτιστη µεταβλητή ελέγχου είναι γραµµική συνάρτηση της µεταβλητής κατάστασης σε κάθε χρονική στιγµή (L ) το βέλτιστο κόστος είναι τετραγωνική συνάρτηση της µεταβλητής κατάστασης σε κάθε χρονική στιγµή (Κ ) οι πίνακες L και Κ είναι συναρτήσεις των A, B, Q, R οπότε µπορεί να υπολογιστούν και αποθηκευτούν (ανεξάρτητοι από τη δυναµική σε πραγµατικό χρόνο) (3) οµή του ελέγχου

17 17 x u x +1 = A x + B u L το κόστος για εκκίνηση από το x τη στιγµή είναι J = ½ x T K x Είναι εµφανώς ένα απλό και εύχρηστο σύστηµα ελέγχου, αλλά είναι επιθυµητό το L να είναι ένας πίνακας χρονικά αµετάβλητος (σταθερό κέρδος): u = L x (4) Για γραµµικά χρονικά αµετάβλητα συστήµατα οι πίνακες A, B, Q, και R είναι χρονικά αµετάβλητοι, όµως οι L και Κ µεταβάλλονται χρονικά K = A T [K +1 - K +1 B(R+ B T K +1 B) -1 B T K +1 ] A+ Q L = - (R + B T K +1 B ) -1 B T K +1 A κάτω από ορισµένες συνθήκες καθώς άπειρο, L L και Κ Κ τότε χρειάζεται να επιλυθεί η αλγεβρική εξίσωση Ricatti (εξίσωση Πινάκων) K = A T [K - K B(R+ B T K B) -1 B T K ] A+ Q η οποία έχει περισσότερες από µία λύσεις, όµως µόνο µία είναι θετικά ηµιορισµένη ( 0). Παράδειγµα 7.6 Γραµµικός-τετραγωνικός έλεγχος H οικολογική ισορροπία µιας λίµνης απαιτεί η συγκέντρωση c µιας χηµικής ουσίας να µην αποµακρύνεται σηµαντικά από την τιµή c στη διάρκεια του καλοκαιριού. Αν δε ληφθούν µέτρα, η συγκέντρωση µειώνεται µε ρυθµό a ανάλογο της απόκλισης από την επιθυµητή τιµή c. Είναι δυνατόν να υπάρξει παρέµβαση, όπου για κάθε µονάδα της µεταβλητής ελέγχου u, η απόκλιση της συγκέντρωσης c αυξάνεται κατά β µονάδες. Η ποινή αποµάκρυνσης από την τιµή c και το κόστος ανά µονάδα της µεταβλητής u είναι q και r αντίστοιχα και αυξάνονται τετραγωνικά (q 0, r 0). Ζητείται η πολιτική (σειρά των τιµών της u) που πρέπει να εφαρµοστεί ώστε να επιτευχθεί το ελάχιστο κόστος. Κατάστρωση Λύσης Ορίζουµε x = c c την απόκλιση της συγκέντρωσης από την επιθυµητή τιµή κατά τη χρονική στιγµή.

18 Η δυναµική εξίσωση του συστήµατος είναι c +1 - c = c - c a (c - c) + β u x +1 = α x + β u x 0 = δ γνωστό όπου α = 1 a Το κόστος J δίδεται από την εξίσωση J N N = ½ q x N + {½ q x + ½ r u } = 0 Η λύση του προβλήµατος δίδεται από u = - (r+b 2 K +1 ) -1 ab K +1 x και το ελάχιστο κόστος αρχίζοντας από τη χρονική στιγµή της βέλτιστης λύσης είναι J = ½ K x 2 όπου η τιµή της Κ υπολογίζεται από την αναδροµική σχέση (εξίσωση Ricatti) K Ν = q K = α 2 [K +1 - β 2 K +1 2 (r+b 2 K +1 ) -1 ] + q = 0, 1, N-1 Ειδικές περιπτώσεις Χαµηλό κόστος µεταβλητής ελέγχου (q >> r) 2 u 0 = - b/a x 0 u = 0 = 1, 2, N-1 J 0 = ½ q x 0 K Ν = K = q Χαµηλή ποινή απόκλισης (q << r) K Ν = K = 0 u = 0 = 0, 1, N-1 J 0 = 0 ΠΡΟΒΛΗΜΑΤΑ ΓΙΑ ΕΞΑΣΚΗΣΗ 7.1 (Star Nichols) Μια εταιρεία παραγωγής αδρανών διαθέτει τέσσερα όµοια µηχανήµατα θραύσης-διαλογής και τέσσερις τοποθεσίες πρώτης ύλης που µπορεί να χρησιµοποιήσει σε ένα έργο. Το κέρδος εξαρτάται από τον συνδυασµό µηχανήµατος τοποθεσίας σύµφωνα µε τον παρακάτω πίνακα. Ζητείται να προσδιοριστεί ο αριθµός των µηχανηµάτων που πρέπει να χρησιµοποιηθούν σε κάθε τοποθεσία, ώστε να µεγιστοποιηθεί το έργο.

19 Το πρόβληµα είναι παρόµοιο µε το Παράδειγµα Σύστηµα Ύδρευσης. Εδώ ο συνολικά διαθέσιµος αριθµός µηχανηµάτων Ν = 4. Η λύση θα προκύψει σε 4 στάδια, όπου σε κάθε στάδιο θα ληφθεί απόφαση για µια τοποθεσία. Μεταβλητή κατάστασης S j = διαθέσιµος αριθµός µηχανηµάτων στη j τοποθεσία (στάδιο) Μεταβλητή απόφασης x j = αριθµός µηχανηµάτων που διατέθηκε στη j τοποθεσία Εξίσωση κατάστασης S j+1 = S j - x j Αλγόριθµος υναµικού Προγραµµατισµού Η βέλτιστη λύση είναι: Τοποθεσία Αριθµός µηχανηµάτων J Ν (S Ν ) = g Ν (S Ν ) = 0 J j (x j ) = max [g j (x j ) + J j+1 ( S j - x j )] j = N-1, N-2,...,0 x j Σύνολο Τοποθεσία Μηχανήµατα Κέρδος Στο παράδειγµα 7.4 θεωρείστε δεδοµένο ότι ο εργολάβος αρχίζει µε νέα µηχανήµατα S 1 = [0,0] Τ και επιλύστε το πρόβληµα χρησιµοποιώντας τον αλγόριθµο προς τα µπρος του δυναµικού προγραµµατισµού. 7.3 Θεωρείστε την ακόλουθη παραλλαγή του Παραδείγµατος 7.3 που αφορά ένα σύστηµα άρδευσης (Πηγή: Hall, W.A., and J. Dracup, Water Resources Engineering, McGraw-Hill, New Yor, 1970). Μια διώρυγα άρδευσης πρόκειται να κατασκευαστεί για να εξυπηρετεί τρεις περιοχές σε απόσταση 30, 50 και 75 m κατάντη του σηµείου εκτροπής. Η συνολική διαθέσιµη ποσότητα νερού ετησίως είναι Q = 800 µονάδες. Ζητείται να γίνει βέλτιστη διάθεση του νερού στις τρεις περιοχές j = 1, 2, 3 όταν είναι γνωστό ότι τα οφέλη και κόστη είναι όπως στον πίνακα 19

20 Ποσότητα νερού Β 1 Β 2 Β 3 c όπου Β j ετήσιο όφελος από την άρδευση στην περιοχή j (χιλιάδες $) c αποπληθωρισµένο κόστος του αγωγού µεταφοράς (χιλιάδες $/m) Η λύση θα προκύψει σε 3 στάδια, όπου σε κάθε στάδιο θα ληφθεί απόφαση για µια περιοχή. Μεταβλητή κατάστασης S j = διαθέσιµο νερό στο στάδιο j Μεταβλητή απόφασης x j = νερό που διατέθηκε στη j περιοχή (στάδιο) Εξίσωση κατάστασης S j+1 = S j - x j Αντικειµενική συνάρτηση: Το καθαρό όφελος g j (x j ) για διάθεση ποσότητας x j είναι ίσο µε το όφελος B j µείον το κόστος του αγωγού (= c x (µήκος αγωγού από την προηγούµενη υδροληψία) Αλγόριθµος υναµικού Προγραµµατισµού J Ν (S Ν ) = g Ν (S Ν ) = 0 J j (x j ) = max [g j (x j ) + J j+1 ( S j - x j )] j = N-1, N-2,...,0 x j S 3 x 3 S 4 B 3 (x 3 ) c 3 (x 3 ) J 4 (S 4 ) J 3 (S 3 ) J 3 (S 3 ) x Παρατηρούµε ότι το κόστος του αγωγού από τη 2 στην 3 εξαρτάται από την απόφαση πόση ποσότητα νερού θα διατεθεί στην 3, και όχι από το πόση ποσότητα είναι διαθέσιµη.

21 S 2 x 2 S 3 B 2 (x 2 ) c 2 (S 2 ) J 3 (S 3 ) J 2 (S 2 ) J 2 (S 2 ) x Παρατηρούµε ότι το κόστος του αγωγού από την 1 στη 2 εξαρτάται από την απόφαση πόση ποσότητα νερού είναι διαθέσιµη και όχι από το πόση ποσότητα θα διατεθεί στην 2, διότι όλη η ποσότητα πρέπει να παροχετευθεί για να είναι διαθέσιµη κατάντη. S 1 x 1 S 2 Β 1 (x 1 ) c 1 (S 1 ) J 2 (S 2 ) J 1 (S 1 ) J 1 (S 1 ) x

min f(x) x R n (1) x g (2)

min f(x) x R n (1) x g (2) KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ισότητες. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση κάτω από

Διαβάστε περισσότερα

ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0

ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0 KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς. ΕΙΣΑΓΩΓΗ Το γενικό πρόβληµα βελτιστοποίησης διατυπώνεται ως εξής: Ζητούνται οι τιµές των µεταβλητών απόφασης u που ελαχιστοποιούν την αντικειµενική

Διαβάστε περισσότερα

x k+1 = x k + α k (x k ) ώστε f(x k+1 ) < f(x k ),

x k+1 = x k + α k (x k ) ώστε f(x k+1 ) < f(x k ), KΕΦΑΛΑΙΟ 5 Υπολογιστικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς 5.1 ΕΙΣΑΓΩΓΗ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση min f(x) x R n x Στα περισσότερα

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Το µαθηµατικό µοντέλο του Υδρονοµέα

Το µαθηµατικό µοντέλο του Υδρονοµέα Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης:

Διαβάστε περισσότερα

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) + KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 04 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # : Επιχειρησιακή έρευνα Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία

Διαβάστε περισσότερα

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Δυναμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30)

3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30) . Γράφοµε τις ανωτέρω σχέσεις για q=,... Mσε διανυσµατική µορφή : = G λ (3.30) 3. Επειδή ισχύει παράλληλα και d = G, αντικαθιστώντας το από την 3.30 στην αρχική εξίσωση παίρνοµε : d= G G λ / (3.3) 4. Εάν

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7 Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εισαγωγή Ο Δυναμικός Προγραμματισμός (ΔΠ) είναι μία υπολογιστική μέθοδος η οποία εφαρμόζεται όταν πρόκειται να ληφθεί μία σύνθετη απόφαση η οποία προκύπτει από τη σύνθεση επιμέρους

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως

Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Κεφάλαιο 9: Καταθλιπτικοί αγωγοί και αντλιοστάσια

Κεφάλαιο 9: Καταθλιπτικοί αγωγοί και αντλιοστάσια Κεφάλαιο 9: Καταθλιπτικοί αγωγοί και αντλιοστάσια Τυπικές φυγοκεντρικές αντλίες Εξαγωγή Άξονας κινητήρα Σπειροειδές κέλυφος Εισαγωγή Κατακόρυφου άξονα Πτερωτή Εξαγωγή Εισαγωγή Άξονας κινητήρα Πτερωτή Οριζόντιου

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης

Διαβάστε περισσότερα

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Παράρτηµα 3 Μέθοδοι Διαχρονικής Βελτιστοποίησης

Παράρτηµα 3 Μέθοδοι Διαχρονικής Βελτιστοποίησης Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Παράρτηµα 3 Μέθοδοι Διαχρονικής Βελτιστοποίησης Η βελτιστοποίηση (optimization) σε δυναµικά οικονοµικά προβλήµατα, δηλαδή σε προβλήµατα στα οποία

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Θεσσαλονίκη 2012 2 Περιεχόµενα 1 υναµικός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ: Ανάλυση ευαισθησίας των παραμέτρων του μαθηματικού υποδείγματος. Εφαρμογές χρησιμοποιώντας το R

ΚΕΦΑΛΑΙΟ ΕΚΤΟ: Ανάλυση ευαισθησίας των παραμέτρων του μαθηματικού υποδείγματος. Εφαρμογές χρησιμοποιώντας το R ΚΕΦΑΛΑΙΟ ΕΚΤΟ: Ανάλυση ευαισθησίας των παραμέτρων του μαθηματικού υποδείγματος. Εφαρμογές χρησιμοποιώντας το R Σύνοψη Το κεφάλαιο αυτό έχει σκοπό να παρουσιάσει και να υπογραμμίσει τη σημασία της ανάλυσης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Διδάσκων: Νίκος Λαγαρός

Διδάσκων: Νίκος Λαγαρός ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 5 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Διωνυµικοί Συντελεστές. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1

Διωνυµικοί Συντελεστές. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1 Διωνυµικοί Συντελεστές Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1 Διωνυµικοί Συντελεστές Διωνυµικοί συντελεστές Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν τη γραµµική αντικειµενική συνάρτηση. n j = j = 1, 2,, n

Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν τη γραµµική αντικειµενική συνάρτηση. n j = j = 1, 2,, n KΕΦΑΛΑΙΟ 6 Γραµµικός Προγραµµατισµός 6. ΕΙΣΑΓΩΓΗ Ο γραµµικός προγραµµατισµός (Γ.Π.) είναι µια µέθοδος βελτιστοποίησης που εφαρµόζεται για την επίλυση προβληµάτων στα οποία η αντικειµενική συνάρτηση και

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares) ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

ιόδευση των πληµµυρών

ιόδευση των πληµµυρών ιόδευση των πληµµυρών Με τον όρο διόδευση εννοούµε τον υπολογισµό του πληµµυρικού υδρογραφήµατος σε µια θέση Β στα κατάντη ενός υδατορρεύµατος, όταν αυτό είναι γνωστό σε µια θέση Α στα ανάντη ή αντίστοιχα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Καταθλιπτικοί αγωγοί και αντλιοστάσια Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

υναµικός προγραµµατισµός

υναµικός προγραµµατισµός υναµικός προγραµµατισµός Σηµειώσεις στα πλαίσια του µαθήµατος: Βελτιστοποίηση συστηµάτων υδατικών πόρων Ανδρέας Ευστρατιάδης και ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 11 Πάτρα 2008 Προσαρμοστικός LQ έλεγχος για μη ελαχίστης

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα