HMY 795: Αναγνώριση Προτύπων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HMY 795: Αναγνώριση Προτύπων"

Transcript

1 HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων

2 Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ. γραμμικό/ μη γραμμικό) καθώς και της πολυπλοκότητάς του (αριθμός ελεύθερων παραμέτρων π.χ. τάξη πολυωνύμου στο πρόβλημα προσαρμογής καμπύλης) είναι εξαιρετικά σημαντική. Ο έλεγχος της απόδοσης ενός μοντέλου μόνο στο σύνολο εκπαίδευσης δεν είναι επαρκής Μια λύση: κανονικοποίηση έλεγχος της «αληθινής» πολυπλοκότητας (effective complexity) Αν έχουμε αρκετά μεγάλο όγκο δεδομένων, μπορούμε να κρατήσουμε ένα μέρος αυτών ως σύνολο επικύρωσης και να διαλέξουμε το μοντέλο με το βέλτιστο σφάλμα επικύρωσης Σε περιπτώσεις όπου είναι αναγκαία η επαναληπτική εκπαίδευση(π.χ. Νευρωνικά δίκτυα) μπορούμε να χρησιμοποιήσουμε ακόμη και 3 σύνολα δεδομένων (εκπαίδευσης, επικύρωσης, ελέγχου) Συλλογή δεδομένων Προεπεξεργασία δεδομένων Επιλογή χαρακτηριστικών Επιλογή μοντέλου/ ταξινομητή Εκπαίδευση μοντέλου/ταξινομητή Επικύρωση μοντέλου/ταξινομητή

3 Επιλογή μοντέλου δεδομένα επικύρωσης Πολλές φορές δεν έχουμε μεγάλο πλήθος δεδομένων Cross-validation: χωρίζουμε τα δεδομένα μας σε S κομμάτια (S-fold crossvalidation) και διαλέγουμε το μοντέλο με την καλύτερη μέση απόδοση Αν το δείγμα επικύρωσης είναι μικρό 1 μόνο δείγμα επικύρωσης μπορεί να δώσει θορυβώδη αποτελέσματα Για S=N, όπου Ν ο συνολικός αριθμός δεδομένων: leave-one-out Πιο απαιτητική υπολογιστικά προσέγγιση Εναλλακτικά: χρήση κάποιου στατιστικού κριτηρίου που χρησιμοποιεί μόνο τα δεδομένα εκπαίδευσης και περιλαμβάνει όρο ποινής γιαπιο πολύπλοκα μοντέλα (Akaike, Bayesian Information Criteria, Bayesian model evidence)

4 Προβλήματα πολλών διαστάσεων Δυσκολίες όταν τα χαρακτηριστικά (features) αυξάνουν σε αριθμό Curse of dimensionality

5 Curse of dimensionality Για προβλήματα πολλών διαστάσεων, εκθετική αύξηση πολυπλοκότητας Πρόβλημα προσαρμογής καμπύληςμε D εισόδους και πολυώνυμο τάξης Μ: D M συντελεστές

6 Curse of dimensionality Για προβλήματα πολλών διαστάσεων, εκθετική αύξηση πολυπλοκότητας Πρόβλημα προσαρμογής καμπύληςμε D εισόδους και πολυώνυμο τάξης Μ: D M συντελεστές

7 Curse of dimensionality Ευτυχώς στην πράξη αρκετές φορές τα δεδομένα στον πολυδιάστατο χώρο των χαρακτηριστικών (feature space) συχνά περιορίζονται σε μικρότερη περιοχή του χώρου ισοδύναμα έχουμε μικρότερη ενεργή διαστατικότητα (effective dimensionality) Επίσης, συχνά τα δεδομένα χαρακτηρίζονται από (τοπικές) ιδιότητες ομαλότητας (smoothness), οπότε μπορούμε να χρησιμοποιήσουμε τεχνικές παρεμβολής (interpolation) Πολλές επιτυχημένες μέθοδοι αναγώρισης προτύπων εκμεταλλεύονται τις παραπάνω ιδιότητες

8 Θεωρία αποφάσεων Η θεωρία αποφάσεων βασίζεται στη θεωρία πιθανοτήτων και μας προσφέρει τρόπους για να πάρουμε «βέλτιστες» αποφάσεις σε περιπτώσεις όπου υπάρχει αβεβαιότητα στο πρόβλημά μας Ένας πολύ γενικός τρόπος για να πάρουμε τέτοιες αποφάσεις προκύπτει άμεσα από τον κανόνα του Bayes Μπεϋζιανή θεωρία αποφάσεων (Bayesian decision theory) Ο κανόνας του Bayesμπορεί να χρησιμοποιηθεί σε μια πληθώρα περιπτώσεων, π.χ. για τον υπολογισμό της πιθανότητας ενός γεγονότος (παράδειγμα στη Διάλεξη 2), τον υπολογισμό της σππ μιας συνεχούς τυχαίας μεταβλητής (προσαρμογή καμπύλης, γραμμική παλινδρόμηση στη συνέχεια) Εδώ θα δούμε πως μπορεί να χρησιμοποιηθεί για να επιλέξουμε μεταξύ πιθανών κατηγοριών σε ένα πρόβλημα ταξινόμησης

9 Επαγωγή και απόφαση Γενικά θα έχουμε ένα διάνυσμα εισόδου x και ένα διάνυσμα στόχου t για παλινδρόμηση το t μπορεί να περιλαμβάνει συνεχείς μεταβλητές, για ταξινόμηση (διακριτές) κατηγορίες Γενικός στόχος: Σωστή πρόβλεψη του t για καινούριες τιμές του x Η διαδικασία μπορεί να λάβει δύο μορφές: Επαγωγή (inference): Προσδιορισμός των πιθανοτήτων ή : γενικά δύσκολο πρόβλημα Απόφαση (decision): Για δεδομένο x προσδιορισμός του «βέλτιστου» t Π.χ. σε ένα πρόβλημα ταξινόμησης με 2 κατηγορίες C 1 και C 2 :t=0,1 Συλλογή δεδομένων Προεπεξεργασία δεδομένων Επιλογή χαρακτηριστικών Επιλογή μοντέλου/ ταξινομητή Εκπαίδευση μοντέλου/ταξινομητή Επικύρωση μοντέλου/ταξινομητή Ποια κατηγορία θα μπορούσαμε να διαλέξουμε για καινούρια δεδομένα?

10 Θεωρία αποφάσεων Το πρόβλημα της απόφασης απλοποιείται πολύ εάν λυθεί το πρόβλημα της επαγωγής, δηλ. προσδιοριστούν τα ή p(x,c k ) Ακόμη και αν αυτό δεν είναι δυνατόν, μπορούμε να λάβουμε μια απόφαση με βάση την τιμή των εκ των υστέρων πιθανοτήτων (posterior probabilities) για το συγκεκριμένο x Παράδειγμα: Ιατρική απεικόνιση. Έστω ότι θέλουμε να πάρουμε μια απόφαση εάν ένα άτομο είναι ασθενής ή όχι με βάση μια εικόνα ακτίνων Χ ή MRI. Πόσες κατηγορίες έχουμε? Ποιο θα μπορούσε να είναι το διάνυσμα εισόδου x? Ποια είναι η απόφαση που πρέπει να πάρουμε στην προκειμένη περίπτωση? Τι συμβολίζουν οι ποσότητες στον κανόνα του Bayes? Ποια κατηγορία θα επιλέγαμε?

11 Minimum misclassification rate decision R k : decision regions(περιοχές αποφάσεων-πιθανώς ασυνεχείς) Τα όρια μεταξύ των περιοχώνονομάζονται σύνορα ή επιφάνειες αποφάσεων(decision boundaries/ surfaces) Έχουμε δύο περιπτώσεις σφαλμάτων Ελαχιστοποίηση σφάλματος: Όμως: Άρα ισοδύναμα επιλογή του C k που μεγιστοποιεί την πιθανότητα Ισχύει και για k κατηγορίες

12 Minimum misclassification rate decision Πχ για το πρόβλημα ταξινόμησης ψαριών Prior probability: Πόσο πιθανό είναι να πιαστεί σολωμός/ λαβράκι? Αν δεν έχουμε άλλη πληροφορία: Επιλογή της C k (k=1,2) για την οποία η P(C k ) είναι μέγιστη Αν έχουμε πληροφορία, π.χ. φωτεινότητα τότε μπορούμε να υπολογίσουμε/ εκτιμήσουμε τις υπό συνθήκη πιθανότητες P(x C 1 ) και P(x C 2 ) Εκ των υστέρων πιθανότητα (posterior) 2 p(x)= p(x C k ) p(c k ) k=1

13 Minimum misclassification rate decision Για P(C 1 )=2/3και P(C 2 )=1/3

14 Ελαχιστοποίηση απώλειας Σε κάποιες περιπτώσεις τα σφάλματα διαφορετικού τύπου πιθανόν να μην είναι ισοδύναμα πχ στην περίπτωση διάγνωσης από ιατρικές εικόνες το σφάλμα μη διάγνωσης της ασθένειας μπορεί να έχει πολύ πιο δραματικές συνέπειες! Μπορούμε να ορίσουμε μια πιο γενικευμένη συνάρτηση ρίσκου Εξαρτημένη συνάρτηση ρίσκου/ απώλειας (loss/risk function) C R(α k x)= λ kj p(c j x) j=1 λ kj : συντελεστής απώλειας όταν παίρνουμε την απόφαση k όταν η σωστή απόφαση (κατηγορία) είναι j Σε αυτή την περίπτωση επιλέγουμε την κατηγορία που ελαχιστοποιεί την ποσότητα: C j=1 λ kj p(c j x) Αν υπολογίσουμε τις εκ των υστέρων πιθανότητες της παραπάνω γίνεται εύκολη Truth p(c j x) Decision η ελαχιστοποίηση

15 Ελαχιστοποίηση απώλειας πχ για 2 κατηγορίες και 2 πιθανές αποφάσεις που αντιστοιχούν στις κατηγορίες αυτές: R( α x) = λ p( C x) + λ p( C x) R( α x) = λ p( C x) + λ p( C x) Απόφαση C 1 αν R( α x) < R( α x) 1 2 ( λ λ ) p ( C x ) > ( λ λ ) p ( C x ) Συνήθως λ 21 >λ 11 και λ 12 >λ 22 (οι σωστές αποφάσεις έχουν μικρότερη απώλεια από τις λάθος) Άρα αν η ποσότητα (λόγος πιθανοφανειών- likelihood ratio): Truth ( λ λ ) p( x C ) p( C ) > ( λ λ ) p( x C ) p( C ) Decision p(x C 1 ) p(x C 2 ) > λ λ p(c ) 2 λ 21 λ 11 p(c 1 ) ικανοποιεί την παραπάνω συνθήκη αποφασίζουμε ότι το xανήκει στην κατηγορία C1, αλλιώς ότι ανήκει στην C2

16 Η επιλογή της απόρριψης Αν οι εκ των υστέρων πιθανότητες είναι αρκετά μικρότερες του 1, μια επιλογή είναι να μη ληφθεί απόφαση

17 Επαγωγή και απόφαση Γενικά, μπορούμε να διακρίνουμε τους τρεις παρακάτω τρόπους αντιμετώπισης ενός προβλήματος ταξινόμησης: Εύρεση των εξαρτημένων σππ p(x C k ) για κάθε κατηγορία ξεχωριστά καθώς και των εκ των προτέρων πιθανοτήτων p(c k ). Έπειτα, χρησιμοποιώντας τον κανόνα του Bayes όπου p(x)= p(x C k ) p(c k ) εύρεση των εκ των υστέρων πιθανοτήτων p(c k x) και λήψη της απόφασης βάσει αυτών. Ισοδύναμα, μπορούμε να βρούμε την συνδυασμένη σππ p(x,c k ) και να χρησιμοποιήσουμε αυτή για να πάρουμε την απόφαση. Εύρεση των εκ των υστέρων σππ p(c k x) ευθέως και ταξινόμηση μέσω αυτών Εύρεση μιας συνάρτησης f(x) διαχωριστική συνάρτηση/ discriminantfunction η οποία απεικονίζει απευθείας ένα διάνυσμα εισόδου σε κάποια κατηγορία, π.χ. Για πρόβλημα δύο κατηγοριών μπορεί f=0 να αντιστοιχεί στην κατηγορία 1 και f=1 στην κατηγορία 2. Ο πρώτος τρόπος είναι ο πιο απαιτητικός, ειδικά για δεδομένα με πολλές διαστάσεις, αλλά προσφέρει την πιο πλήρη εικόνα για το πρόβλημα μπορεί ακόμη και να χρησιμοποιηθεί για την εύρεση δεδομένων με χαμηλή πιθανότητα εμφάνισης (outlier detection - μέσω της p(x)). k

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι στις Κατασκευές

Υπολογιστικές Μέθοδοι στις Κατασκευές Γενικά Για Τη Βελτιστοποίηση Η βελτιστοποίηση µπορεί να χωριστεί σε δύο µεγάλες κατηγορίες: α) την Βελτιστοποίηση Τοπολογίας (Topological Optimization) και β) την Βελτιστοποίηση Σχεδίασης (Design Optimization).

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

Θέμα: Ασκήσεις για εύρεση ολικής, συνδυασμένης και δεσμευμένης πιθανότητας. Βιβλίο Keller Κεφάλαιο 6

Θέμα: Ασκήσεις για εύρεση ολικής, συνδυασμένης και δεσμευμένης πιθανότητας. Βιβλίο Keller Κεφάλαιο 6 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου, 6 ΠΑΤΡΑ Τηλ.: 60 6905, Φαξ: 60 968, email: mitro@teipat.gr Καθ η γη τ ής Ι. Μ ητ ρ

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Η μεταβλητή "χρόνος" στη δημογραφική ανάλυση - το διάγραμμα του Lexis

Η μεταβλητή χρόνος στη δημογραφική ανάλυση - το διάγραμμα του Lexis Η μεταβλητή "χρόνος" στη δημογραφική ανάλυση - το διάγραμμα του Lexis Η αναφορά στο χρόνο Αναφερόμενοι στο χρόνο, θα πρέπει κατ αρχάς να τονίσουμε ότι αυτός μπορεί να είναι είτε το ημερολογιακό έτος, είτε

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ 5-9-5 ΟΜΑΔΑ Α 4% Αν τα ενδεχόμενα Α, Β, Γ ενός δειγματικού χώρου Ω είναι ανεξάρτητα μπορούμε να πούμε το ίδιο για τα α A B, Γ β Α,Β Γ

Διαβάστε περισσότερα

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...11 1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) 1.1 Εισαγωγή...29 1.2 Γεωμετρική Προσέγγιση Λύσης Απλών Προβλημάτων LP... 30 1.3 Η Μέθοδος Simplex Λύσης Προβλημάτων Γραμμικού

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Π ΤΥΧΙΑΚΗ/ Δ ΙΠΛΩΜΑΤΙΚΗ Ε ΡΓΑΣΙΑ

Π ΤΥΧΙΑΚΗ/ Δ ΙΠΛΩΜΑΤΙΚΗ Ε ΡΓΑΣΙΑ Α ΡΙΣΤΟΤΕΛΕΙΟ Π ΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Π ΤΥΧΙΑΚΗ/ Δ ΙΠΛΩΜΑΤΙΚΗ Ε ΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΑΓΩΝΩΝ ΠΟΔΟΣΦΑΙΡΟΥ ΠΑΥΛΟΣ ΠΟΛΙΑΝΙΔΗΣ

Διαβάστε περισσότερα

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ Διαγνωστικές και θεραπευτικές εφαρμογές ακτινοβολιών : Κεφάλαιο 11 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ MCMC Η Monte Carlo μεθοδολογία για την δημιουργία αριθμητικών προσεγγίσεων διαφόρων τιμών της εκ των υστέρων κατανομής, όπως του μέσου και της τυπικής απόκλισης, στηρίζεται στους Ασθενείς Νόμους των Μεγάλων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Ανακατασκευή εικόνας από προβολές

Ανακατασκευή εικόνας από προβολές Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29 Περιεχόμενα Πρόλογος 5 Κεφάλαιο ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα βελτιστοποίησης Γραμμικά προγράμματα Ακέραια προγράμματα Τετραγωνικά προγράμματα Διατύπωση προβλήματος Σύμβαση λύσης Κεφάλαιο ΓΡΑΜΜΙΚΟΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ελαχιστοποίηση χαρακτηριστικών ταξινομητή για γονιδιακή σύνθεση ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ : 2008 2009 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

R n R 2. x 2. x 1. x: συντεταγµένες του z

R n R 2. x 2. x 1. x: συντεταγµένες του z Αναγνώριση Προσώπου µε Σύγκριση Υπερεπιφανειών Θανάσης Ζάγουρας.Π.Μ.Σ Η.Ε.Π, Τµήµα Φυσικής, Πανεπιστήµιο Πατρών Επιβλέποντες: Σπ. Φωτόπουλος Γ. Οικονόµου Ανάλυση Εικόνων Προσώπου Πεδία Αναγνώρισης Προτύπων

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Δίκαρος Νίκος Δ/νση Μηχανογράνωσης κ Η.Ε.Σ. Υπουργείο Εσωτερικών. Τελική εργασία Κ Εκπαιδευτικής Σειράς Ε.Σ.Δ.Δ. Επιβλέπων: Ηρακλής Βαρλάμης Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Κεντρική ιδέα Προβληματισμοί

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Επαγωγικές Μηχανές Διανυσμάτων Στήριξης

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5.. Εισαγωγή Η συμμετρική κρυπτογραφία είναι κατά πολύ αρχαιότερη από την ασύμμετρη κρυπτογραφία. Η συμμετρική κρυπτογραφία χρονολογείται από την Αρχαία Αίγυπτο, ενώ η ασύμμετρη

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΕΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μεταπτυχιακό Πρόγραµµα Σπουδών ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Χάρης Γεωργίου, ΑΜ:Μ-177 Αθήνα, Σεπτέµβριος 2000 - ii - ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης 1.1. Τι είναι η Οικονομική της Διοίκησης 1.2. Τι παρέχει η οικονομική θεωρία στην Οικονομική της Διοίκησης 1.3. Οι σχέσεις της οικονομικής της

Διαβάστε περισσότερα

ΛΟΓΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΛΟΓΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΟΓΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανδρομάχη Σκουφά Επιβλέπουσα:

Διαβάστε περισσότερα