Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ"

Transcript

1 Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 11: Διανυσματική Συνάρτηση Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

2 ÌÜèçìá 11 ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ Ãéá ôçí êáôáíüçóç ôùí åííïéþí ôïõ ìáèþìáôïò ï áíáãíþóôçò ðñýðåé íá ãíùñßæåé ôï ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò Ïñéóìüò äéáíõóìáôéêþò óõíüñôçóçò Ãéá åõêïëßá õðåíèõìßæåôáé ï ïñéóìüò ôçò ðñáãìáôéêþò óõíüñôçóçò ìéáò ðñáãìáôéêþò ìåôáâëçôþò, ðïõ ðïëëýò öïñýò óôç óõíý åéá èá ëýãåôáé åðßóçò êáé âáèìùôþ óõíüñôçóç. Ïñéóìüò (óõíüñôçóçò). óôù D êáé T äýï ôõ üíôá ìç êåíü õðïóýíïëá ôïõ R. Ôüôå ëýãåôáé óõíüñôçóç ìå ðåäßï ïñéóìïý ôï D êáé ðåäßï ôéìþí ôï T, ìßá ìïíïóþìáíôç áðåéêüíéóç, Ýóôù f, ôïõ óõíüëïõ D óôï T, äçëáäþ D x y = f(x) T ( ) Þ óõíôïìüôåñá óõíüñôçóç f D ìå ðåäßï ôéìþí T Þ êáé óõíüñôçóç f(x), x D ìå ôéìýò óôï T. Ç ó Ýóç y = f(x), ðïõ éó ýåé ãéá êüèå x D, ïñßæåé ôïí ôýðï ôçò óõíüñôçóçò, ôï ãñüììá x ôçí áíåîüñôçôç ìåôáâëçôþ óôï D, åíþ ôï y ôçí åîáñôçìýíç 1

3 2 ÄéáíõóìáôéêÝò óõíáñôþóåéò Êáè. Á. ÌðñÜôóïò ìåôáâëçôþ óôï T. Ôüôå ï ôýðïò ôçò óõíüñôçóçò åêöñüæåé ôïí ôñüðï ìå ôïí ïðïßï óõíäýïíôáé ïé ìåôáâëçôýò y êáé x. ÅðïìÝíùò ç óõíüñôçóç ìå ôïí ôýðï y = f(x) = x 2, ðïõ Ý åé ðåäßï ïñéóìïý D = R, èá áðåéêïíßæåé ôá óôïé åßá 1; 3; 5; : : : óôá 1 2 ; 3 2 ; 5 2 ; : : : ; ê.ëð. Ãåíéêåýïíôáò ôïí ðáñáðüíù ðáñüäåéãìá èåùñïýìå üôé åßíáé äõíáôüí íá ïñéóôåß åðßóçò ìéá ìïíïóþìáíôç áðåéêüíéóç (óõíüñôçóç) ôùí óôïé åßùí1; : : :,3, : : :, 5, : : : óôá ( 1 2 ; 1 3) ( ; : : : ; 3 2 ; 3 3) ( ; : : : ; 5 2 ; 5 3) ; : : : ( ) ôïõ þñïõ R R = R 2, áíôßóôïé á óôá ( ) ( ) ( ) 1 2 ; 1 3 ; 1 ; : : : ; 3 2 ; 3 3 ; 3 ; : : : ; 5 2 ; 5 3 ; 5 ; : : : ( ) ôïõ R R R = R 3. Ôüôå ï ôýðïò ôçò óõíüñôçóçò ãéá ôá óôïé åßá (11:1:1 2) ðñýðåé íá åßíáé ôçò ìïñöþò ( x 2 ; x 3), åíþ ãéá ôá (11:1:1 2) ôçò ìïñöþò ( x 2 ; x 3 ; x ), üôáí x R. ïíôáò ôþñá õð' üøéí ôéò ó Ýóåéò (1:4 1) êáé (1:4 2) ôïõ ÌáèÞìáôïò 1 ôá ðáñáðüíù óôïé åßá åßíáé äõíáôüí íá èåùñçèïýí óáí ïé óõíéóôþóåò ôùí äéáíõóìüôùí 1 2 ; 1 3 ; : : : ; 3 2 ; 3 3 ; : : : ; 5 2 ; 5 3 ; : : : ; áíôßóôïé á äçëáäþ 1 2 ; 1 3 ; 1 ; : : : ; 3 2 ; 3 3 ; 3 ; : : : ; 5 2 ; 5 3 ; 5 ; : : : ; 1 2 i j; : : : ; áíôßóôïé á 1 2 i j + k; : : : : ÅðïìÝíùò ï ôýðïò ôçò óõíüñôçóçò, ðïõ ðåñéãñüöåé ôéò ðáñáðüíù ðåñéðôþóåéò, ðñýðåé íá Ý åé ôç ìïñöþ F(x) = F ( x 2 ; x 3) = x 2 i + x 3 j; áíôßóôïé á F(x) = F ( ) x 2 ; x 3 ; x = x 2 i + x 3 j + x k; ( ) üôáí x R. Ïé óõíáñôþóåéò áõôýò ðñïò äéüêñéóç ôùí óõíáñôþóåùí (11:1:1 1), ëýãïíôáé óôçí ðåñßðôùóç áõôþ äéáíõóìáôéêýò óõíáñôþóåéò ìéáò ìåôáâëçôþò,

4 Ïñéóìüò äéáíõóìáôéêþò óõíüñôçóçò 3 åíþ ãéá ôç ìåôáâëçôþ ôùí ñçóéìïðïéåßôáé óõíþèùò óôï óõìâïëéóìü ôçò ìåôáâëçôþò ôï ãñüììá t - ðïõ óõíþèùò ðáñéóôüíåé ôï ñüíï - áíôß ôïõ x. Äßíåôáé óôç óõíý åéá ï ïñéóìüò ôçò äéáíõóìáôéêþò óõíüñôçóçò. Ïñéóìüò (äéáíõóìáôéêþ óõíüñôçóç). óôù D R êáé T R 2, áíôßóôïé á T R 3 äýï ôõ áßá ìç êåíü óýíïëá. Ôüôå ïñßæåôáé óáí äéáíõóìáôéêþ óõíüñôçóç (vector function Þ vector-valued function) ìéáò ìåôáâëçôþò ìå ðåäßï ïñéóìïý ôï D êáé ðåäßï ôéìþí ôï T, ìßá ìïíïóþìáíôç áðåéêüíéóç, Ýóôù F, ôïõ óõíüëïõ D óôï T, äçëáäþ D t F(t) = y = f 1 (t); f 2 (t) T R 2 ; áíôßóôïé á ( ) y = f 1 (t); f 2 (t); f 3 (t) T R 3 üðïõ êüèå f i (t) ìå i = 1; 2, áíôßóôïé á i = 1; 2; 3 åßíáé ìßá óõíüñôçóç ìå ìåôáâëçôþ t, ðïõ ëýãåôáé óõíéóôþóá (argument) 1 ôçò F. Óýìöùíá ìå ôïí Ïñéóìü , áí Oxy åßíáé Ýíá ïñèïãþíéï óýóôçìá áîüíùí ôïõ þñïõ ôùí 2-äéáóôÜóåùí, áíôßóôïé á Oxyz ôïõ þñïõ ôùí 3- äéáóôüóåùí, ôüôå ç F åêöñüæåôáé óôéò ðåñéðôþóåéò áõôýò óõíáñôþóåé ôùí óõíéóôùóþí ùò åîþò: F(t) = f 1 (t)i + f 2 (t)j; áíôßóôïé á F(t) = f 1 (t)i + f 2 (t)j + f 3 (t)k; ( ) üôáí i, j êáé k ôá ìïíáäéáßá äéáíýóìáôá êáôü ìþêïò ôùí áîüíùí 0x, 0y êáé 0z áíôßóôïé á. 1 ÐïëëÝò öïñýò, üôáí áðáéôåßôáé, ñçóéìïðïéåßôáé êáé ç ðáñüóôáóç ôùí óõíéóôùóþí ìå ðßíáêá äéüíõóìá, äçëáäþ D t F(t) = y = [f 1(t); f 2(t)] T R 2 ; áíôßóôïé á y = [f 1(t); f 2(t); f 3(t)] T R 3 (âëýðå âéâëéïãñáößá êáé Á. ÌðñÜôóïò [2] Êåö. 3).

5 4 ÄéáíõóìáôéêÝò óõíáñôþóåéò Êáè. Á. ÌðñÜôóïò Óçìåßùóç Ï ðñïóäéïñéóìüò ôïõ ðåäßïõ ïñéóìïý D ôçò F äåí äéáöýñåé áðü åêåßíïí ôçò óõíüñôçóçò f(x), åöüóïí ôåëéêü óõíåðüãåôáé ôïí õðïëïãéóìü ôùí ðåäßùí ïñéóìïý êüèå ìéáò óõíéóôþóáò 2 êáé óôç óõíý åéá ôùí êïéíþí ôïõò óçìåßùí. ÐáñÜäåéãìá óôù ç äéáíõóìáôéêþ óõíüñôçóç (Ó ) F(t) = f 1 (t) f { }}{ 2 (t) {}}{ t cos t i + sin t j = f 1 (t) i + f 2 (t) j: Ôüôå ôï ðåäßï ïñéóìïý ôçò f 1 (t) = t cos t åßíáé ôï D 1 = [0; + ); åíþ ôçò f 2 (t) = sin t ôï D 2 = R: ñá ôï ðåäßï ïñéóìïý D ôçò F åßíáé D = D 1 D 2 = [0; + ): ÐáñÜäåéãìá óôù ç äéáíõóìáôéêþ óõíüñôçóç (Ó ) F(t) = Ôüôå ôï ðåäßï ïñéóìïý ôùí åíþ ôçò f 1 (t) {}}{ sin t i + f 2 (t) {}}{ cos t j + f 3 (t) {}}{ 1 t = f 1 (t) i + f 2 (t) j + f 3 (t) k: f 1 (t) = sin t; f 2 (t) = cos t åßíáé ôï D 1 = R; f 3 (t) = 1 ôï D 2 = R {0}: t ñá ôï ðåäßï ïñéóìïý D ôçò F åßíáé D = D 1 D 2 = R {0}. 2 Ðïõ åßíáé ç Þäç ãíùóôþ óôïí áíáãíþóôç óõíüñôçóç ìéá ðñáãìáôéêþò ìåôáâëçôþò. k

6 Ïñéóìüò äéáíõóìáôéêþò óõíüñôçóçò t Ó Þìá : ÐáñÜäåéãìá : ç êáìðýëç ìå ðáñáìåôñéêþ åîßóùóç F(t) = t cos t i + sin t j ìå ðåäßï ïñéóìïý D = [0; + ), üôáí t [0; 2] t 0 1 Ó Þìá : ÐáñÜäåéãìá : ç êáìðýëç ìå ðáñáìåôñéêþ åîßóùóç F(t) = sin t i+cos t j+ 1 k ìå ðåäßï ïñéóìïý D = R {0}, üôáí t [ 2; 2]. t Ç åõèåßá áíôéóôïé åß óôçí ôéìþ t = 0

7 6 ÄéáíõóìáôéêÝò óõíáñôþóåéò Êáè. Á. ÌðñÜôóïò ÏñéáêÞ ôéìþ Õðïëïãßæåôáé üìïéá áðü ôçí ïñéáêþ ôéìþ ôùí óõíéóôùóþí óõíáñôþóåùí ùò åîþò: lim F(t) = lim f 1 (t) i + lim f 2 (t) j t t 0 t t 0 t t 0 áíôßóôïé á üôáí t 0 D R. lim F(t) = lim f 1 (t) i + lim f 2 (t) j + lim f 3 (t) k; t t 0 t t 0 t t 0 t t 0 ÐáñÜäåéãìá óôù ç äéáíõóìáôéêþ óõíüñôçóç F(t) = ( 3 2t 2) i + e t j + (cos t 1) k: Ôüôå, áí t 0 = 0, óýìöùíá ìå ôçí (11:1:1 7) Ý ïõìå ( lim F(t) = lim 3 2t 2) i + lim e t j + lim (cos t 1) k t 0 t 0 t 0 t 0 = 3 i + j + (1 1) k = 3 i + j + 0 k = 3 i + j: ( ) ÓõíÝ åéá Ç óõíý åéá óå Ýíá óçìåßï t 0 D ïñßæåôáé áðü ôç óõíèþêç lim F(t) = F (t 0 ) ; ( ) t t 0 üôáí ï õðïëïãéóìüò ôïõ lim t t0 F(t) ãßíåôáé áðü ôçí (11:1:1 7). ÐáñÜäåéãìá óôù ç äéáíõóìáôéêþ óõíüñôçóç F(t) = ln (9 t 2) i t j t k:

8 ÐáñáìåôñéêÞ ðáñüóôáóç êáìðõëþí 7 Ðñïöáíþò êüèå óõíéóôþóá åßíáé óõíå Þò óôï ðåäßï ïñéóìïý ôçò, ïðüôå çf(t) èá åßíáé óõíå Þò óôï êïéíü ðåäßï ïñéóìïý ôùí, Ýóôù D, üðïõ ðñïöáíþò èá éó ýåé ç (11:1:1 8). Ôüôå, åðåéäþ ç ( f 1 (t) = ln 9 t 2) Ý åé ðåäßï ïñéóìïý ôï D 1 = ( 3; 3); ç êáé ç f 2 (t) = 1 2 t ôï D 2 = ( ; 2) (2; + ) f 3 (t) = 1 + t ôï D 3 = [ 1; + ); ðñýðåé D = D 1 D 2 D 3 = [ 1; 2) (2; 3): ÐáñáìåôñéêÞ ðáñüóôáóç êáìðõëþí Ï ãíùóôüò ìý ñé ôþñá ðñïóäéïñéóìüò ôçò áíáëõôéêþò åîßóùóçò ìéáò êáìðýëçò, Ýóôù C, óôï þñï R 2, áíôßóôïé á R 3 ìå êáñôåóéáíýò óõíôåôáãìýíåò, äçëáäþ óå óýóôçìá óõíôåôáãìýíùí Oxy ôïõ þñïõ ôùí 2-äéáóôÜóåùí, áíôßóôïé á Oxyz ôïõ þñïõ ôùí 3-äéáóôÜóåùí, ðïëëýò öïñýò äçìéïõñãåß äõóêïëßåò óôïí õðïëïãéóìü äéáöüñùí öõóéêþí ìåãåèþí. Ãéá íá áíôéìåôùðéóôïýí ïé äõóêïëßåò áõôýò áíáæçôåßôáé Ýíáò Üëëïò ôñüðïò ðåñéãñáöþò ôçò åîßóùóçò ôçò C. Õðåíèõìßæåôáé óôï óçìåßï áõôü üôé: Ïñéóìüò íá õëéêü óçìåßï êéíïýìåíï óôï þñï êáé Ý ïíôáò Ýíá âáèìü åëåõèåñßáò äéáãñüöåé ãåíéêü ìßá êáìðýëç ãñáììþ, åíþ üôáí Ý åé äýï âáèìïýò åëåõèåñßáò ìéá åðéöüíåéá. óôù ôþñá üôé æçôåßôáé ï ðñïóäéïñéóìüò ôçò åîßóùóçò ìéáò êáìðýëçò C ôïõ R 3. Áí Oxyz åßíáé Ýíá ïñèïãþíéï óýóôçìá áîüíùí êáé M 0 (x 0 ; y 0 ; z 0 ) ôõ üí óçìåßï ôçò êáìðýëçò C, ôüôå óôï óçìåßï áõôü áíôéóôïé åß áêñéâþò Ýíá äéüíõóìá èýóçò, Ýóôù r 0, üðïõ r 0 = x 0 i + y 0 j + z 0 k ( )

9 8 ÄéáíõóìáôéêÝò óõíáñôþóåéò Êáè. Á. ÌðñÜôóïò êáé áíôßóôñïöá óôï r 0 áíôéóôïé åß ôï óçìåßï M 0 (x 0 ; y 0 ; z 0 ). ¼ìïéá óå Ýíá Üëëï óçìåßï M 1 (x 1 ; y 1 ; z 1 ) ôçò C èá áíôéóôïé åß ôï äéüíõóìá èýóçò êáé ãåíéêü óôï ôõ üí óçìåßï M (x; y; z), ôï r 1 = x 1 i + y 1 j + z 1 k ( ) r = x i + y j + z k: ( ) ïíôáò õð' üøéí êáé ôïí Ïñéóìü ôá äéáíýóìáôár 0 óôçí (11:1:2 1), r 1 óôçí (11:1:2 2) êáé ãåíéêü r óôçí (11:1:2 3) åßíáé äõíáôüí íá èåùñçèïýí óáí ïé ôéìýò ìéáò êáôüëëçëçò äéáíõóìáôéêþò óõíüñôçóçò, Ýóôù (Ó ) ìå ôçí Ýííïéá üôé: áí r(t); üôáí t [á; â]; t = t 0, ôüôå ç r (t) = r (t 0 ) èá éóïýôáé ìå ôçí (11:1:2 1), t = t 1, ç r (t) = r (t 1 ) ìå ôçí (11:1:2 2), êáé ãåíéêü t = t, ç r (t) ìå ôçí (11:1:2 3). Ç áíáëõôéêþ Ýêöñáóç ôçò äéáíõóìáôéêþò óõíüñôçóçò r(t) åßíáé r(t) = x(t) i + y(t) j + z(t) k; üôáí t [á; â] R: ( ) Ç (11:1:2 4) èá ëýãåôáé ôüôå üôé ïñßæåé ôçí ðáñáìåôñéêþ åîßóùóç ôçò êáìðýëçò C ìå ðáñüìåôñï t. Ìå üìïéïí ôñüðï ïñßæåôáé ç ðáñáìåôñéêþ åîßóùóç ìéáò åðßðåäçò êáìðýëçò C ùò åîþò: r(t) = x(t) i + y(t) j ; üôáí t [á; â]: ( ) Ïé ðáñáìåôñéêýò åîéóþóåéò ôùí êáìðõëþí Ý ïõí ìåãüëç åöáñìïãþ óôç ÖõóéêÞ, êõñßùò üôáí ç ðáñüìåôñïò t óõìâïëßæåé ôï ñüíï. Äßíïíôáé óôç óõíý åéá ïñéóìýíåò ðáñáìåôñéêýò ðáñáóôüóåéò ñþóéìùí êáìðõëþí.

10 ÐáñáìåôñéêÞ ðáñüóôáóç êáìðõëþí 9 Ó Þìá : ðáñáìåôñéêþ ðáñüóôáóç êáìðõëþí Åõèåßá Áí M åßíáé Ýíá ôõ üí óçìåßï ôçò åõèåßáò ðïõ äéýñ åôáé áðü ôá óçìåßám 1 (x 1 ; y 1 ; z 1 ) êáé M 2 (x 2 ; y 2 ; z 2 ), ôüôå, åðåéäþ M 1 M 2 = r 2 r 1, áðïäåéêíýåôáé üôé óôçí ðåñßðôùóç áõôþ åßíáé 3 (Ó ) r(t) = t r 2 + (1 t) r 1 ; üôáí t R: ( ) Ç (11:1:2 6) ïñßæåé ôçí ðáñáìåôñéêþ åîßóùóç ôçò åõèåßáò ðïõ äéýñ åôáé áðü ôá óçìåßá M 1 êáé M 2. ñçóéìïðïéþíôáò ôéò áíáëõôéêýò åêöñüóåéò r 1 = x 1 i + y 1 j + z 1 k êáé r 2 = x 2 i + y 2 j + z 2 k; ç (11:1:2 6) ôåëéêü ãñüöåôáé Óçìåßùóç r(t) = [tx 2 + (1 t)x 1 ] i + [ty 2 + (1 t)y 1 ] j + [tz 2 + (1 t)z 1 ] k; üôáí t R: ( ) Ç (11:1:2 7), åéäéêü üôáí t [0; 1], ïñßæåé ôçí ðáñáìåôñéêþ åîßóùóç ôùí óçìåßùí ôïõ åõèýãñáììïõ ôìþìáôïò M 1 M 2. 3 ÂëÝðå âéâëéïãñáößá êáé âéâëßï Á. ÌðñÜôóïò [2] Êåö. 1.

11 10 ÄéáíõóìáôéêÝò óõíáñôþóåéò Êáè. Á. ÌðñÜôóïò Ó Þìá : ÐáñÜäåéãìá : ðáñáìåôñéêþ ðáñüóôáóç ôïõ åõèýãñáììïõ ôìþìáôïò M 1 M 2 ÐáñÜäåéãìá Íá õðïëïãéóôåß ç ðáñáìåôñéêþ åîßóùóç ôïõ åõèýãñáììïõ ôìþìáôïò M 1 M 2, üôáí M 1 = (1; 2; 0) êáé M 2 (2; 4; 3) (üìïéá Ó ). Ëýóç. Óýìöùíá ìå ôçí (11:1:2 7) êáé ôçí ÐáñáôÞñçóç åßíáé r(t) = (1 + t) i + 2(1 + t) j + 3t k; üôáí t [0; 1]: ÐåñéöÝñåéá êýêëïõ óôù áñ éêü üôé ôï êýíôñï ôïõ êýêëïõ óõìðßðôåé ìå ôçí áñ Þ ôùí áîüíùí. Ôüôå ç åîßóùóç ôùí óçìåßùí ôçò ðåñéöýñåéáò åßíáé ÈÝôïíôáò x 2 + y 2 = R 2 : x = R cos t êáé y = R sin t

12 ÐáñáìåôñéêÞ ðáñüóôáóç êáìðõëþí 11 Ý ïõìå ôçí ðáñáêüôù ðáñáìåôñéêþ åîßóùóç ôùí óçìåßùí ôçò ðåñéöýñåéáò r(t) = R cos t i + R sin t j ìå t [0; 2): ( ) Áí ôï êýíôñï ôïõ êýêëïõ åßíáé ôï óçìåßï (á; â), ôüôå ç åîßóùóç ôùí óçìåßùí ôçò ðåñéöýñåéáò åßíáé (x á) 2 + (y â) 2 = R 2 ; ïðüôå óôçí ðåñßðôùóç áõôþ Ý ïõìå óáí ðáñáìåôñéêþ åîßóùóç ôçí r(t) = (á + R cos t) i + (â + R sin t) j ìå t [0; 2): ( ) ëëåéøç ¼ìïéá ãéá ôçí Ýëëåéøç ìå åîßóùóç x 2 á 2 + y2 â 2 = 1 Ý ïõìå óáí ðáñáìåôñéêþ åîßóùóç ôçí r(t) = á cos ti + â sin t j ìå t [0; 2): ( ) ÐáñáâïëÞ Áí ç åîßóùóç ôçò ðáñáâïëþò åßíáé y = áx 2 ; ôüôå ìßá ðáñáìåôñéêþ åîßóùóþ ôçò ðñïêýðôåé èýôïíôáò x = t, ïðüôå y = á t 2 êáé êáôü óõíýðåéá Óçìåéþóåéò r(t) = t i + á t 2 j ìå t R: ( ) i) Áí åßíáé ãíùóôþ ç åîßóùóç ôçò êáìðýëçò óå êáñôåóéáíýò óõíôåôáãìýíåò, ôüôå ïé óõíôåôáãìýíåò ôçò ðáñáìåôñéêþò åîßóùóçò ðïõ èá ðñïóäéïñéóôåß, ðñýðåé íá åðáëçèåýïõí ôçí áñ éêþ åîßóùóç ôçò êáìðýëçò.

13 12 ÐáñÜãùãïò äéáíõóìáôéêþò óõíüñôçóçò Êáè. Á. ÌðñÜôóïò ii) Áðü ôçí ðáñáìåôñéêþ åîßóùóç ôçò êáìðýëçò åßíáé äõíáôüí íá ðñïóäéïñéóôåß ç áíôßóôïé ç åîßóùóç óå êáñôåóéáíýò óõíôåôáãìýíåò, èýôïíôáò x = x(t); y = y(t) êáé z = z(t) êáé áðáëåßöïíôáò ôçí ðáñüìåôñï t, åöüóïí áõôü åßíáé äõíáôüí. ÐáñÜäåéãìá óôù ç êáìðýëç ðïõ äßíåôáé ìå ðáñáìåôñéêþ åîßóùóç ùò åîþò: r(t) = (1 + cos t)i + (2 + sin t)j ìå t [0; ]: ÈÝôïíôáò x = 1 + cos t; y = 2 + sin t; ïðüôå x 1 = cos t; y 2 = sin t êáé áðáëåßöïíôáò ôçí ðáñüìåôñï t, ðñïêýðôåé üôé ç åîßóùóç óå êáñôåóéáíýò óõíôåôáãìýíåò åßíáé (x 1) 2 + (y 2) 2 = 1: ÅðåéäÞ t [0; ] ðñüêåéôáé ãéá ôï Üíù ìýñïò ôçò ðåñéöýñåéáò, ðïõ Ý åé êýíôñï ôï óçìåßï (1; 2) êáé áêôßíá 1 (Ó ) ÐáñÜãùãïò äéáíõóìáôéêþò óõíüñôçóçò Ïñéóìüò ðáñáãþãïõ Ï ïñéóìüò ôçò ðáñáãþãïõ ìéáò óõíüñôçóçò ôïõ ÌáèÞìáôïò 9 åðåêôåßíåôáé êáé óôçí ðåñßðôùóç ôùí äéáíõóìáôéêþí óõíáñôþóåùí ùò åîþò: Ïñéóìüò (êëßóçò). óôù ç äéáíõóìáôéêþ óõíüñôçóç F (a; b) êáé óçìåßï t 0 (a; b). Ôüôå ãéá êüèå t (a; b) {t 0 } ìå ôïí ôýðï K t0 (x) = F(t) F (t 0) t t 0 ( ) ïñßæåôáé ìßá äéáíõóìáôéêþ óõíüñôçóç, ðïõ ëýãåôáé ðçëßêï äéáöïñþí Þ êëßóç ôçò F óôï óçìåßï t 0.

14 Ïñéóìüò ðáñáãþãïõ t Ó Þìá : ÐáñÜäåéãìá : ç êáìðýëç ìå ðáñáìåôñéêþ åîßóùóç r(t) = (1 + cos t)i + (2 + sin t) R, üôáí t [0; ] Áí t = t 0 + t, ïðüôå t = t t 0 ãéá êüèå t (a; b) {t 0 } ; ( ) ôüôå ï ôýðïò (11:2:1 1) ãñüöåôáé Ïñéóìüò (ðáñáãþãïõ). K t0 = f (t 0 + t) f (t 0 ) t : ( ) óôù ç äéáíõóìáôéêþ óõíüñôçóç F (a; b) êáé óçìåßï t 0 (a; b). Ôüôå èá ëýãåôáé üôé ç F ðáñáãùãßæåôáé óôï óçìåßï t 0 (a; b) ôüôå êáé ìüíïí, üôáí ç ïñéáêþ ôéìþ õðüñ åé. F (t) F (t lim K 0 ) t0 (x) = lim : ( ) t t 0 t t 0 t t 0 Ç (11:2:1 4) èá ëýãåôáé ôüôå ç 1çò ôüîçò äéáíõóìáôéêþ ðáñüãùãïò ôçò F óôï t 0 êáé èá óõìâïëßæåôáé ìå F (t 0 ). ïíôáò õð' üøéí ôçí (11:2:1 2), ç (11:2:1 4) éóïäýíáìá ãñüöåôáé F (t 0 ) = lim t t 0 F (t) F (t 0 ) t t 0 F (t 0 + t) F (t 0 ) = lim : ( ) Ät 0 t

15 14 ÐáñÜãùãïò äéáíõóìáôéêþò óõíüñôçóçò Êáè. Á. ÌðñÜôóïò Ïñéóìüò óôù ç óõíüñôçóç F (a; b) Ôüôå èá ëýãåôáé üôé ç F ðáñáãùãßæåôáé óôï (a; b) ôüôå êáé ìüíïí, üôáí õðüñ åé ç ðáñüãùãïò F (t 0 ) ãéá êüèå t 0 (a; b). Óôçí ðåñßðôùóç áõôþ óõìâïëéêü ãñüöåôáé F (t) = F (1) (F) = d F(t) D 1 F(t) = D F(t) ( ) dt üðïõ üìïéá ôï óýìâïëï (ôåëåóôþò) D = D 1 = d dt ðáñüãùãï ôçò F ìå ìåôáâëçôþ t. ÐáñáôÞñçóåéò óõìâïëßæåé ôçí 1çò ôüîçò Áðü ôïõò Ïñéóìïýò êáé ðñïêýðôïõí ôá åîþò: i) ç F (t 0 ), åöüóïí õðüñ åé, åßíáé äéüíõóìá, åíþ ii) ç F (t) åßíáé äéáíõóìáôéêþ óõíüñôçóç. Ïñéóìüò óôù üôé ôçò óõíüñôçóçò F (a; b) õðüñ åé ç F (t) ãéá êüèå t (a; b). Ôüôå èá ëýãåôáé üôé õðüñ åé ç 2çò ôüîçò ðáñüãùãïò ôçò F óôï (a; b) ôüôå êáé ìüíïí, üôáí õðüñ åé ç ðáñüãùãïò ôçò F (t) ãéá êüèå t (a; b). Óôçí ðåñßðôùóç áõôþ óõìâïëéêü ãñüöåôáé F (t) = F (2) (t) = d dt ( ) d F(t) dt = d 2 F(t) dt 2 = D 2 F(t) ( ) üðïõ üìïéá ôï D 2 = d 2 óõìâïëßæåé ôïí ôåëåóôþ ôçò 2çò ôüîçò ðáñáãþãïõ dt 2 ôçò F ìå ìåôáâëçôþ t. ÁíÜëïãá ïñßæïíôáé ïé ðáñüãùãïé: 3çò ôüîçò: F (t) = F (3) (t) = d dt ( ) d 2 F(t) dt 2 = d 3 F(t) dt 3 = D 3 F(t) ( ) üðïõ ôï D 3 = d 3 dt 3 ãåíéêü ç óõìâïëßæåé ôïí ôåëåóôþ ôçò 3çò ôüîçò ðáñáãþãïõ, êáé

16 - ôüîçò: F () (t) = d dt Êáíüíåò ðáñáãþãéóçò 15 ( ) d 1 F(t) dt 1 = d F(t) dt = D F(t) ( ) üðïõ üìïéá ï ôåëåóôþò D óõíüñôçóçò ìå ìåôáâëçôþ t. ÅéäéêÜ ïñßæåôáé üôé = d dt óõìâïëßæåé ôçí -ôüîçò ðáñüãùãï ìéáò F (0) (t) = F(t): ( ) Áí ôþñá Oxy, áíôßóôïé á Oxyz åßíáé Ýíá ïñèïãþíéï óýóôçìá áîüíùí, ôüôå ãéá êüèå t (a; b) óýìöùíá ìå ôçí (11:1:1 6) åßíáé Áðïäåéêíýåôáé üôé: F(t) = f 1 (t) i + f 2 (t) j; áíôßóôïé á F(t) = f 1 (t) i + f 2 (t) j + f 3 (t) k: ( ) Ðñüôáóç Ç F èá Ý åé 1çò ôüîçò ðáñüãùãï óôï (a; b) ôüôå êáé ìüíï, üôáí õðüñ ïõí óôï (a; b) ïé 1çò ôüîçò ðáñüãùãïé ôùí óõíáñôþóåùí f 1 (t), f 2 (t) êáé f 3 (t). Óôçí ðåñßðôùóç áõôþ éó ýåé ãéá êüèå t (a; b). F (t) = f 1(t) i + f 2(t) j; áíôßóôïé á F (t) = f 1(t) i + f 2(t) j + f 3(t) k ( ) Êáíüíåò ðáñáãþãéóçò óôù ïé äéáíõóìáôéêýò óõíáñôþóåéò F, G êáé W ìå êïéíü ðåäßï ïñéóìïý D êáé ðáñáãùãßóéìåò óôï (a; b). Ôüôå, áí ö åßíáé ìßá ðñáãìáôéêþ óõíüñôçóç ìå ðåäßï ïñéóìïý üìïéá ôï (a; b), áðïäåéêíýåôáé üôé éó ýïõí ïé ðáñáêüôù êáíüíåò ðáñáãþãéóçò:

17 16 ÐáñÜãùãïò äéáíõóìáôéêþò óõíüñôçóçò Êáè. Á. ÌðñÜôóïò i) Áí F = c óôáèåñü, ôüôå F = 0 ii) (F + G) = F + G iii) (k F) = kf üôáí k óôáèåñü iv) (F G) = F G + F G v) (F G) = F G + F G vi) vii) (öf) = ö F + öf üôáí ö âáèìùôþ óõíüñôçóç (F G W) = F G W + F G W + F G W [F (G W)] = F (G W ) + F (G W) + F (G W). viii) Ïé éäéüôçôåò (ii)-(iv) ãåíéêåýïíôáé ãéá -ôï ðëþèïò óõíáñôþóåéò. ÐáñÜäåéãìá óôù ç äéáíõóìáôéêþ óõíüñôçóç F(t) = cos t i + sin 2 t j + t k: Ôüôå óýìöùíá ìå ôçí Ðñüôáóç êáé ôïõò ãíùóôïýò ôýðïõò ðáñáãþãéóçò óýíèåôùí óõíáñôþóåùí åßíáé ( F (t) = (cos t) i + sin t) 2 j + t k = sin t i + sin 2t {}}{ 2 sin t cos t j + k; F (t) = (sin t) i + (sin 2t) j + 0 k = cos t i + 2 cos 2t j; ê.ëð. ÐáñÜäåéãìá ¼ìïéá, Ýóôù ïé äéáíõóìáôéêýò óõíáñôþóåéò F(t) = t i + 2 j êáé G(t) = t 3 i + t j: Ôüôå óýìöùíá ìå ôïí êáíüíá ðáñáãþãéóçò (iv) åßíáé (F G) = F G + F G ( = (i + 0 j) t 3 i + t j ) + (t i + 2 j) (3 t 2 i + j ) = ( ) ( ) 1 t t + t 3 t = 4 t 3 + 2:

18 Êáíüíåò ðáñáãþãéóçò 17 ÁóêÞóåéò 1. Ôùí ðáñáêüôù äéáíõóìáôéêþí óõíáñôþóåùí íá õðïëïãéóôïýí ïé 1çò êáé ïé 2çò ôüîçò ðáñüãùãïé i) cos ti + 2 sin tj iv) e t (cos ti + sin tj) ii) ti t 2 j v) ln ( 1 + t 2) i + sin t 3 j + tk iii) e 3t i cos 2tj vi) tan t 2 i + e t2 j + k. 2. Äåßîôå üôé ç äéáíõóìáôéêþ óõíüñôçóç F(t) = âe ët + áe ët ; üôáí á, â óôáèåñü äéáíýóìáôá, åðáëçèåýåé ôç äéáöïñéêþ åîßóùóç 3. Áí F (t) ë 2 F(t) = 0: F(t) = t 2 i cos 2t j + sin 2t k êáé G(t) = t i + sin 2t j cos 2t k; íá õðïëïãéóôïýí ïé ðáñüãùãïé (F G) ; (F G) êáé (F F) : 4 4 Áðáãïñåýåôáé ç áíáäçìïóßåõóç Þ áíáðáñáãùãþ ôïõ ðáñüíôïò óôï óýíïëü ôïõ Þ ôìçìüôùí ôïõ ùñßò ôç ãñáðôþ Üäåéá ôïõ Êáè. Á. ÌðñÜôóïõ. bratsos@teiath.gr URL:

19

20 Âéâëéïãñáößá [1] ÌðñÜôóïò, Á. (2011), ÅöáñìïóìÝíá ÌáèçìáôéêÜ, Åêäüóåéò Á. Óôáìïýëç, ÁèÞíá, ISBN 978{960{351{874{7. [2] ÌðñÜôóïò, Á. (2002), Áíþôåñá ÌáèçìáôéêÜ, Åêäüóåéò Á. Óôáìïýëç, ÁèÞíá, ISBN 960{351{453{5/978{960{351{453{4. [3] Finney R. L., Giordano F. R. (2004), Áðåéñïóôéêüò Ëïãéóìüò ÉÉ, ÐáíåðéóôçìéáêÝò Åêäüóåéò ÊñÞôçò, ISBN 978{960{524{184{1. [4] Don, E., Schaum's Outlines { Mathematica (2006), Åêäüóåéò ÊëåéäÜñéèìïò, ISBN 978{960{461{000{6. [5] Spiegel M., Wrede R. (2006), Áíþôåñá ÌáèçìáôéêÜ, Åêäüóåéò Ôæéüëá, ISBN 960{418{087{8. ÌáèçìáôéêÝò âüóåéò äåäïìýíùí Page

21 Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

22 Σημειώματα Σημείωμα Αναφοράς Copyright ΤΕΙ Αθήνας, Αθανάσιος Μπράτσος, Αθανάσιος Μπράτσος. «Ανώτερα Μαθηματικά Ι. Ενότητα 11: Διανυσματική Συνάρτηση». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: ocp.teiath.gr. Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: Το Σημείωμα Αναφοράς Το Σημείωμα Αδειοδότησης Τη δήλωση Διατήρησης Σημειωμάτων Το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 2

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ ÌÜèçìá 17 ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 17.1 ÅéóáãùãéêÝò Ýííïéåò 17.1.1 Ïñéóìüò äéáíõóìáôéêþò óõíüñôçóçò 1 Õðåíèõìßæåôáé ï ïñéóìüò ôçò ðñáãìáôéêþò óõíüñôçóçò ìéáò ðñáãìáôéêþò ìåôáâëçôþò, ðïõ ãéá åõêïëßá óôç

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 7: Οριακή Τιμή Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ

ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ ÌÜèçìá 18 ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ 18.1 ÅéóáãùãÞ 1 Óôï ìüèçìá áõôü äßíïíôáé ïé âáóéêýò Ýííïéåò ôïõ Äéáíõóìáôéêïý Äéáöïñéêïý Ëïãéóìïý, ðïõ åßíáé ó åôéêýò ìå ôéò âáèìùôýò Þ ôéò äéáíõóìáôéêýò óõíáñôþóåéò

Διαβάστε περισσότερα

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ ÌÜèçìá 7 ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ Óôï ìüèçìá áõôü èá äïèåß ç Ýííïéá ôïõ ïñßïõ ìéáò ðñáãìáôéêþò óõíüñôçóçò ìå ôñüðï ðñïóáñìïóìýíï óôéò áðáéôþóåéò ôùí äéáöüñùí åöáñìïãþí, ðïõ áðáéôïýíôáé óôçí åðéóôþìç ôïõ.

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim 3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x (i) f(x, y) = sin 1 2 (x + y) (ii) f(x, y) = y 2 + 3 (iii) f(x, y, z) = 25 x 2 y 2 z 2 (iv) f(x, y, z) = z +ln(1 x 2 y 2 ) 3.2 (i) óôù f(x, y, z) =

Διαβάστε περισσότερα

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ ÌÜèçìá 5 ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 5.1 ÅéóáãùãÞ Óôï ìüèçìá áõôü èá äïèïýí ïé âáóéêüôåñåò Ýííïéåò ôùí ìéãáäéêþí óõíáñôþóåùí. Ï áíáãíþóôçò, ãéá ìéá åêôåíýóôåñç ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá ôïõ ìáèþìáôïò

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Μιγαδικές Συναρτήσεις Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 8: Συνέχεια Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr

2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr 2.1 i) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = 2 + t)i + 1 2t)j + 3tk ôýìíåé ôï åðßðåäï xz. ii) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = ti + 1 + 2t)j 3tk ôýìíåé

Διαβάστε περισσότερα

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ ÌÜèçìá 6 ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ ÅéóáãùãÞ 1Ç ðñïóýããéóç ôçò ôéìþò ôçò ðáñáãþãïõ ìéáò óõíüñôçóçò ñçóéìïðïéåßôáé êõñßùò: i) üôáí ëüãù ôçò ðïëýðëïêçò ìïñöþò ôïõ ôýðïõ ôçò åßíáé áäýíáôïò ï èåùñçôéêüò õðïëïãéóìüò

Διαβάστε περισσότερα

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß ÌÜèçìá 8 ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ ¼ìïéá, üðùò êáé óôï ÌÜèçìá ÏñéáêÞ ôéìþ óõíüñôçóçò, äßíïíôáé ðåñéëçðôéêü ïé âáóéêüôåñïé ïñéóìïß êáé èåùñþìáôá ðïõ áíáöýñïíôáé óôç óõíý åéá ìéáò ðñáãìáôéêþò óõíüñôçóçò, åíþ ï

Διαβάστε περισσότερα

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ) 44 ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ) Óå äéüöïñåò öõóéêýò åöáñìïãýò õðüñ ïõí ìåãýèç ôá ïðïßá ìðïñïýí íá áñáêôçñéóèïýí ìüíï ìå Ýíá áñéèìü. ÔÝôïéá ìåãýèç, üðùò ãéá ðáñüäåéãìá, ç èåñìïêñáóßá

Διαβάστε περισσότερα

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá ÌÜèçìá 4 SPLINES 4.1 ÓõíÜñôçóç spline 4.1.1 Ïñéóìïß êáé ó åôéêü èåùñþìáôá Óôï ÌÜèçìá ÐïëõùíõìéêÞ ðáñåìâïëþ åîåôüóôçêå ôï ðñüâëçìá ôçò åýñåóçò ôùí ðïëõùíýìùí ðáñåìâïëþò, äçëáäþ ðïëõùíýìùí ðïõ óõíýðéðôáí

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας

Διαβάστε περισσότερα

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ . Äßíåôáé ç óõíüñôçóç : [, + ) R óõíå Þò óôï äéüóôçìá [,+ ) êáé ðáñáãùãßóéìç óôï äéüóôçìá (,+ ), ãéá ôçí ïðïßá éó ýåé ( ) = α. óôù üôé õðüñ åé κî R, þóôå íá éó ýåé ( ) κ ãéá êüèå Î (,+ ). Íá äåßîåôå üôé

Διαβάστε περισσότερα

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ ÌÜèçìá 8 ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ 8.1 ÅéóáãùãéêÝò Ýííïéåò Åßíáé Þäç ãíùóôü óôïí áíáãíþóôç üôé ç åðßëõóç ôùí ðåñéóóüôåñùí ðñïâëçìüôùí ôùí èåôéêþí åðéóôçìþí ïäçãåß óôç ëýóç ìéáò äéáöïñéêþò

Διαβάστε περισσότερα

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ B ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôá Üñôéá óôïé åßá êáôáëáìâüíïõí ôéò ôåëåõôáßåò

Διαβάστε περισσότερα

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôï óôïé åßï âñßóêåôáé óå êüðïéá áðü ôéò

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ. Αθανάσιος Μπράτσος

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας

Διαβάστε περισσότερα

ÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ

ÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ ÌÜèçìá 9 ÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ 9. ÄéðëÜ ïëïêëçñþìáôá 9.. ÅéóáãùãÞ Ãéá ôçí êáëýôåñç êáôáíüçóç ôïõ ïñéóìýíïõ ïëïêëçñþìáôïò ìéáò óõíüñôçóçò äýï ìåôáâëçôþí, äçëáäþ ôïõ äéðëïý ïëïêëçñþìáôïò, êñßíåôáé áðáñáßôçôï

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα : Αόριστο Ολοκλήρωμα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

ÄÉÁÍÕÓÌÁÔÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò Âáóéêïß ïñéóìïß

ÄÉÁÍÕÓÌÁÔÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò Âáóéêïß ïñéóìïß ÌÜèçìá 1 ÄÉÁÍÕÓÌÁÔÁ 1.1 ÅéóáãùãéêÝò Ýííïéåò Óôï ìüèçìá áõôü èá äïèïýí ôá êõñéüôåñá óôïé åßá ôùí äéáíõóìüôùí, ðïõ åßíáé áðáñáßôçôá ãéá ôçí êáôáíüçóç ôùí åðüìåíùí ìáèçìüôùí. Ï áíáãíþóôçò, ãéá ìéá ðëçñýóôåñç

Διαβάστε περισσότερα

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï ÊåöÜëáéï 1 ÄÉÁÍÕÓÌÁÔÁ 1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï óôù ç ôñéüäá (a, b, c). Ôï óýíïëï ôùí ôñéüäùí êáëåßôáé 3-äéÜóôáôïò þñïò êáé óõìâïëßæåôáé ìå IR 3. Åéäéêüôåñá ç ôñéüäá (a, b, c) ïñßæåé

Διαβάστε περισσότερα

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç ÌÜèçìá 0 ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ 0. ÅéóáãùãéêÝò Ýííïéåò Óôï ìüèçìá áõôü èá äïèïýí ïé êõñéüôåñïé êáíüíåò ïëïêëþñùóçò, ðïõ êýñéá åìöáíßæïíôáé óôéò ôå íïëïãéêýò åöáñìïãýò. Äéåõêñéíßæåôáé üôé áêïëïõèþíôáò ìßá áõóôçñü

Διαβάστε περισσότερα

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ 66 ÊåöÜëáéï 3 ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ 3.1 ÅéóáãùãÞ óôù üôé S åßíáé Ýíá óýíïëï áðü óçìåßá óôïí n äéüóôáôï þñï. Ìéá óõíüñôçóç (ðïõ ïñßæåôáé óôï S) åßíáé ìéá ó Ýóç ç ïðïßá ó åôßæåé êüèå óôïé åßï ôïõ

Διαβάστε περισσότερα

ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ

ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ ÌÜèçìá 5 ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ 5.1 ÄéáêñéôÞ ðñïóýããéóç 5.1.1 ÅéóáãùãÞ Óôï ÌÜèçìá ÐïëõùíõìéêÞ ðáñåìâïëþ åîåôüóôçêå ôï ðñüâëçìá ôçò åýñåóçò ôïõ ðïëõùíýìïõ ðáñåìâïëþò, äçëáäþ ôïõ ðïëõùíýìïõ ðïõ

Διαβάστε περισσότερα

ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ

ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ ÌÜèçìá 3 ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ 3.1 ÅéóáãùãÞ Åßíáé ãíùóôü üôé óôá äéüöïñá ðñïâëþìáôá ôùí åöáñìïãþí ôéò ðåñéóóüôåñåò öïñýò ðáñïõóéüæïíôáé óõíáñôþóåéò ðïõ ðåñéãñüöïíôáé áðü ðïëýðëïêïõò ôýðïõò, äçëáäþ ôýðïõò

Διαβάστε περισσότερα

ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ

ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 55 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 5.1 ÅéóáãùãÞ Ïñéóìüò: íá óýíïëï V êáëåßôáé äéáíõóìáôéêüò þñïò Þ ãñáììéêüò þñïò ðüíù óôïí IR áí (á) ôï V åßíáé êëåéóôü ùò ðñïò ôç ðñüóèåóç,

Διαβάστε περισσότερα

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ ÌÜèçìá 6 ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ Ç ðñïóýããéóç ôçò ôéìþò ôçò ðáñáãþãïõ ìéáò óõíüñôçóçò ñçóéìïðïéåßôáé óôéò ðáñáêüôù êõñßùò ðåñéðôþóåéò: i) üôáí ëüãù ôçò ðïëýðëïêçò ìïñöþò ôïõ ôýðïõ ìéáò óõíüñôçóçò åßíáé áäýíáôïò

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â ÐÁÑÁÑÔÇÌÁ Â 464 ÅÊÙÓ 000 - Ó ÏËÉÁ ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ Â.1 ÁÓÕÌÌÅÔÑÏ ÓÕÓÔÇÌÁ Η N / ( 0. + 0.1 η) 0.6 ν ν, η 3, η > 3...

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Προσέγγιση παραγώγων Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Ìáèáßíïõìå ôéò áðïäåßîåéò

Ìáèáßíïõìå ôéò áðïäåßîåéò 50. Βήµα ο Μαθαίνουµε τις αποδείξεις ã) Ùò ðñïò ôçí áñ Þ ôùí áîüíùí, áí êáé ìüíï áí Ý ïõí áíôßèåôåò óõíôåôáãìýíåò. ÄçëáäÞ: á = á êáé â = â ÂÞìá Ìáèáßíïõìå ôéò áðïäåßîåéò ä) Ùò ðñïò ôç äé ïôüìï ôçò çò êáé

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 11: Προσέγγιση μερικών διαφορικών εξισώσεων - Παραβολικές Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ

Διαβάστε περισσότερα

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ 28 ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ 3.1 ÅéóáãùãÞ Ãéá êüèå ôåôñáãùíéêü ðßíáêá A áíôéóôïé åß Ýíáò ðñáãìáôéêüò áñéèìüò ï ïðïßïò êáëåßôáé ïñßæïõóá êáé óõíþèùò óõìâïëßæåôáé ìå A Þ det(a). ÌåôáèÝóåéò: Ìéá áðåéêüíéóç ôïõ

Διαβάστε περισσότερα

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μεταγλωττιστές Νίκος Παπασπύου, Κωστής Σαγώνας Συντακτική ανάλυση (μέρος 3ον) Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ÐÑÁÃÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÐÑÁÃÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ ÌÜèçìá 3 ÐÑÁÃÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 3.1 Ïñéóìüò êáé ëãåâñá óõíáñôþóåùí 3.1.1 Ïñéóìïß Óôï ìüèçìá áõôü èá äïèïýí ïé êõñéüôåñïé ïñéóìïß êáé èåùñþìáôá ãéá ôéò ðñáãìáôéêýò óõíáñôþóåéò ìéáò ðñáãìáôéêþò ìåôáâëçôþò,

Διαβάστε περισσότερα

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò. 55 16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò. A ÌÝñïò 1. Íá êáôáóêåõüóåéò óôï Function Probe ôç ãñáöéêþ ðáñüóôáóç ôçò y=çìx. Óôïí ïñéæüíôéï Üîïíá íá ïñßóåéò êëßìáêá áðü ôï -4ð

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 8: Τριπλά Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Πραγματικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Πραγματικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 3: Πραγματικές Συναρτήσεις Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.) ÔÅÉ ËÜñéóáò, ÔìÞìá Ìç áíïëïãßáò ÌáèçìáôéêÜ ÉI, ÅîÝôáóç Ðåñéüäïõ Éïõíßïõ 24/6/21 ÄéäÜóêùí: Á éëëýáò Óõíåöáêüðïõëïò 1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) (3x 2 + 6xy 2 )dx + (6x 2 y + 4y 3 )dy = 2. Íá

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ

ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ ÌÜèçìá 7 ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ ÅéóáãùãÞ ¼ìïéá, üðùò êáé óôï ÌÜèçìá ÐñïóÝããéóç Ðáñáãþãùí, ç ðñïóåããéóôéêþ ôéìþ ôïõ ïñéóìýíïõ ïëïêëçñþìáôïò ñçóéìïðïéåßôáé êõñßùò, üôáí I(f) = f(x) dx i) ëüãù ôçò ðïëýðëïêçò

Διαβάστε περισσότερα

ÓÅÉÑÁ FOURIER. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò

ÓÅÉÑÁ FOURIER. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÌÜèçìá 13 ÓÅÉÑÁ FOURIER 13.1 ÅéóáãùãéêÝò Ýííïéåò Ïé ðåñéïäéêýò óõíáñôþóåéò óõíáíôþíôáé óõ íü óå äéüöïñá ðñïâëþìáôá åöáñìïãþí. Ç ðñïóðüèåéá íá åêöñáóôïýí ïé óõíáñôþóåéò áõôýò ìå üñïõò áðëþí ðåñéïäéêþí óõíáñôþóåùí,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 8: Προσέγγιση ολοκληρωμάτων Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Διαφορικές Εξισώσεις Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí ñþóôïò ÊïíáîÞò, A.M. 200416 ìðë 30-06-2005 óêçóç 1. óôù R N n ; n 1. ËÝìå üôé ç R åßíáé "áñéèìçôéêþ" áí õðüñ åé ôýðïò ö(x 1 ; : : : ; x n ) ôçò Ã1 èá ôýôïéïò ðïõ

Διαβάστε περισσότερα

Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙII Ενότητα 1: Μετασχηματισμός aplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á. ÐÁÑÁÑÔÇÌÁÔÁ 76 77 ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ f( (Á. üôáí ãéá êüèå êáíïíéêü ïñèïãþíéï ôáíõóôþ Q éó

Διαβάστε περισσότερα

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí Çëßáò Ê. Óôáõñüðïõëïò Ïêôþâñéïò 006 1 Áóõìðôùôéêïß Óõìâïëéóìïß ÎåêéíÜìå äéáôõðþíïíôáò ôïõò ïñéóìïýò ôùí ðýíôå ãíùóôþí áóõìðôùôéêþí óõìâïëéóìþí: Ïñéóìüò

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 4: Συναρτήσεις Πολλών Μεταβλητών Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του

Διαβάστε περισσότερα

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X V X A B+24 AEROGRAMÌI Ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò Å öáßíïíôáé óôï ðáñáêüôù ó Þìá. Áíôßóôïé á, ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò ÂÔ öáßíïíôáé óôï Ó Þìá Å. Ãéá ôïí ðñïóäéïñéóìü ôçò ðáñáããåëßáò

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 6: Γραμμική Άλγεβρα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÅÎÉÓÙÓÅÙÍ

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÅÎÉÓÙÓÅÙÍ ÌÜèçìá 1 ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÅÎÉÓÙÓÅÙÍ 11 ÅéóáãùãéêÝò Ýííïéåò 111 Ïñéóìïß Êñßíåôáé áñ éêü áðáñáßôçôï íá ãßíåé óôïí áíáãíþóôç õðåíèýìéóç ôùí ðáñáêüôù âáóéêþí ìáèçìáôéêþí åííïéþí: Ïñéóìüò 111-1 (åîßóùóçò) ËÝãåôáé

Διαβάστε περισσότερα

ÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò

ÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò ÌÜèçìá 2 ÓÅÉÑÅÓ 2. Áêïëïõèßåò áñéèìþí Êñßíåôáé óêüðéìï íá äïèåß ðåñéëçðôéêü ðñéí áðü ôç ìåëýôç ôùí óåéñþí ç Ýííïéá ôçò áêïëïõèßáò áñéèìþí. Ï áíáãíþóôçò, ãéá ìéá åêôåíýóôåñç ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 30 ÊåöÜëáéï 2 ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 2.1 ÅéóáãùãÞ ¼ðùò êáé óôïí IR 2, Ýôóé êáé óôïí IR 3 ìðïñïýìå íá ïñßóïõìå ìéá êáìðýëç ðáñáìåôñéêü. ÄçëáäÞ, íá Ý åé ôç ìïñöþ x = x(t), y = y(t), z = z(t), üðïõ t åßíáé

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò Áíôþíçò Ïéêïíüìïõ aeconom@math.uoa.gr ÌáÀïõ óêçóç (Ross, Exer. 4.8) Áí E[X] êáé V ar[x] 5 íá âñåßôå. E[( + X) ],. V ar[4 + X]. óêçóç (Ross, Exer. 4.64)

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ. ÌÁÈÇÌÁÔÉÊÁ ÃÅÍÉÊÇÓ ÐÁÉÄÅÉÁÓ Ã ËÕÊÅÉÏÕ È Å Ì Á 1 ï 3 ï Ä É Á Ã Ù Í É Ó Ì Á á êéçôü êéåßôáé ðüù óôï Üîïá x~x. Ç èýóç ôïõ êüèå ñïéêþ óôéãìþ t äßåôáé áðü ôç 3 óõüñôçóç x(t) = t 1t + 60t + 1, üðïõ ôï t ìåôñéýôáé

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 9: Παράγωγος Συνάρτησης Μέρος Ι. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 9: Παράγωγος Συνάρτησης Μέρος Ι. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 9: Παράγωγος Συνάρτησης Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ .1 Ç Ýííïéá ôçò óõíüñôçóçò 55.1 H Ýííïéá ôçò óõíüñôçóçò Åñþ ôçóç 1 Ôé ëýãåôáé óõíüñôçóç; ÁðÜíôçóç Ç ó Ýóç åêåßíç ðïõ êüèå ôéìþ ôçò ìåôáâëçôþò x, áíôéóôïé ßæåôáé óå ìéá ìüíï ôéìþ ôçò ìåôáâëçôþò y ëýãåôáé

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 3: Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ. Θερμοδυναμική 2012 Σελίδα 292

ΠΙΝΑΚΕΣ. Θερμοδυναμική 2012 Σελίδα 292 ΠΙΝΑΚΕΣ 2012 Σελίδα 292 Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες: Ιδανικά αέρια Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc.

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 1: Διαφορικές Εξισώσεις Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 7: Προσέγγιση ολοκληρωμάτων Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 6: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 9: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ÓõíáñôÞóåéò ðïëëþí ìåôáâëçôþí

ÓõíáñôÞóåéò ðïëëþí ìåôáâëçôþí 165 KåöÜëáéï 8 ÓõíáñôÞóåéò ðïëëþí ìåôáâëçôþí 1. Ïñéóìüò êáé óõíý åéá óõíáñôþóåùò ðåñéóóïôýñùí ìåôáâëçôþí * ÌåôñéêÝò óå ìåôñéêïýò þñïõò Åðß ôïõ Rïñßæïõìå ôçí ìåôñéêþ d(, = - 1 1 Åðß ôïõ R ïñßæïõìå ôéò åðüìåíåò

Διαβάστε περισσότερα

Estimation Theory Exercises*

Estimation Theory Exercises* Estimation Theory Exercises* Öþôçò ÓéÜííçò ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêü fsiannis@math.uoa.gr December 22, 2009 * Áðü ôéò óçìåéþóåéò "ÓôáôéóôéêÞ Óõìðåñáóìáôïëïãßá" ôïõ Ô. ÐáðáúùÜííïõ, ôéò óçìåéþóåéò

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

ÐñïêáôáñêôéêÝò ÌáèçìáôéêÝò ííïéåò

ÐñïêáôáñêôéêÝò ÌáèçìáôéêÝò ííïéåò ÊåöÜëáéï 1 ÐñïêáôáñêôéêÝò ÌáèçìáôéêÝò ííïéåò 1.1 Äéáíýóìáôá Áò èõìçèïýìå ëïéðüí îáíü ôçí Ýííïéá ôïõ äéáíýóìáôïò. Áðü ôï Ëýêåéï ãíùñßæïõìå üôé ôï äéüíõóìá åßíáé ìéá ðïóüôçôá ðïõ Ý åé ìýôñï, äéåýèõíóç êáé

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Αντίστροφος Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος

Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Αντίστροφος Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙII Ενότητα : Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

10. ÃÑÁÖÉÊÅÓ ÐÁÑÁÓÔÁÓÅÉÓ Ðùò êáôáóêåõüæïõìå ìéá ãñáöéêþ ðáñüóôáóç

10. ÃÑÁÖÉÊÅÓ ÐÁÑÁÓÔÁÓÅÉÓ Ðùò êáôáóêåõüæïõìå ìéá ãñáöéêþ ðáñüóôáóç 0. ÃÑÁÖÉÊÅÓ ÐÁÑÁÓÔÁÓÅÉÓ 0. Ðùò êáôáóêåõüæïõìå ìéá ãñáöéêþ ðáñüóôáóç ÊáôÜ ôç ìåëýôç åíüò öáéíïìýíïõ óôï åñãáóôþñéï êáôáãñüöïõìå ôá áðïôåëýóìáôá ôùí ðáñáôçñþóåùí êáé ôùí ìåôñþóåþí ìáò óå ðßíáêåò. Ïé ðßíáêåò

Διαβάστε περισσότερα