PAU XUÑO 2016 FÍSICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PAU XUÑO 2016 FÍSICA"

Transcript

1 PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións. As respostas deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto O alumno elixirá unha das dúas opcións OPCIÓN A C.1.- Supoñamos que a masa da Lúa diminuíse á metade do seu valor real. Xustifique se a frecuencia con que veriamos a Lúa chea sería: a) maior que agora; b) menor que agora; c) igual que agora. C.2.- No efecto fotoeléctrico, a representación gráfica da enerxía cinética máxima dos electróns emitidos en función da frecuencia da luz incidente é: a) unha parábola; b) unha liña recta; c) ningunha das respostas anteriores é correcta. C.3.- Queremos ver unha imaxe da nosa cara para afeitarnos ou maquillarnos. A imaxe debe ser virtual, dereita e ampliada 1,5 veces. Se colocamos a cara a 25 cm do espello. Que tipo de espello debemos empregar?: a) convexo; b) cóncavo; c) plano. C.4.- Se temos un resorte de constante elástica coñecida, como podemos saber o valor dunha masa descoñecida? Describe as experiencias que debemos realizar para logralo. P.1.- Una onda cuxa amplitude é 0,3 m recorre 300 m en 20 s. Calcula: a) a máxima velocidade dun punto que vibra coa onda se a frecuencia é 2 Hz; b) a lonxitude de onda; c) constrúe a ecuación de onda, tendo en conta que o seu avance é no sentido negativo do eixe x. P.2.- Tres cargas de -2, 1 e 1 µc están situadas nos vértices dun triángulo equilátero e distan 1m do centro del. a) Calcula o traballo necesario para levar outra carga de 1µC desde o infinito ó centro do triángulo. b) Que forza sufrirá a carga unha vez que estea situada no centro do triángulo? c) Razoa se nalgún punto dos lados do triángulo pode existir un campo electrostático nulo. (Dato: K = N m 2 C -2 ) OPCIÓN B C.1.- Un condutor macizo en forma de esfera recibe unha carga eléctrica Cal das seguintes afirmacións é verdadeira? a) O potencial electrostático é o mesmo en todos os puntos do condutor; b) a carga distribúese por todo o condutor; c) no interior do condutor o campo electrostático varía linealmente, aumentando ó achegarnos á superficie do condutor. C.2.- Unha masa de 600 g oscila no extremo dun resorte vertical con frecuencia 1 Hz e amplitude 5 cm. Se engadimos unha masa de 300 g sen variar a amplitude, a nova frecuencia será: a) 0,82 Hz; b) 1,00 Hz; c) 1,63 Hz. C.3.- Cando unha partícula cargada se move dentro dun campo magnético, a forza magnética que actúa sobre ela realiza un traballo que sempre é: a) positivo, se a carga é positiva; b) positivo, sexa como sexa a carga; c) cero. C.4- Explica cómo se pode determinar a aceleración da gravidade utilizando un péndulo simple, e indica o tipo de precaucións que debes tomar á hora de realizar a experiencia. P.1 A nave espacial Discovery, lanzada en outubro de 1998, describía arredor da Terra unha órbita circular cunha velocidade de 7,62 km s -1 : a) a que altura sobre a superficie da Terra se atopaba?; b) canto tempo tardaba en dar unha volta completa?; c) cantos amenceres vían cada 24 horas os astronautas que ían no interior da nave? (Datos: G= 6, N m 2 kg -2 ; R T = 6370 km ; M T = 5, kg) P.2.- O Cobalto 60 é un elemento radioactivo utilizado en radioterapia. A actividade dunha mostra redúcese á milésima parte en 52,34 anos. Calcula: a) o período de semidesintegración; b) a cantidade de mostra necesaria para que a actividade sexa de desintegracións/segundo; c) a cantidade de mostra que queda ó cabo de 2 anos. (Datos N A = 6, mol -1 ; masa atómica do 60 Co = 60 g mol -1 ; 1 ano = 3, s)

2 PAU SETEMBRO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións. As respostas deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto O alumno elixirá unha das dúas opcións OPCIÓN A C.1.- Explica cal das seguintes afirmacións é verdadeira: a) non se realiza traballo cando unha carga eléctrica se traslada entre dous puntos dunha superficie equipotencial; b) as liñas de forza do campo electrostático son pechadas; c) as liñas de forza sempre se cortan. C.2.- Ao redor dun planeta viran dous satélites, M e N, cuxos períodos de revolución son 32 e 256 días, respectivamente. Se o raio da órbita do satélite M é 10 4 km, o raio do satélite N será: a) 4, km; b) 1, km; c) 3, km. C.3.- Nunha rexión do espazo hai un campo eléctrico e un campo magnético, ambos uniformes, da mesma dirección pero de sentidos contrarios. Na devandita rexión abandónase un protón con velocidade inicial nula. O movemento do protón, é: a) rectilíneo uniforme; b) rectilíneo uniformemente acelerado; c) circular uniforme. C.4- Medíronse no laboratorio os seguintes valores para as distancias obxecto e imaxe dunha lente converxente: s(cm) 39,0 41,9 49,3 59,9 68,6 s (cm) 64,3 58,6 48,0 40,6 37,8 Calcula: a) o valor da potencia da lente; b) explica a montaxe experimental utilizada. P.1.- A enerxía total dun corpo de masa 0,5 kg que realiza un movemento harmónico simple é 6, J e a forza máxima que actúa sobre el é 0,3 N. a) Escribe a ecuación da elongación en función do tempo, se no instante inicial se atopa no punto de máxima elongación positiva; b) calcula no instante T/4 a enerxía cinética e a enerxía potencial; c) acha a frecuencia coa que oscilaría se se duplicase a súa masa. P.2.- O isótopo do Boro, B, é bombardeado por unha partícula α e prodúcese 6 C e outra partícula. a) Escribe a reacción nuclear; b) calcula a enerxía liberada por núcleo de Boro bombardeado; c) calcula a enerxía liberada se se considera 1 g de Boro. Datos: masa atómica do 10 B = 10,0129 u; masa atómica do 13 C = 13,0034 u; m alfa = 4,0026 u; m protón = 1,0073 u; c = m s -1 ; N A =6, mol -1 ; 1u = 1, kg. OPCIÓN B C.1.- A intensidade nun punto dunha onda esférica que se propaga nun medio homoxéneo e isótropo: a) é inversamente proporcional ao cadrado da distancia ao foco emisor; b) é inversamente proporcional á distancia ao foco emisor; c) non varía coa distancia ao foco emisor. C.2.- Para o efecto fotoeléctrico, razoa cal das seguintes afirmacións é correcta: a) a frecuencia limiar depende do número de fotóns que chegan a un metal en cada segundo; b) a enerxía cinética máxima do electrón emitido por un metal non depende da frecuencia da radiación incidente; c) o potencial de freado depende da frecuencia da radicación incidente. C.3.- Unha expira móvese no plano xy, onde hai unha zona na que existe un campo magnético constante B en dirección +z. Aparece na expira unha corrente eléctrica en sentido horario: a) se a expira entra na zona de B ; b) cando sae desa zona c) cando se despraza por esa zona C.4.- Quérese obter a aceleración da gravidade mediante un péndulo simple, obténdose os seguintes valores Lonxitude do péndulo (cm) Tempo en realizar 10 oscilacións (s) 15,5 16,8 17,9 19,0 Representa, de forma aproximada, T 2 fronte a l e calcula, a partir de dita gráfica, a aceleración da gravidade. P.1.- Unha lente diverxente de distancia focal 10 cm forma unha imaxe de 2 cm de altura. Se o tamaño do obxecto é 10 cm: a) calcula a distancia á que se atopa o obxecto da lente; b) debuxa a marcha dos raios; c) a miopía é un defecto visual. Explica como se pode corrixir. P.2.- Un satélite artificial de masa 10 2 kg vira ao redor da Terra a unha altura de km sobre a superficie terrestre. Calcula: a) a súa velocidade orbital, aceleración e período, suposta a órbita circular; b) acha o módulo do momento angular do satélite respecto do centro da Terra; c) enuncia as leis de Kepler. DATOS: g 0 =9,81 m s -2 ; R T = 6,

3 PROBAS DE ACCESO Á UNIVERSIDADE (PAAU) CONVOCATORIA DE XUÑO Curso Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. (As solucións ás cuestións e problemas que a continuación se sinalan son simples indicacións que non exclúen outras posibles respostas ) OPCIÓN A C.1. Supoñamos que a masa da Lúa diminuíse á metade do seu valor real. Xustifique se a frecuencia con que veríamos a Lúa chea sería: a) maior que agora; b) menor que agora; c) igual que agora C.2. No efecto fotoeléctrico, a representación gráfica da enerxía cinética máxima dos electróns emitidos en función da frecuencia da luz incidente é: a) unha parábola; b) unha liña recta; c) ningunha das respostas anteriores é correcta SOL:c.....máx. 1,00 A frecuencia é independente da masa da Lúa. SOL:b máx. 1,00 A partir da ecuación de Einstein para o efecto fotoeléctrico: C.3. Queremos ver unha imaxe da nosa cara para afeitarnos ou maquillarnos. A imaxe debe ser virtual, dereita e ampliada 5 veces. Se colocamos a cara a 25 cm do espello. Qué tipo de espello deberemos empregar? a) convexo; b) cóncavo; c) plano SOL: b máx. 1,00 Formación da imaxe en espellos cóncavos ou a partir da ecuación do aumento. Aumento: 1,5 37,5, 75 ó C.4. Se temos un resorte de constante elástica coñecida, cómo podemos saber o valor dunha masa descoñecida?. Describe experiencias que debemos realizar para logralo. Explicación axeitada (material, procedemento e indicando a ecuación utilizada )...1,00

4 P.1. Unha onda cuxa amplitude é 0,3 m recorre 300 m en 20 s. Calcula: a) a máxima velocidade dun punto que vibra coa onda se a frecuencia é 2 Hz; b) a lonxitude de onda; c) constrúe a ecuación de onda, tendo en conta que o seu avance é no sentido negativo do eixe x. P.2. Tres cargas de 2, e 2 C están situadas nos vértices dun triángulo equilátero e distan 1 m do centro del. a) Calcula o traballo necesario para levar outra carga de 1 C desde o infinito ó centro do triángulo. b) Qué forza sufrirá a carga unha vez que estea situada no centro do triángulo? c) Razoa se nalgún punto dos lados do triángulo pode existir un campo electrostático nulo. (Dato: K= N m 2 C 2 ) a. Velocidade máxima ,00 A0,3m;v s 300 t 20 15m s ; f 2Hz ω 2π f 4π Hz; v 15 f 2 7,5m k2π 2π 4π 7,5 15 m. ωtkx 0,3 4πt 4π 15 x v dy dt 0,3 4π 4πt4π 15 x v 0,3 4π,, b., c., (Igualmente valida a utilización da función cos) a. Traballo necesario ,00 E E E E V q V K q K q K q 2 10 K r r r V q b. Forza no centro do triángulo ,00 E K q r N C E ı1 ȷ N C 2 E K q r N C E 9 10 ȷN C E K q N C E ı1 ȷ N C 2 E 23,4 10 ı 13,5 10 ȷ N C F E q 23,4 10 ı13,5 10 ȷ 1 10,,, (A distribución de cargas pode ser diferente)...1,00 c. Puntos en que se anule o campo electrostático. Por estar situadas as cargas de forma asimétrica, nos lados do triángulo sempre existirá un campo non nulo. (Xustificación mediante debuxo ou cálculo)

5 OPCIÓN B C.1. Un condutor macizo en forma de esfera recibe unha carga eléctrica. Cal das seguintes afirmacións é verdadeira? a) O potencial electrostático e o mesmo en todos os puntos do condutor. b) a carga distribúese por todo o condutor c) no interior do condutor o campo electrostático varía linealmente, aumentando ó achegarnos á superficie do condutor. C.2. Unha masa de 600 g oscila no extremo dun resorte vertical con frecuencia 1 Hz e amplitude 5 cm. Se engadimos unha masa de 300 g sen variar a amplitude, a nova frecuencia será: a) 0,82 Hz; b) 1,00 Hz; c) 1,63 Hz. C.3. Cando unha partícula cargada se move dentro dun campo magnético, a forza magnética que actúa sobre ela realiza un traballo que sempre: a) é positivo, se a carga é positiva; b) positivo, sexa como sexa a carga; c) cero SOL: a.....máx. 1,00 Por ser un condutor cargado en equilibrio electrostático, a carga distribúese uniformemente na súa superficie exterior, polo que o campo eléctrico no interior é nulo. Como se é nulo, o potencial será constante no interior e na superficie. SOL: a máx. 1, ,6 2, ,4 0,9 0,82Hz SOL: c máx. 1,00 Dado que 0 C.4. Explica como se pode determinar a aceleración da gravidade utilizando un péndulo simple, e indica as precaucións que debes tomar á hora de realizar a experiencia. Explicación axeitada : material, procedemento e indicando a ecuación utilizada e as precaucións que se deben tomar (ao menos a amplitude angular, número de oscilacións e repetición) ,00

6 P.1. A nave espacial Discovery, lanzada en outubro de 1998, describía arredor da Terra unha órbita circular cunha velocidade de 7,62 km s 1 : a) a que altura sobre a superficie da Terra se atopaba? b) canto tempo tardaba en dar unha volta completa? c) cantos amenceres vían os astronautas que ían no interior da nave? (DATOS: G=6, N m 2 kg 2 ; R T =6370 km; M T =5, kg) P.2. O Cobalto 60 é un elemento radioactivo utilizado en radioterapia. A actividade dunha mostra redúcese á milésima parte en 52,34 anos. Calcula: a) o período de semidesintegración; b) a cantidade de mostra necesaria para que a actividade sexa de desintegracións/segundo; c) a cantidade de mostra que queda ó cabo de 2 anos. (Datos:N A =6, mol 1 ;masa atómica 60 Co=60;1 ano =3, s) a. Determinación da altura ,00,, b. Período:,,... 1,00 c. Número de amenceres en 24 h:: , ,57 a. Tempo de semidesintegración , ,132, / 2 5,25, b. Cantidade de mostra necesaria: , ,18 10, ú,, c. A partir do valor anterior: ,00 1,19 10,,, ú ;, En función de m 0 :, 100, %

7 PROBAS DE ACCESO Á UNIVERSIDADE (PAAU) CONVOCATORIA DE SETEMBRO Curso Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. (As solucións ás cuestións e problemas que a continuación se sinalan son simples indicacións que non exclúen outras posibles respostas ) OPCIÓN A C.1. Explica cal das seguintes afirmacións é verdadeira: a) non se realiza traballo cando unha carga eléctrica se traslada entre dous puntos dunha superficie equipotencial; b) as liñas de forza do campo electrostático son pechadas; c) as liñas de forza sempre se cortan. C.2. Ao redor dun planeta viran dous satélites, M e N, cuxos períodos de revolución son 32 e 256 días, respectivamente. Se o radio da órbita do satélite M é 10 6 km, o radio do satélite N será: a) 4, ; b) 1, km;c) 3, km C.3. Nunha rexión do espazo hai un campo eléctrico e un campo magnético, ambos uniformes, da mesma dirección, pero de sentidos contrarios. Na devandita rexión abandónase un protón con velocidade inicial nula. O movemento do protón é: a) rectilíneo uniforme; b) rectilíneo uniformemente acelerado; c) circular uniforme. C.4. Medíronse no laboratorio os seguintes valores para as distancias obxecto e imaxe dunha lente converxente: s(cm) 39,0 41,9 49,3 59,9 68,6 s (cm) 64,3 58,6 48,0 40,6 37,8 Calcula: a) o valor da potencia da lente; b) explica a montaxe experimental utilizada SOL:a.....máx. 1,00 Tendo en conta a definición de traballo como: Nunha superficie equipotencial 0 O traballo realizado será 0. SOL:a máx. 1,00 Por aplicación da 3ª lei de Kepler: 4,0 10 SOL: b máx. 1,00 O movemento do protón virá determinado unicamente pola acción da forza eléctrica ( ), xa que a forza magnética ( ), por ser nula a súa velocidade inicial. Polo tanto o movemento será rectilíneo uniformemente acelerado: Explicación axeitada (material, procedemento e indicando a ecuación utilizada )...1, ,11 0,01 í s(m) 0,390 0,419 0,4,3 0,599 0,686 s (m) 0,643 0,586 0,480 0,406 0,378 P(m 1 ) 4,119 4,093 4,112 4,133 4,103 4,112 ; 0,01

8 P.1. A enerxía total dun corpo de masa 0,5 kg que realiza un movemento harmónico simple é 6, J e a forza máxima que actúa sobre el é 0,3 N. a) Escribe a ecuación da elongación en función do tempo, se no instante inicial se atopa no punto de máxima elongación positiva. b) Calcula no instante T/4 a enerxía cinética e a enerxía potencial; c) Acha a frecuencia coa que oscilaría se se duplicase a súa masa. P.2. O isótopo de Boro,, é bombardeado por unha partícula e prodúcese e outra partícula. a) Escribe a reacción nuclear, b) Calcula a enerxía liberada por núcleo de Boro bombardeado; c) Calcula a enerxía liberada se se considera 1 g de Boro. Datos: masa atómica do 10 B=10,0129 u; masa atómica do 13 C=13,0034 u; m alfa =4,0026 u; c= m s 1 ; N A =6, mo l 1 ; 1 u=1, kg. a. Ecuación de elongación 1,00 E mec = ka2 6,0 10 F=k x 0,3 k=7,5 N/m 3,87 /; A= 0,04 m,, b. Para t=t/4 y=0 0;,.... 1,00 c. Frecuencia de oscilación ao duplicar a masa.... 1,00 Se m =2m , 2 2 a ,00 b. Enerxía liberada ,00 Balance de perda de masa na reacción:, Enerxía : 4,8 10, 3 10, /ú c. Enerxía liberada por 1 g de B: ,00 7,17 10 ú 6, ú ,0129, /

9 OPCIÓN B C.1. A intensidade dun punto dunha onda esférica que se propaga nun medio homoxéneo e isótropo: a) é inversamente proporcional ao cadrado da distancia ao foco emisor; b) é inversamente proporcional ao foco emisor; c) non varía coa distancia ao foco emisor. C.2. Para o efecto fotoeléctrico, razoa cal das seguintes afirmacións é correcta: a) a frecuencia limiar depende do número de fotóns que chegan a un metal en cada segundo; b) a enerxía cinética máxima do electrón emitido por un metal non depende da frecuencia de radiación incidente; c) o potencial de freado depende da frecuencia de radiación incidente. SOL: a.....máx. 1,00 Intensidade = SOL: c máx. 1, C.3. Unha espira móvese no plano XY, onde hai unha zona na que existe un campo magnético constante B en dirección + Z. Aparece na espira unha corrente eléctrica en sentido horario: a) se a espira entra na zona de B; b) cando sae desa zona; c) cando se despraza por esa zona SOL: a máx. 1,00 Por aplicación da lei de Faraday e da lei de Lenz, ao aumentar o fluxo magnético, na espira indúcese unha corrente eléctrica en sentido horario, que xenera un campo magnético que se opón a variación do fluxo inductor. C.4. Quérese obter a aceleración da gravidade mediante un péndulo simple, obténdose os seguintes valores. Lonxitude do péndulo (cm) Tempo en realizar 10 oscilacións (s) 64,3 58,6 48,0 37,8 Representa, de forma aproximada T 2 fronte a l e calcula, a partir de dita gráfica, a aceleración da gravidade ,00 2 Lonxitude do péndulo (m) 0,60 0,70 0,80 0,90 Tempo de 10 oscilacións 15,5 16,8 17,9 19,0 T(s) 1,55 1,68 1,89 1,90 T 2 (s 2 ) 2,40 2,82 3,20 3,61 Pendiente= = 4,01 9,85 m s

10 P.1. Unha lente diverxente de distancia focal 10 cm forma unha imaxe de 2 cm de altura. Se o tamaño do obxecto é 10 cm: a) calcula a distancia a que se atopa o obxecto da lente; b) debuxa a marcha dos raios c) a miopía é un defecto visual. Explica cómo se pode corrixir. a. Lente diverxente: b , ,02 0,01 0, , ,41 P.2. Un satélite artificial de masa 10 2 kg vira ao redor da Terra a unha altura de km sobre a superficie terrestre. Calcula: a) a súa velocidade orbita, aceleración e período, suposta a órbita circular. b) acha o módulo do momento angular do satélite respecto do centro da Terra; c) enuncia as leis de Kepler. (DATOS:g=9,81 m s 2 ; R T =6, m) c. Cunha lente diverxente que corrixa o exceso de converxencia a. Velocidade orbital ,00, (0,50) Aceleración:, (0,25) Período:,.(0,25) b. Momento angular... 1,00 ; nunha órbita circular, c. Enunciado Leis de Newton ,00

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA OPCIÓN A

PAU XUÑO 2016 FÍSICA OPCIÓN A PAU Código: 25 XUÑO 2016 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

CALCULO DA CONSTANTE ELASTICA DUN RESORTE

CALCULO DA CONSTANTE ELASTICA DUN RESORTE 11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS INTRODUCIÓN O carácter da Física como ciencia experimental fai que as prácticas de laboratorio sexan un complemento imprescindible no ensino desta disciplina. As actividades prácticas poñen aos estudantes

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA PROBLEMAS TERMOQUÍMICA 1. Para o proceso Fe 2O 3 (s) + 2 Al (s) Al 2O 3 (s) + 2 Fe (s), calcule: a) A entalpía da reacción en condicións estándar e a calor desprendida

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

PAU XUÑO 2013 FÍSICA

PAU XUÑO 2013 FÍSICA PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B)

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B) 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A o B ) de cada bloque. Todos os problemas puntúan do mesmo xeito,

Διαβάστε περισσότερα

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m GAVIACIÓN. OBAS. O SSNG é unha misión espaial non tripulada da NASA, lanzada rumbo a erurio en Aosto de 004 e que entrou en órbita arredor dese planeta en arzo de 0. No seu perorrido enviou datos que permiten

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos Puntuación máxima de cada un dos exercicios: Álxebra 3 puntos; Análise 3,5 puntos;

Διαβάστε περισσότερα

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6 CMPO ELECTROSTÁTICO 1.- Carga eléctrica. Cuantización 1.1. Tipo de carga:.- Lei de Coulomb 3 3.- Traballo 4 3.1.-Enerxía Potencial Electrotática 5 4.- Campo Electrotático 5 5.- Potencial Electrotático

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar.

Números reais. Obxectivos. Antes de empezar. 1 Números reais Obxectivos Nesta quincena aprenderás a: Clasificar os números reais en racionais e irracionais. Aproximar números con decimais ata unha orde dada. Calcular a cota de erro dunha aproximación.

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

1. Formato da proba [CS.PE.B02]

1. Formato da proba [CS.PE.B02] Páxina 1 de 9 [CS.PE.02] 1. Formato da proba Formato A proba consta de vinte cuestións, distribuídas deste xeito: Problema 1: tres cuestións tipo test. Problema 2: tres cuestións tipo test. Problema 3:

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE O KMnO en presenza de H SO transforma o FeSO en Fe (SO ), formándose tamén K SO, MnSO e auga: a) Axusta a reacción molecular. b) Cantos cm de disolución de KMnO 0,5

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES Nº 33 - www.issga.es FRANCISCO JAVIER COPA RODRÍGUEZ Técnico superior en Prevención de Riscos Laborais Instituto Galego de Seguridade e Saúde Laboral Edita: Instituto Galego de Seguridade e Saúde Laboral

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1 As leis ponderais e volumétricas, estudadas no anterior tema, analizadas á luz da teoría atómica que hoxe manexamos resultan ser unha consecuencia lóxica da mesma, pero non debemos esquecer que historicamente

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio 3 Polinomios Obxectivos Nesta quincena aprenderás a: Achar a expresión en coeficientes dun polinomio e operar con eles. Calcular o valor numérico dun polinomio. Recoñecer algunhas identidades notables,

Διαβάστε περισσότερα

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2013 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición

Διαβάστε περισσότερα

Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES

Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES PROBLEMAS ÁCIDO/BASE DÉBIL 1. Unha disolución de amoníaco de concentración 0,01 mol/dm 3 está ionizada nun 4,2%. a) Escriba a reacción de disociación e calcule

Διαβάστε περισσότερα

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 1.1 Concepto de corrente eléctrica...2 1.1 Concepto de corrente eléctrica...2 1.2 Características dun circuíto de corrente

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos. BLOQUE DE ÁLXEBRA (Puntuación máxima 3 puntos) 1 0 0 1-1 -1 Sexan as matrices

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5 1.- Moeento Ondulatorio. Clases de onda!.- Ondas Harónias. Función de onda unidiensional! 3 3.- Enerxía! 5 3.1.- Absorción!... 6 4.- Principio de HUYGENS! 6 4.1.- Reflexión!... 6 4..- Refracción!... 7

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

Mostraxe Inferencia estatística

Mostraxe Inferencia estatística Mostraxe Inferencia estatística A mostraxe e a inferencia estatística utilízase para coñecer as características dunha poboación a partir dun grupo pequeno de elementos da mesma e para coñecer os erros

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

Académico Introducción

Académico Introducción - Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... general para un ensayo/tesis Για να απαντήσουμε αυτή την ερώτηση, θα επικεντρωθούμε πρώτα... Para introducir un área específica

Διαβάστε περισσότερα

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2014 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα