Ηλεκτροµαγνητική µοντελοποίηση στην UHF και Μικροκυµατική περιοχή ραδιοφάσµατος για εφαρµογές στα σύγχρονα ασύρµαταδίκτυαγιαεσωτερικούς χώρους

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ηλεκτροµαγνητική µοντελοποίηση στην UHF και Μικροκυµατική περιοχή ραδιοφάσµατος για εφαρµογές στα σύγχρονα ασύρµαταδίκτυαγιαεσωτερικούς χώρους"

Transcript

1 Ηλεκτροµαγνητική µοντελοποίηση στην UHF και Μικροκυµατική περιοχή ραδιοφάσµατος για εφαρµογές στα σύγχρονα ασύρµαταδίκτυαγιαεσωτερικούς χώρους

2 2 Περιβάλλοντα εσωτερικού χώρου Το κανάλι µετάδοσης εσ. χώρου είναι κάτι το πολύ πιο σύνθετο από τα αντίστοιχα εξ. χώρου.: Αυξηµένος αριθµός εµποδίων, µε διαστάσεις συγκρίσιµες µετοµήκος κύµατος των συστηµάτων που µεταδίδουν Παρουσία πληθώρας τύπων από τοίχους, πατώµατα και εν γένει εµπόδια. Σαν αποτέλεσµα, διάφορα µοντέλα απωλειών όδευσης έχουν αναπτυχθεί για την περιγραφή του καναλιού εσ. χώρου και τις πολλαπλασιαζόµενες επιδράσεις που προκαλούν την εξασθένηση του µεταδιδόµενου σήµατος. Τι έχει σηµασία: Ο υπολογισµός της µέσης απώλειας όδευσης (που επιτρέπει τον υπολογισµότηςµέσης λαµβανόµενης ισχύος) Μια αναλυτική περιγραφή και πρόβλεψη όλων των παραγόντων εξασθένησης και την συνδυαζόµενη συµβολή τους στο διαδιδόµενο σήµα και τα επίπεδα ισχύος του.

3 3 Κίνητρα (1) Η αξιοπιστία της µέσης προβλεπόµενης ισχύος για περιβάλλοντα εσωτερικού χώρου στη συχνότητα των 2.4 GHz, σαν τη ραχοκοκαλιά ενός οποιουδήποτε Wi- Fi και όχι µόνο συστήµατος. Η απουσία την συγκριτικής αξιολόγησης και επιβεβαίωσης για τα RF µοντέλα εσωτερικού χώρου στα 2.4 GHz (!) µε την εξαίρεση του one-slope και ορισµένες εφαρµογές του log-distance model. Ηαπουσίαενός«γρήγορου» ηµι-εµπειρικού µοντέλου,που θα µπορούσε να είναι µια πιο αξιόπιστη και ευέλικτη αντιπρόταση στο Multi-Wall-Floor µοντέλο, το οποίο είναι πολύ αξιόπιστο,αλλά απαιτεί µεγάλουπολογιστικόκόστος. Υπολογισµός της παραµέτρου «εξασθένηση ανά απόσταση» (db/m) για ένα πλήθος τοπολογιών εσωτερικών χώρων µεχρήσηεµπειρικών δεδοµένων που αποκτήθηκαν από εκτεταµένες µετρήσεις µε εξειδικευµένο λογισµικό. Αξιολόγηση έντασης και ποιότητας µηχανισµών εξασθένησης ραδιοσήµατος µε κριτήριο την υπολογισθείσα εξασθένηση ανά απόσταση. Επαναπροσδιορισµός της κατηγοριοποίησης τοπολογιών εσωτερικών χώρων στη βάση της παραπάνω αξιολόγησης.

4 4 Κίνητρα (2) Στηριζόµενοι στις µετρήσεις που έγιναν σε σύνθετα περιβάλλοντα µετάδοσης στα 2.4 GHz, υπολογίζεται η απόκλιση λόγω σκίασης (σε db) στηριζόµενηστιςαπώλειεςαπόταδιαφορετικάεµπόδια που επιδρούν πάνω στη διαδροµήτουσήµατος. Οι απώλειες αυτές λαµβάνονται από το Multi Wall Floor µοντέλο, το οποίο εµφανίζει αυξηµένη ακρίβεια ανεξάρτητα από την πολυπλοκότητα της εκάστοτε τοπολογίας. Η µέθοδος αυτή δεν περιορίζεται στα 2.4 GHz αλλά µπορεί να εφαρµοσθεί σε οποιαδήποτε συχνότητα εφόσον όλες οι απώλειες από τοίχους, πατώµατα και λοιπά εµπόδια που πρέπει να ληφθούν υπ όψιν, είτε υπολογίζονται είτε είναι γνωστές εκ των προτέρων.

5 5 Μεθοδολογία απόκτησης και επεξεργασίας µετρήσεων Οι µετρήσεις πραγµατοποιήθηκαν από τον Ιούλιο του 2008 µέχρι και την άνοιξη του 2010 σε µία πλειάδα τοπολογιών εσωτερικών χώρων (indoor propagation topologies). Ως δέκτης χρησιµοποιήθηκε laptop υπολογιστής εξοπλισµένος µετο ελεύθερο λογισµικό NETSTUMBLER Μετρήθηκε η στάθµη της µέσης λαµβανόµενης ισχύος (dbm) για πλήθος τοποθεσιών. Όπου ήταν δυνατό, πραγµατοποιήθηκαν µετρήσεις πολλαπλών ορόφων. Σε όλες τις περιπτώσεις ως ποµπός θεωρήθηκε έκαστο AP (Wi-Fi g, 2.4 GHz) που µετέδιδε σε συγκεκριµένη ισχύ (EIRP, dbm). Βασισµένοι στις καταγεγραµµένες στάθµες µέσης ισχύος, ελέγξαµε την αξιοπιστία των πλέον σηµαντικών µοντέλων πρόβλεψης µέσης απώλειας ισχύος (µέσο σφάλµα %) σε µία σειρά δηµοσιευµένων εργασιών.

6 6 Τοπολογίες εσωτερικών χώρων Πραγµατοποιήθηκαν µετρήσεις στις κάτωθι τοπολογίες: Εργαστήριο Ασύρµατης Τηλεπικοινωνίας (Office Topology) ιεθνές Αεροδρόµιο Αθηνών «Ελευθέριος Βενιζέλος» (Commercial) Βιβλιοθήκη Πανεπιστηµίου Πατρών (Commercial) 2 Οικίες στο κέντρο των Πατρών (Home) Κάθε τοπολογία αντιστοιχεί σε µία κατηγοριοποίηση εσωτερικών χώρων (ITU recommendation). Βασισµένοι στον υπολογισµό της εξασθένησης ανά απόσταση και της αδυναµίας προσαρµογής των µοντέλων στα διάφορα περιβάλλοντα στα πλαίσια της παρούσας εργασίας προχωρούµεσεαξιολόγησηκαιενδυνάµει επανακαθορισµό της τρέχουσας κατηγοριοποίησης. Κριτήριο αυτού του επανακαθορισµού είναι η οµαδοποίηση των τιµών της εξασθένησης ανά απόσταση και η προκύπτουσα ποιοτική επίδραση των µηχανισµών εξασθένησης ραδιοσήµατος για έκαστη τοποθεσία. Σε κάθε θέση µέτρησης λάβαµε 64 δείγµατα τιµών για πιο αξιόπιστα αποτελέσµατα.

7 7 RF µοντέλα εσωτερικών χώρων(1) Τα πλέον σηµαντικά και ευρέως χρησιµοποιούµενα indoor RF µοντέλα: Το µοντέλο του ελευθέρου χώρου προκύπτει από την εξίσωση του Friis: Το K ισούται µε db (απώλειες αναφοράς στο 1 m- για τη συχνότητα των 2.4 GHz). To LOG-Distance PL µοντέλο Χσ :Gaussian µεταβλητή µηδενικής µέσης τιµής (σε db) µε κανονική απόκλιση σ (σε db). Χρησιµοποιείται για να εκφράσει στατιστικά τα φαινόµενα τυχαίας σκίασης (random shadowing). Tο One-Slope αφορά εµπειρικά υπολογισµένες τιµές για τις απώλειες όδευσης στηριζόµενο σε τεχνικές ελαχιστοποίησης µέσου τετραγωνικού σφάλµατος. Το ITU περιγράφεται από τον ακόλουθο τύπο: Ο συντελεστής πτώσης ισχύος για εµπορικές τοπολογίες περιορίζεται στην τιµή 22 (προδιαγραφές ITU), όµως δεν είχε επιβεβαιωθεί στην πράξη.

8 8 RF µοντέλα εσωτερικών χώρων(2) Το Multi Wall Floor : wi fj L= L + 10nlog ( d) + L + L I 0 10 k= 1 wik k= 1 i= 1 j= 1 -n: συντελεστής απωλειών όδευσης (για LOS εσ. χώρου τιµή=1.8) -I,J, αριθµός ειδών τοίχων,πατωµάτων -Lwi(j)k: απώλειες λόγω k(j)-οστού τοίχου(πατώµατος) τύπου i(j) -Kwi(j): αριθµός διερχόµενων τοίχων (πατωµάτων) τύπου i(j) K Το µοντέλο γραµµικής εξασθένησης, γνωστό και ως µοντέλο Devarsivatham υπολογίζει την µέση απώλεια οδεύσεως σε db βάσει: L Σηµαντική εδώ είναι η παράµετρος a (db/m) που ορίζεται ως η εξασθένηση ανά απόσταση και περιγράφει ποιοτικά και ποσοτικά, την εξασθένηση που υπεισέρχεται στο µεταδιδόµενο σήµα για την συγκεκριµένη τοπολογία που εξετάζουµε. J P ( db) = P ( db) + 10n log ( d) + ad L K fjk

9 Μετρήσεις vs Προβλέψεις µοντέλων(οικία-ίδιος όροφος) Transmitted power : 19.8 dbm 9 Ηµι-εµπειρικά µοντέλα FSL ακατάλληλο για εσωτερικούς χώρους ( µε την κλασσική έννοια του όρου) Log-distance προβληµατικό ως προς την «κλιµάκωση» της σ. Στατική συµπεριφορά ΙΤU αρκετά καλή απόκριση Εµπειρικά Μοντέλα Μotley-Keenan ανταποκρίνεται µόνο στην αρχή. One-slope διερευνητικά σωστό. Αντιµετωπίζει όµως ανόµοιες θέσεις ως ίδιες ως προς την απόσταση. MW&F εξαιρετική απόκριση, µεγάλουπολογιστικόκόστος.

10 Μετρήσεις vs Προβλέψεις µοντέλων(οικία-διαφ. όροφοι) Transmitted power : 19.8 dbm 10 Ηµι-εµπειρικά µοντέλα Εµπειρικά Μοντέλα <--Log-Distance αποδεκτή απόκριση, στατικό σ, µικρές αποκλίσεις. Οne-Slope αποδεκτή απόκριση, στατικό n, µικρές αποκλίσεις. --- > <--ITUεντελώς αναξιόπιστο, ειδικά για 2 ορόφους διαφορά. MW&F αυξηµένη αξιοπιστία, µέγιστη διαφορά της τάξης των 5 dbm!!!--- >

11 11 Μετρήσεις vs Προβλέψεις µοντέλων(γραφείο-ίδιος όροφος) Transmitted power : 17dBm Ηµι-εµπειρικά µοντέλα FSL Αξιόπιστη περιγραφή µόνο 3 «ειδικών» σηµείων ( Μεγάλης αίθουσας όπου βρίσκεται ο ποµπός) Log-distance εµφανίζει µια κάποια ακρίβεια - αποµακρυσµένα σηµεία σήµαπολύ καλύτερο του αναµενόµενου ΙΤU περιγράφει αρκετά καλά τις στάθµες ισχύος Εµπειρικά Μοντέλα One-slope διερευνητικά σωστό. Λόγω όµως της µεγάλης διαφοράς των τιµών ανα θέση δεν είναι τόσο αντιπροσωπευτικό όσο στο οικιακό δίκτυο. MW&F εξαιρετική απόκριση, µεγάλουπολογιστικόκόστος.

12 Μετρήσεις vs Προβλέψεις µοντέλων(γραφείο-διαφ. όροφοι) Transmitted power : 17 dbm 12 Ηµι-εµπειρικά µοντέλα <--Log-Distance θέσεις στον πρώτο όροφο µε µικρότερες αποκλίσεις από τις προβλεπόµενες και δε µπορεί να τις καλύψει το µοντέλου Οne-Slope οι δύο καµπύλες πλησιάζουν η µία την άλλη, συγκέντρωση τιµών στο διάγραµµα για τις αποστάσεις m. --- > Εµπειρικά Μοντέλα <--ITU πλήρης αδυναµία του να περιγράψει τη µετάβαση από τον ένα όροφο στον άλλο MW&F αυξηµένη αξιοπιστία, πολλαπλά αθροίσµατα, δυσκολία --->

13 Τροποποίηση του ITU µοντέλου(1) 13 Το υπό µελέτη κανάλι θέλει N=18 για LOS µονοπάτι ανάµεσα σε ποµπό και δέκτη (συντελεστής δηλ στο 1.8). Η µετάδοση πίσω από γωνίες και µέσω τοίχων N = 38 που φθάνει έως το N=40. Ο συντελεστής πτώσης ισχύος και οι απορροφήσεις των τοίχων έχουν µελετηθεί για έναν αριθµό συχνοτήτων και τύπους τοπολογιών. Για µηδενική τιµή του παράγοντα απωλειών πατωµάτων άρα ποµπός και δέκτης στο ίδιο επίπεδο, και N=20, το ITU model είναι πανοµοιότυπο µετοfsm.

14 14 Τροποποίηση του ITU µοντέλου(2) Απόκριση του ITU σε σύγκριση µε τιςµετρούµενες τιµές Location T-R (m) Pr (dbm) ITU Error % M 20, ,0 6,15 (dbm) N 22, ,0 5,33 A 8,00-48, ,46 O 20, ,0 6,76 B , ,18 P ,18 C D E F G H I J 13,00 15,00 5,00 13,00 20,00 21,00 18,00 16,00-53,0-54,0-45,0-51,0-66,0-71,0-71,0-59,0-53, ,0-69,0-70, ,00 1,30 7,11 3,92 4,55 1,41 4,65 11,36 Q R S T U V W X ,0 10, ,0 11,0 15, ,0-50,0-66, ,0 23,17 25,00 25,00 4,76 1,91 4,29 1,30 6,78 Βασισµένοι στο σύνολο των 22 µετρήσεων έχουµε ένα µέσο σφάλµα 7.3 %. Σηµαντική στο σφάλµα είναιη επίδραση των σηµείων Q, R, S (περιγράφονται µόνο από το FSM και το MW&F). Αν ανγοήσουµε τασηµεία αυτά(olos scenario), το µέσο σφάλµα πέφτει στο 4.6 % Το MW&F προβλέπει µε µέσο σφάλµα 2.4 %. Χωρις τα 3 LOS ιδιαίτερα σηµεία λοιπόν, το µέσο σφάλµα γιατον τροποποιηµένο συντελεστή N, του είναι λίγο κάτω από 5% το οποίο αποτελεί µια καλή εναλλακτική..

15 Τροποποίηση του ITU µοντέλου(3) Για τους πολλαπλούς ορόφους το ITU αποδείχθηκε ανεπαρκές και στη θέση του εφαρµόσαµε τοσυντελεστήπου ισχύει για το οικιακό περιβάλλον. Κατόπιν 2 ακόµη διαφορετικές προσεγγίσεις, µέσω υπολογισµών εκ των µετρήσεων παραθέτονται προς σύγκριση. 15 Απόκριση του ITU πολ.ορόφων γραφείο Lf(n) = * (n-1) Απόκριση του ITU πολ.ορόφων σπίτι Lf(n) = 4 * n Απόκριση του ITU-ΙΙ Lf(n) = 4 * 1,375 * n = 5,5 * n Απόκριση του ITU-ΙΙΙ Lf(n) = 7,5 * (n +1)

16 Τροποποίηση του ITU µοντέλου(4) Μέσο σφάλµα προτεινόµενων ITU µοντέλων Average 4n 5.5n 7.5(n+1) Error (%) 1-floor 2,6 3,5 4,1 difference 2-floor 4,6 3,6 3,0 difference multiple floor 3,6 3,6 3,6 Το Multi-Wall-Floor (το πιο ακριβές εµπειρικό µοντέλο εσ. Τοπολογιών ) προβλέπει µε µέσο σφάλµα 2.1 %. Εάν n=1, δηλαδή ένας όροφος διαφορά µεταξύ ποµπού και δέκτη, τότε Lf(n) = 4*n και το ITU µοντέλο θα πρέπει να περιγράφεται µετηνεξίσωση L= logd+ 4n Εάν n=2, δηλαδή δύο όροφοι διαφορά µεταξύ ποµπού και δέκτη, τότε Lf(n) = 7.5*(n+1) και το ITU µοντέλο θα πρέπει να περιγράφεται µετηνεξίσωση L= logd+ 7.5(n+1) Τέλος, για πιθανό σενάριο κίνησης του δέκτη από 1 σε 2 ορόφους διαφορά από τον ποµπό, τότε Lf(n) = 5.5*n και το ITU µοντέλο θα πρέπει να περιγράφεται µετην εξίσωση L= logd+ 5.5n 16

17 Επιβεβαίωση RF µοντέλων για εµπορικές τοπολογίες Αεροδρόµιο (1) 17 Ποµπός : 3 APs καλύπτουν διαφορετικό χώρο της αίθουσας αναχωρήσεων (ελαφρώς διαφοροποιηµένη τοπολογία )και µεταδίδουν µε διαφορετική ισχύ ο καθένας(2.4 GHz, g). Ένα σύνολο 26 µετρήσεων λήφθησαν στο επίπεδο της αίθουσας αναχωρήσεων από την περιοχή του check-in και τους εσωτερικούς χώρους µεταduty-free shops και τα εστιατόρια (χώροι ελεύθερης πρόσβασης). Κάθε Access Point (AP) λειτουργούσε σε διαφορετική τοπολογία από τα άλλα 2. Έτσι η διαφορετικές συνθήκες γύρω από το καθένα AP µας βοηθούν πολύ στη µελέτη (O/LOS, Obstructed/ Line of Sight ) AP1 OLOS (dominant)/los AP2 LOS AP3 LOS (dominant)/olos Η µέση περιοχή κάλυψης κάθε AP εκτείνεται έως τα 100 m. Ηόληδιαδικασίαέλαβεχώρααργάτοβράδυγιαπεριορισµό της σκίασης από τα ανθρώπινα σώµατα.

18 Επιβεβαίωση RF µοντέλων για εµπορικές τοπολογίες Αεροδρόµιο (2) (AP1) Measurements vs. Model Predictions (AP2) (AP3) 18 Ισχύς µετάδοσης AP1: 19 dbm Σηµείο καµπής στα 20m. Μέσο σφάλµα µοντέλων για το AP1: Free Space Model 10.5% One Slope model 10.8% ITU indoor path loss model 11.8% Ισχύς µετάδοσης AP2: 21 dbm Έντονο LOS σενάριο ITU ανακριβές Μέσο σφάλµα µοντέλων για το AP2: Free Space Model 10.7% One Slope model 9.7% ITU indoor path loss model 12.1% Ισχύς µετάδοσης AP3: 16 dbm ITU ανακριβές και πάλι Μέσο σφάλµα µοντέλων για το AP3: Free Space Model 8.1% One Slope model 7.8% ITU indoor path loss model 12.3%

19 Επιβεβαίωση RF µοντέλων για εµπορικές τοπολογίες Αεροδρόµιο (3) ΗαπόκρισητουαρχικούITU µοντέλου για εµπορικές τοπολογίες αποδείχθηκε πιο ανακριβής και από το γενικό Free Space! Ο συντελεστής απωλειών όδευσης του ITU (2.2) ακατάλληλος για τέτοιο σενάριο. Τροποποίηση του ITU µοντέλου AP1 AP2 AP3 d (m) N d (m) N d (m) N d<30 18 d<25 16 d< Το One-Slope χρησιµοποιεί τις µετρούµενες τιµές ισχύος για την εξαγωγή του συντελεστή απωλειών όδευσης. Οπειραµατικά υπολογισµένος συντελεστής φαίνεται να εξαρτάται άµεσα από την απόσταση αναµέσα σε ποµπό και δέκτη. Έτσι για την αριθµητική βελτίωση του ITU µοντέλου κρίνεται σκόπιµονα εφαρµόσουµε την προσέγγιση του One- Slope µεδιαφορετικάσηµεία καµπής (break points) για την ενσωµάτωση των αποστάσεων. 30<d< <d< <d< <d< <d< <d<70 20 d>70 27 d>80 24 d>70 22 Για κάθε AP, διάφορα σηµεία καµπής εφαρµόστηκανστιςαποστάσειςώστεο συντελεστής απωλειών όδευσης να εξάγεται πάνω σε υποσύνολα αποστάσεων και να µην έχει µονάχα µια τιµή. Έτσι το µοντέλο ταιριάζει πιο πολύ στα µετρούµενα σηµεία καιαυξάνειτηνακρίβειατηςαριθµητικής τροποποίησης που κάναµε.

20 Επιβεβαίωση RF µοντέλων για εµπορικές τοπολογίες Αεροδρόµιο(4) AP1 OLOS / LOS σενάριο Σηµεία καµπής στα 30 m, 55 m, 70 m ΣφάλµααρχκούITU 11.8% Σφάλµατροποποιηµένου ΙΤU 9.5% Βελτιωµένη απόδοση κατά 20% AP2 Ισχυρό LOS σενάριο Σηµεία καµπής στα 25 m, 65 m, 80 m ΣφάλµααρχκούITU 12.1% Σφάλµατροποποιηµένου ΙΤU 6.9% Βελτιωµένη απόδοση κατά 42% AP3 LOS / OLOS σενάριο Σηµεία καµπής στα 30 m, 55 m, 70 m ΣφάλµααρχκούITU 12.3% Σφάλµατροποποιηµένου ΙΤU 6.4% Βελτιωµένη απόδοση κατά 48% 20 Η τροποποιηµένη πρόταση του ΙTU εµφανίζει µια βελτίωση της τάξης του 37% σε σχέση µετοαρχικόitu (λαµβάνουµευπόψηόλατααρ). Σε σχέση µετοfree Space το τροποποιηµένο ITU µοντέλο για εµπορικές τοπολογίες είναι βελτιωµένο κατά 10%, 35% and 21% για τα AP1, AP2 και AP3 αντίστοιχα. Συνολικά η τροποποίηση του ITU βελτιώνει την απόδοση κατά 22%. Σε σύγκριση µετο One-Slope, το τροποποιηµένο ITU µοντέλο για εµπορικές τοπολογίες είναι βελτιωµένο κατά 13%, 29% and 18% για τα AP1, AP2 και AP3 αντίστοιχα. Συνολικά η τροποποίηση του ITU βελτιώνει την απόδοση κατά 20%.

21 21 Επιβεβαίωση RF µοντέλων για εµπορικές τοπολογίες Βιβλιοθήκη (1) Οι µετρήσεις πραγµατοποιήθηκαν στον 2 ο όροφο (κυρίως αίθουσα) της ΒΚΠ του Πανεπιστηµίου Πατρών. Πρόκειται για µια «εµπορική» τοπολογία µε διαφορετικά χαρακτηριστικά από την προηγούµενη. Οποµπός είναι ένα Access Point (AP) που λειτουργεί µετο802.11g πρωτόκολλο (Wi-Fi) και διαθέτει ασύρµατη πρόσβαση στο διαδίκτυο (ισχύς µετάδοσης 15 dbm). Ένα σύνολο 32 έλαβαν χώρα στην κύρια αίθουσα (µετρήσεις ενός ορόφου), για την απόκτηση πειραµατικών δεδοµένων για την αξιολόγηση των µοντέλων υπό µελέτη.

22 Επιβεβαίωση RF µοντέλων για εµπορικές τοπολογίες Βιβλιοθήκη(2) Model predictions versus measured values Free Space, One-Slope, ITU Multi-Wall-Floor 22 Το Free είναι υπερβολικά αισιόδοξο στην οποία εµφανίζονται έντονα φαινόµενα σκίασης. Το One-Slope «ταιριάζει» στα µετρούµενα αποτελέσµατα πολύ καλύτερα ( δεν πρέπει να ξεχνάµε πως προέρχεται από αυτά). Αντίστοιχα το τροποποιηµένο ITU ( µετηµέθοδο που παρουσιάστηκε στο Αεροδρόµιο) είναι πολύ πιο ακριβές και από το FSM και από το αρχικό ITU µοντέλο. Το MWF έχει συντελεστή πτώσης ισχύος 1.8 και εφαρµόζει πειραµατικά µετρηµένες απώλειες.

23 Επιβεβαίωση RF µοντέλων για εµπορικές τοπολογίες (3) Τροποποίηση ITU µοντέλου (στο πρότυπο εµπορικών τοπολογιών) 23 d (m) N adj (ITU) d < <d < d > RF Mean RMSE Model Error (%) (%) FSL OSL ITU ITU (orig.) MWF Ο πίνακας δίνει την εµπειρικά τροποποιηµένη παράµετρο απωλειών όδευσης για την τοπολογία της Βιβλιοθήκης. Το FSM είναι το πιο ανακριβές ενώ τα One-Slope και το βελτιωµένο ITU, βασιζόµενα σε πειραµατικά δεδοµένα έχουν παραπλήσιες συµπεριφορές. Το αρχικό ITU είναι αναξιόπιστο, ενώ το MWF είναι το πλέον κατάλληλο, όπως άλλωστε και στα περιβάλλοντα σπιτιού και γραφειόυ.

24 ΥΠΟΛΟΓΙΣΜΟΣ ΓΡΑΜΜΙΚΗΣ ΕΞΑΣΘΕΝΗΣΗΣ ΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΙΑ ΟΣΗΣ ΕΣΩΤΕΡΙΚΩΝ ΧΩΡΩΝ (1) P ( db) = P ( db) + 10n log ( d) + ad L L0 10 Το µοντέλο γραµµικής εξασθένησης, γνωστό και ως µοντέλο Devarsivatham υπολογίζει την µέση απώλεια οδεύσεως σε db βάσει του κλασσικού αντίστροφης δύναµης και της παραµέτρου a (db/m) που ορίζεται ως η εξασθένηση ανά απόσταση και περιγράφει ποιοτικά και ποσοτικά, την εξασθένηση που υπεισέρχεται στο µεταδιδόµενο σήµαγιατην συγκεκριµένη τοπολογία που εξετάζουµε. O εκθέτης απώλειας οδεύσεως δύναται να λάβει ένα ευρύ φάσµατιµών (1.6-6), ανάλογα µε τη φύση και την πολυπλοκότητα της εκάστοτε τοπολογίας (1.8 στην πλειονότητα τοπολογιών εσωτερικού χώρου). Λύνοντας ως προς α την εξίσωση του µοντέλου και αξιοποιώντας τις τιµές που µετρήσαµεθα έχουµε : a = Pt ( Wi Fi AP) ( dbm) Pr ( measured )( dbm) 10nlog 10( d) 40dB d Ηεύρεσητηςβέλτιστηςτιµής του εκθέτη απώλειας οδεύσεως προκύπτει από την παρακάτω συνθήκη : n =? a > 0 24

25 ΥΠΟΛΟΓΙΣΜΟΣ ΓΡΑΜΜΙΚΗΣ ΕΞΑΣΘΕΝΗΣΗΣ ΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΙΑ ΟΣΗΣ ΕΣΩΤΕΡΙΚΩΝ ΧΩΡΩΝ (2) Στον παρακάτω πίνακα συνοψίζονται τα βασικότερα αριθµητικά ευρήµατά µας ως προς την µέση εξασθένηση ανά απόσταση (db/m) και τον power decay index (αναφορικά µε την τιµή του στο µοντέλο γραµµικής εξασθένησης βάσει της σχετικής συνθήκης): Τοπολογίες εσωτερικών χώρων Power decay index (Pdi) (n) Μέση εξασθένηση ανά απόσταση (db/m) Αεροδρόμιο 1,4 0,27 Γραφείο (ίδιος όροφος) 1,7 0,98 Βιβλιοθήκη 1,4 1,24 Γραφείο (πολλαπλοί όροφοι) 1,8 1,92 Οικία (ίδιος όροφος) 1,8 2,24 Οικία (πολλαπλοί όροφοι) 1,8 6,11 Οι εµπορικές τοπολογίες, (περισσότεροτο ιεθνέςαεροδρόµιο,) χαρακτηρίζονται από έντονα ανακλαστικά φαινόµενα που δρουν ενισχυτικά στο µεταδιδόµενο σήµα. Αντίθετα στη ΒΚΠ έχουµε ιδιαίτερα αυξηµένη µέση εξασθένηση ανά απόσταση σε σχέση µετοαεροδρόµιο, όµως και πάλι ο εκθέτης απώλειας οδεύσεως δύναται να πάρει ακόµαπιοχαµηλές τιµές από τις συνήθεις. Στη συγκεκριµένη περίπτωση είναι ακόµαπιοχαµηλός, ισούται µε n=1,4. Ηολικήµέση τιµή εξασθένησης ανά απόσταση είναι κατά πολύ µικρότερη από ό,τι στην τοπολογία γραφείου. 25

26 Συνδυαστική χρήση RF Μοντέλων για πειραµατικό υπολογισµό σκίασης (Shadowing)(1) Από τα διαγράµµατα που παρουσιάστηκαν προηγουµένως, όσον αφορά το Log- Distance model, οι υποθέσεις µας περί της σκίασης (παράγοντας σ στο µοντέλο), δεν είναι ικανοποιητικές διότι επηρεάζεται από µια πληθώρα διαφορετικών ως προς τα χαρ/κα τύπων από τοίχους και πατώµατα. Επιπλέον, είναι προφανές πως όσο πιο σύνθετη είναι µια τοπολογία τόσο µεγαλύτερη είναι η ανάγκη για µια µέθοδο πειραµατικού και αξιόπιστου υπολογισµού της σκίασης. Αυτό είναι απαραίτητο ώστε το Log Distance µοντέλο να µπορεί σε κάθε περίπτωση να εκτιµήσει το µέσο επίπεδο ισχύος του σήµατος για κάθε θέση µεαυξηµένη ακρίβεια. Είναι επίσης σηµαντικό για τη µελέτη µεγάλης κλίµακας διαλείψεων(shadowing). Κάτι τέτοιο είναι εφικτό µε τη συνδυασµένη χρήση του Log Distance και του Multi Wall Floor µοντέλου. 26

27 Συνδυαστική χρήση RF Μοντέλων για πειραµατικό υπολογισµό σκίασης (Shadowing)(2) Εφαρµόζοντας την λαµβανόµενη τιµή ισχύος από το MWF µοντέλο ώστε να υπολογίσουµε την παράµετρο σκίασης που εισάγει το Log Distance µοντέλο, προκύπτει ο ακόλουθος τύπος : 27 σ sh ( db) = I K wi k= 1 wik k= 1 i= 1 j= 1 Οι αποκλίσεις λόγω σκίασης είναι λοιπόν το άθροισµαόλωντων απωλειών λόγω των εµποδίων που συναντά το σήµαστηδιαδροµήτου δια την παράµετρο z που εισάγεται για να ποσοτικοποιήσει το ποσοστό κάλυψης της εκάστοτε θέσης. Βασισµένοι στην παραπάνω µαθηµατική έκφραση, οι απώλειες υπολογίζονται για κάθε θέση µέτρησης για όλα τα σενάρια (0-1-2 όροφοι διαφορά) και η χαρτογράφηση της σκίασης είναι εφικτή. L + z J K fj L fjk

28 Απόκλιση λόγω σκίασης : ίδιος όροφος 28 Transmitter: fixed AP on wall marked with R. Transmitted power = 17 dbm

29 Απόκλιση λόγω σκίασης : ιαφορετικοί όροφοι 29

30 Απόκλιση λόγω σκίασης : Τοπολογία ΒΚΠ 30 The average value of the shadowing deviation for all measurement locations is 8 db

31 Συνδυαστική χρήση RF Μοντέλων για πειραµατικό υπολογισµό σκίασης (Shadowing)(3) 31 Σενάριο ίδιου ορόφου (Γραφείο): Οπειραµατικός υπολογισµός των απωλειών σκίασης δίνει τιµές από 0 db (LOS) έως 17 db. Μέσοςόροςχώρου τηςτάξηςτων8.7 db. Αρχικά είχαµε υποθέσει αντίστοιχα τιµές από 6 db έως 12 db, µε µέσο όρο 9 db. Σενάριο ενός ορόφου διαφορά (Γραφείο) Πειραµατικός υπολογισµός : µέσες απώλειες λόγω σκίασης 16.3 db Θεωρητική υπόθεση 11 db Σενάριο δύο ορόφων διαφορά (Γραφείο) Πειραµατικός υπολογισµός : µέσες απώλειες λόγω σκίασης 20.9 db Θεωρητική υπόθεση 19 db Περιβάλλον Βιβλιοθήκης Οπειραµατικός υπολογισµός των απωλειών σκίασης δίνει τιµές από 0 db (LOS) έως 18.1 db. Μέσος όρος χώρου της τάξης των 8dB.

32 Συµπεράσµατα (1) Το µέσο σφάλµακαιτοµέσο τετραγωνικό σφάλµα υπολογίστηκαν για κάθε ένα από τα RF µοντέλα που µελετήσαµε. To Free Space αποδείχθηκε αναξιόπιστο, αποτυγχάνοντας να ενσωµατώσει τα έντονα φαινόµενα σκίασης που παρατηρούνται στους εσωτερικούς χώρους. Το One-Slope χρησιµοποιώντας δεδοµένα του πειράµατος ανταποκρίθηκε καλύτερα, παρουσίασε όµως µια σχετική ακαµψία ως προς το συντελεστή απωλειών όδευσης. Το ITU, µη έχοντας προσαρµοστεί στη συγκεκριµένη συχνότητα, και εµφανίζοντας σφάλµαταάνωτουαναµενοµένου, υπέστη σοβαρές τροποποιήσεις, έως εν τέλει να καταφέρουµε να το κατηγοριοποιήσουµε, τόσο ως προς τη συχνότητα, όσο και ως προς την περίπτωση συσχετισµού µεταξύ των θέσεων ποµπού και δέκτη ακόµακαιµέσα στην ίδια τοπολογία (ITU1,ITU2,ITU3). Οι απώλειες που προκαλούνται από σώµατα που εµποδίζουν τη µετάδοση υπολογίστηκαν κα ενσωµατώθηκαν στο MWF ώστε να εξαχθούν πιο αξιόπιστα συµπεράσµατα για την πρόβλεψη της µέσης λαµβανόµενης ισχύος.. Προτάθηκαν σε κάθε περίπτωση συντελεστές διόρθωσης, οι οποίοι είναι κυρίως, topology based (αλλάκαιωςπροςτησυχνότητα), µε πιο χαρακτηριστικό το παράδειγµατου συντελεστή απωλειών όδευσης. 32

33 33 Συµπεράσµατα (2) Οδιαχωρισµός των τοπολογιών οικεία, γραφείο, εµπορικήείναι µάλλον ανεπαρκής και είναι σκόπιµος ο διαχωρισµός των εµπορικών τοπολογιών, ανάλογα µε το ποιο είναι το επικρατούν σενάριο µετάδοσης (dominant path) (LOS,OLOS,NLOS), µε επιπλέον τροποποίηση του ITU για εµπορικές τοπολογίες, µετη βοήθεια του One-Slope. Υπολογίζοντας την εξασθένηση ανά απόσταση για κάθε µια τοπολογία, φτάνουµεστοσυµπέρασµαπωςηεξασθένησηανά απόσταση, µεσωστήπαραµετροποίηση του µοντέλου γραµµικής εξασθένησης, µπορεί να χρησιµοποιηθεί για την ποιοτική και ποσοτική αξιολόγηση των τοπολογιών εσωτερικών χώρων και για την ουσιαστική εµβάθυνση των οµαδοποιήσεών τους σε υποκατηγορίες Η απόδοση κάθε RF µοντέλου αποδεικνύει πως η επίδραση της σκίασης (shadowing) σε τοπολογίες κλειστού χώρου ( ειδικά εµπορικές) δε µπορεί να αγνοηθεί και πρέπει να λαµβάνεται υπόψη και να υπολογίζεται µε αξιόπιστο τρόπο.

34 34 Συµπεράσµατα (3) Μια µαθηµατική φόρµουλα εφαρµόστηκε για τον υπολογισµό των αποκλίσεων λόγω σκίασης, βασιζόµενη στο πάντα αξιόπιστο MW&F µοντέλο. Αυτό µας δίνει τη δυνατότητα να υπολογίσοµετηνσ(db) για κάθε τοπολογία κλειστού χώρου και για κάθε συχνότητα συστήµατος, εφόσον οι απώλειες όλων των παρεµβαλλοµένων υλικών είναι γνωστές ή µπορούν να υπολογιστούν. Οι αρχικές υποθέσεις γύρω από τη σκίαση για την εφαρµογή του Log Distance, ήταν ακριβείς ως προς το µέσο όρο, τα όρια όµως διέφεραν όπως φαίνεται αρκετά. Οεµπειρικός υπολογισµόςτωναπωλειώνσκίασηςσαµια δυναµική συνάρτηση των εµποδίων (τοίχοι, πατώµατα, παρεµβαλλόµενα υλικά), είναι µέγιστης σηµασίας για την περιγραφή τοπολογιών όπου οι OLOS συνθήκες επικρατούν (σπίτι, γραφείο).

35 35 Συµπεράσµατα (4) Επίσης είναι δυνατή η χαρτογράφηση της σκίασης σε ένα δεδοµένο χώρο και η δυνατότητα αποµόνωσης των απωλειών που προκαλούνται σε περιπτώσεις µετάδοσης εντός αυτού. Με αυτές τις τιµές για τις απώλειες σκίασης σαν είσοδο στο σύστηµατοlog Distance µοντέλο αυξάνει σηµαντικά την αξιοπιστία πρόβλεψής του,δίνοντας µια εύκολη και γρήγορη εναλλακτική στο πιο σύνθετο MW&F. Τα αποτελέσµατα επιβεβαιώνουν πως η µέθοδος αυτή, δεν αφορά µόνοµια τοπολογία αλλά θα πρέπει να εφαρµόζεται χωριστά σε όλες τις θέσεις µετρήσεων ενός χώρου, ήσεσύνολασηµείων που µπορεί να µας ενδιαφέρουν και παρουσιάζουν παρόµοιες συµπεριφορές, ώστε να βελτιστοποιείται το link budget στα πλαίσια της αξιοπιστίας του MW&F. Επιπλέον οι µεγάλης κλίµακας διαλείψεις,που εισάγονται στα RF µοντέλα µετησκίασηµπορούν να µελετηθούν σε ακόµα µεγαλύτερο βάθος (future work).

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. κλίµακας στα 2.4 GHz»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. κλίµακας στα 2.4 GHz» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ «Χαρακτηρισµός ασύρµατου διαύλου για ράδιοδιάδοση εσωτερικού χώρου µε διαλείψεις µεγάλης κλίµακας στα 2.4 GHz» Ειδική Επιστηµονική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ «Ηλεκτροµαγνητική µοντελοποίηση στην VHF και UHF περιοχή ραδιοφάσµατος για εφαρµογές στα σύγχρονα ασύρµατα δίκτυα.» Ειδική

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΡΑ ΙΟΚΑΛΥΨΗ ΚΑΙ ΚΙΝΗΤΙΚΟΤΗΤΑ - Ευρεία Ραδιοκάλυψη Εξωτερικών χώρων -Βάθος Ραδιοκάλυψης -Interwoking µεταξύ συστηµάτων ΧΩΡΗΤΙΚΟΤΗΤΑ -Μεγάλος αριθµός συνδροµητών -Μικρή απόρριψη

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Ασύρματο Περιβάλλον στις Κινητές Επικοινωνίες Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Ραδιοδίαυλοι Απαραίτητη η γνώση των χαρακτηριστικών

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Θεόφιλος Κ. Χρυσικός

Θεόφιλος Κ. Χρυσικός ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ ΜΕΤΡΗΣΕΙΣ ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

Κινητές Επικοινωνίες

Κινητές Επικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Κινητές Επικοινωνίες Ενότητα 1: Μοντέλα Ραδιοδιάδοσης Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της

Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Ασύρματη διάδοση Εισαγωγή Κεραίες διάγραμμα ακτινοβολίας, κέρδος, κατευθυντικότητα

Διαβάστε περισσότερα

ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Ραδιοδίαυλοι Ιδανικός Ραδιοδίαυλος Το λαµβανόµενο σήµα αποτελείται από ένα απευθείας λαµβανόµενο σήµα, από το οποίο ανακατασκευάζεται πλήρως το εκπεµπόµενο

Διαβάστε περισσότερα

Ασύρματη Διάδοση. Διάρθρωση μαθήματος. Ασύρματη διάδοση (1/2)

Ασύρματη Διάδοση. Διάρθρωση μαθήματος. Ασύρματη διάδοση (1/2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Εισαγωγή στην ασύρματη διάδοση Κεραίες διάγραμμα ακτινοβολίας, κέρδος,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΠΑΡΑ ΟΤΕΟ 9 ΠΛΑΤΦΟΡΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ Συγγραφείς: ημήτρης Παρώνης, Αδριανός Ρετάλης, Φίλιππος Τύμβιος,

Διαβάστε περισσότερα

ΕΞΑΣΘΕΝΗΣΗ ΑΠΟ ΒΛΑΣΤΗΣΗ. ΣΤΗ ΖΩΝΗ ΣΥΧΝΟΤΗΤΩΝ 30 MHz ΕΩΣ 60 GHz.

ΕΞΑΣΘΕΝΗΣΗ ΑΠΟ ΒΛΑΣΤΗΣΗ. ΣΤΗ ΖΩΝΗ ΣΥΧΝΟΤΗΤΩΝ 30 MHz ΕΩΣ 60 GHz. ΕΞΑΣΘΕΝΗΣΗ ΑΠΟ ΒΛΑΣΤΗΣΗ ΣΤΗ ΖΩΝΗ ΣΥΧΝΟΤΗΤΩΝ 30 MHz ΕΩΣ 60 GHz. Εισαγωγή Έχει παρατηρηθεί, ότι η εξασθένηση των ραδιοκυµάτων και µικροκυµάτων, που προκύπτει από βλάστηση, µπορεί σε ορισµένες περιπτώσεις

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j

ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 4//16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Διαλείψεις & Χαρακτηρισμός Ασύρματου Διαύλου 1 Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Περιβάλλον Διάδοσης

Διαβάστε περισσότερα

Εισαγωγή στα Προσαρµοστικά Συστήµατα

Εισαγωγή στα Προσαρµοστικά Συστήµατα ΒΕΣ 06 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Εισαγωγή στα Προσαρµοστικά Συστήµατα Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου

Διαβάστε περισσότερα

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec Τµήµα Μηχανικών Υπολογιστών, Τηλεπικοινωνιών και ικτύων ΗΥ 44: Ασύρµατες Επικοινωνίες Εαρινό Εξάµηνο -3 ιδάσκων: Λέανδρος Τασιούλας η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Θεωρήστε ένα κυψελωτό σύστηµα, στο οποίο ισχύει το

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Εισαγωγή στην ασύρματη διάδοση Κεραίες διάγραμμα ακτινοβολίας, κέρδος,

Διαβάστε περισσότερα

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει

Διαβάστε περισσότερα

2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km

2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η Στη ζεύξη που φαίνεται

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΑσύρµαταΜητροπολιτικά ίκτυα

ΑσύρµαταΜητροπολιτικά ίκτυα ΑσύρµαταΜητροπολιτικά ίκτυα Απαιτήσεις ικτύωση υπολογιστικών συστηµάτων που βρίσκονται διασκορπισµένα σε µια γεωγραφική περιοχή της τάξης µιας «πόλης». Μεγαλύτερό εύρος ζώνης από τα αντίστοιχα τοπικά δίκτυα.

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ Συστήµατα µε στοιχεία συνδεδεµένα σε σειρά Με χρήση των αποτελεσµάτων από τα διαγράµµατα Markov, είναι δυνατόν να δηµιουργούνται ισοδύναµα διαγράµµατα

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Οκτωβρίου 23 ιάρκεια: 2 ώρες Έστω το παρακάτω γραµµικώς

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Αναλυτική Μέθοδος- Αναλυτικό Πρόβλημα. Ανάλυση, Προσδιορισμός και Μέτρηση. Πρωτόκολλο. Ευαισθησία Μεθόδου. Εκλεκτικότητα. Όριο ανίχνευσης (limit of detection, LOD).

Διαβάστε περισσότερα

Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση

Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση Ο Βρόχος Ανατροφοδότησης Στοιχεία ιεργασίας και Όργανα Μέτρησης ιατάξεις ιαγραµµάτων Βαθµίδας Μέτρα Απόδοσης Ρύθµισης Επιλογή Μεταβλητών Ρύθµισης 1 Ο βρόχος ανατροφοδότησης!

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalma Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ακολουθιακή Επεξεργασία Τα δείγµατα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης Κεφάλαιο 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Το σηµαντικό στην επιστήµη δεν είναι να βρίσκεις καινούρια στοιχεία, αλλά να ανακαλύπτεις νέους τρόπους σκέψης γι' αυτά. Sir William Henry Bragg 5.1 Ανακεφαλαίωση της διατριβής

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ6 / ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # - Λύσεις Ασκήσεων Θέµα Α Έστω T t ο µέσος χρόνος µετάδοσης ενός πλαισίου δεδοµένων και Τ f, αντίστοιχα, ο χρόνος µετάδοσης πλαισίου επιβεβαίωσης αρνητικής, na, ή θετικής ac

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ απόκλιση από την κανονικότητα µπορεί να σηµαίνει Ύπαρξη θετικής ή αρνητικής ασυµµετρίας Ύπαρξη λεπτοκύρτωσης, δηλαδή παρουσία ακραίων τιµών που δεν είναι συµβατές

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων.

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων. ειγµατοληψία Καθώς δεν είναι εφικτό να παίρνουµε δεδοµένα από ολόκληρο τον πληθυσµό που µας ενδιαφέρει, διαλέγουµε µια µικρότερη οµάδα που θεωρούµε ότι είναι αντιπροσωπευτική ολόκληρου του πληθυσµού. Τέσσερις

Διαβάστε περισσότερα

T R T R L 2 L 3 L 4 Αναγεννητής α 1 = 0.18 db/km α 2 = 0.45 db/km α 3 = 0.55 db/km α 4 = 0.34 db/km

T R T R L 2 L 3 L 4 Αναγεννητής α 1 = 0.18 db/km α 2 = 0.45 db/km α 3 = 0.55 db/km α 4 = 0.34 db/km ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η ίνεται η

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ Εισαγωγή: 3 η Άσκηση: 15/12/2016 Για την ανάλυση της σημασίας

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Σχεδίαση & Υλοποίηση Ασύρµατων ικτύων Εσωτερικού Χώρου Τεχνολογίας WiFi

Σχεδίαση & Υλοποίηση Ασύρµατων ικτύων Εσωτερικού Χώρου Τεχνολογίας WiFi Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Ηλεκτρονικών Υπολογιστών του ΑΠΘ Σχεδίαση & Υλοποίηση Ασύρµατων ικτύων Εσωτερικού Χώρου Τεχνολογίας WiFi Αντώνης Γ. ηµητρίου ιδάκτωρ Τµ. Ηλεκτρολόγων Μηχ/κών &

Διαβάστε περισσότερα

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Εργασία Προσοµοίωσης ενός Τηλεπικοινωνιακού Συστήµατος και Εκτίµηση Απόκρισης Αραιού Καναλιού Εισαγωγή Στην παρούσα εργασία

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares) ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis

Διαβάστε περισσότερα

Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Μάθηµα 1ο Θέµα Εισαγωγή στις τηλεπικοινωνίες 1. Τι ορίζουµε µε τον όρο τηλεπικοινωνία; 2. Ποιες οι βασικότερες ανταλλασσόµενες πληροφορίες, ανάλογα µε τη φύση και το χαρακτήρα τους; 3. Τι αποκαλούµε ποµπό

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Κυψελωτά Συστήματα και Παρεμβολές Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Περιβάλλον με θόρυβο και παρεμβολές Περιβάλλον δύο πομποδεκτών

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Η μονάδα db χρησιμοποιείται για να εκφράσει λόγους (κλάσματα) ομοειδών μεγεθών, αντιστοιχεί δηλαδή σε καθαρούς αριθμούς.

Η μονάδα db χρησιμοποιείται για να εκφράσει λόγους (κλάσματα) ομοειδών μεγεθών, αντιστοιχεί δηλαδή σε καθαρούς αριθμούς. 0. ΥΠΟΛΟΓΙΣΜΟΣ ΣΤΑΘΜΗΣ ΣΗΜΑΤΟΣ 0.. Γενικά Στα τηλεπικοινωνιακά συστήματα, η μέτρηση στάθμης σήματος περιλαμβάνει, ουσιαστικά, τη μέτρηση της ισχύος ή της τάσης (ρεύματος) ενός σήματος σε διάφορα «κρίσιμα»

Διαβάστε περισσότερα

J. Glenn Brookshear. Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

J. Glenn Brookshear. Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Κεφάλαιο 4: ικτύωση και ιαδίκτυο Η Επιστήµη των Υπολογιστών: Μια Ολοκληρωµένη Παρουσίαση (δέκατη αµερικανική έκδοση) J. Glenn Brookshear Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 5: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

«Επικοινωνίες δεδομένων»

«Επικοινωνίες δεδομένων» Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το ασύρματο

Διαβάστε περισσότερα

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Στατιστική ανάλυση του γεωχηµικού δείγµατος µας δίνει πληροφορίες για τον γεωχηµικό πληθυσµό που µελετάµε. Συνυπολογισµός σφαλµάτων Πειραµατικά

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΤΟΥΡΙΣΤΙΚΗΣ ΣΥΓΚΥΡΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΤΟΥΡΙΣΤΙΚΗΣ ΣΥΓΚΥΡΙΑΣ ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΤΟΥΡΙΣΤΙΚΗΣ ΣΥΓΚΥΡΙΑΣ ΕΚΕΜΒΡΙΟΣ 2008 Εξαµηνιαία Έρευνα Συγκυρίας στις Ξενοδοχειακές Επιχειρήσεις 2 1. Εισαγωγή Το ΙΤΕΠ άρχισε να διεξάγει δύο φορές το χρόνο Έρευνα Συγκυρίας µεταξύ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ

ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 o ΣΥΜΠΕΡΑΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 5 o ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΕΦΑΛΑΙΟ 5 o ΣΥΜΠΕΡΑΣΜΑΤΑ Εισαγωγή Η προσέγγιση του προβλήµατος της ατµοσφαιρικής ρύπανσης έγινε µε βάση την εµπειρία από χώρες που µελετούν το πρόβληµα αυτό συστηµατικά επί χρόνια. Τα συµπεράσµατα που

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 9 ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ Τα δηµογραφικά δεδοµένα τα οποία προέρχονται από τις απογραφές πληθυσµού, τις καταγραφές της φυσικής και µεταναστευτικής κίνησης του πληθυσµού

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήµατα γραµµικών εξισώσεων m m... n... n mn M n b M b m µη-οµογενείς Μπορεί να υπάρχει µία, πολλές ή καµία λύση Προγραµµατισµός µε χρήση MATLAB 58 ΈστωΈστω το σύστηµα: 5 λύση: 7/3, 8/3 συντεταγµένες

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ Εισαγωγή Ηεµφάνιση ηλεκτρονικών υπολογιστών και λογισµικού σε εφαρµογές µε υψηλές απαιτήσεις αξιοπιστίας, όπως είναι διαστηµικά προγράµµατα, στρατιωτικές τηλεπικοινωνίες,

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

ΕΚΠΑ ΠΜΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΧΗΜΕΙΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2007

ΕΚΠΑ ΠΜΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΧΗΜΕΙΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2007 1. Στατιστική επεξεργασία και αποτίµηση αποτελεσµάτων Στατιστική ανάλυση γεωχηµικών δεδοµένων Η αποτίµηση των αποτελεσµάτων γεωχηµικών διασκοπίσεων είναι σαφές ότι σχετίζεται µε τους εκάστοτε στόχους της

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια

Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια

Διαβάστε περισσότερα

Certified Wireless Networks Professional (CWNP) Εξεταστέα Ύλη (Syllabus) Έκδοση 1.0

Certified Wireless Networks Professional (CWNP) Εξεταστέα Ύλη (Syllabus) Έκδοση 1.0 Certified Wireless Networks Professional (CWNP) Εξεταστέα Ύλη (Syllabus) Πνευµατικά ικαιώµατα Το παρόν είναι πνευµατική ιδιοκτησία της ACTA Α.Ε. και προστατεύεται από την Ελληνική και Ευρωπαϊκή νοµοθεσία

Διαβάστε περισσότερα