Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 W ISR i = 5 15 ISR i ISR i ISR i ISR i ISR i 4 W ISR W ISR

24

25

26

27 ) E T hreshold = (1 Ẽ Ẽ + IQR (E) Ẽ IQR(E)

28 E T hreshold = 0.99 e 1 N N i=1 (E i) Ẽ h(t) = H(y )(t) h T hreshold = h + h h σ( h )

29

30 d 1 = 1 20 d 2 = 1 20 N k=1 N V AR [MF CC (k, n)] k=1 { } V AR [MF CC (k, n)] dt R(x, y)

31 x R (x, y) =,y [T (x, y ) I (x + x, y + y )] [T (x, y )] [I x,y (x + x, y + y ) 2] x,y

32

33

34

35

36

37

38

39

40

41

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Μετασχηματισμός Fourier Ιδιότητες Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 27/02/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/1/2015

Διαβάστε περισσότερα

PALM TREES RALLY 17/11/2012 VENUS RALLY 31/3-1/4/2012 TIGER RALLY 15/12/2012 PALM TREES RALLY 17/11/2012 VENUS RALLY 31/3-1/4/2012

PALM TREES RALLY 17/11/2012 VENUS RALLY 31/3-1/4/2012 TIGER RALLY 15/12/2012 PALM TREES RALLY 17/11/2012 VENUS RALLY 31/3-1/4/2012 ΓΕΚΙΝΗ ΚΑΤΑΤΑΞΗ 31/3 1 ΓΕΩΡΓΙΟΥ Κώστας (Chips) 25 18 25 18 86 86 2 ΑΝΤΩΝΙΟΥ Σταύρος 18 12 15 15 60 60 3 ΔΗΜΟΣΘΕΝΟΥΣ Χρίστος 25 25 50 50 4 ΚΥΡΙΑΚΟΥ Κυριάκος 2 4 10 18 34 34 5 ΠΑΝΤΕΛΗ Πέτρος 15 18 33 33

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση

ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση Αφορμή γι αυτή τη σύντομη εργασία έδωσε μια ημερίδα διδασκαλίας των Μαθηματικών, η οποία οργανώθηκε από το Σχολικό Σύμβουλο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Ενισχυτές με ανατροφοδότηση

ΚΕΦΑΛΑΙΟ 5 Ενισχυτές με ανατροφοδότηση ΚΕΦΑΛΑΙΟ 5 Ενισχυτές με ανατροφοδότηση Οι ενισχυτές είναι δίθυρα κυκλώματα στα οποία εμπλέκονται τέσσερα μεγέθη (ρεύμα και τάση εισόδου, ρεύμα και τάση εξόδου). Είναι αναλογικά κυκλώματα, δηλαδή, κάποιο

Διαβάστε περισσότερα

ΒΑΣΕΙΣ 2008 ΑΕΙ ΑΛΦΑΒΗΤΙΚΑ

ΒΑΣΕΙΣ 2008 ΑΕΙ ΑΛΦΑΒΗΤΙΚΑ 127 AΓΓΛΙΚΗΣ ΓΛΩΣΣAΣ KAI ΦIΛOΛOΓIAΣ ΑΘΗΝΑΣ 19.519 12.369 21.414 129 AΓΓΛΙΚΗΣ ΓΛΩΣΣAΣ KAI ΦIΛOΛOΓIAΣ ΘΕΣ/ΝΙΚΗΣ 19.947 15.573 21.107 225 ΑΓΡΟΝΟΜΩΝ & TOΠOΓPAΦΩN MHXΑΝΙΚΩN ΕΜΠ 17.915 16.768 19.038 227 ΑΓΡΟΝΟΜΩΝ

Διαβάστε περισσότερα

ΠΡΟΣΩΡΙΝΟΙ ΠΙΝΑΚΕΣ ΒΑΘΜΟΛΟΓΟΥΜΕΝΩΝ ΚΡΙΤΗΡΙΩΝ ΤΗΣ ΣΟΧ 1/23448/05.12.2014 ΤΗΣ Κ.Ε.ΔΗ.Θ. ΓΙΑ ΠΡΟΣΛΗΨΕΙΣ ΜΕ ΣΥΜΒΑΣΕΙΣ Ι.Δ.Ο.Χ. ΓΙΑ ΟΚΤΩ (8) ΜΗΝΕΣ

ΠΡΟΣΩΡΙΝΟΙ ΠΙΝΑΚΕΣ ΒΑΘΜΟΛΟΓΟΥΜΕΝΩΝ ΚΡΙΤΗΡΙΩΝ ΤΗΣ ΣΟΧ 1/23448/05.12.2014 ΤΗΣ Κ.Ε.ΔΗ.Θ. ΓΙΑ ΠΡΟΣΛΗΨΕΙΣ ΜΕ ΣΥΜΒΑΣΕΙΣ Ι.Δ.Ο.Χ. ΓΙΑ ΟΚΤΩ (8) ΜΗΝΕΣ ΚΟΙΝΩΦΕΛΗΣ ΕΠΙΧΕΙΡΗΣΗ ΔΗΜΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ Κ.Ε.ΔΗ.Θ. ΚΑΡΑΚΑΣΗ 1, Τ.Κ. 54 248 ΤΗΛ. 2310 313 414 FAX 2310 318 334 E mail : mail@deekme.gr Θεσσαλονίκη : 13-02-2015 Αρ. Πρωτ. 23285 ΠΡΟΣΩΡΙΝΟΙ ΠΙΝΑΚΕΣ ΒΑΘΜΟΛΟΓΟΥΜΕΝΩΝ

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης

Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης KEΦAΛAIO 5 Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης Όπως είδαμε στο Κεφάλαιο 4, η δυναμική μελέτη ενός φυσικού/ χημικού συστήματος οδηγεί συχνά στη διερεύνηση της δυναμικής συμπεριφοράς μιας γραμμικής,

Διαβάστε περισσότερα

MIDWEEK REGULAR COUPON

MIDWEEK REGULAR COUPON 3-WAY ODDS (1X2) 1 / 2 1 X 2 MIDWEEK REGULAR COUPON DOUBLE CHANCE TOTALS 2.5 1ST HALF - 3-WAY HT/FT BOTH TEAMS TO SCORE 1/ 12 /2 2.5-2.5+ 01 0/ 02 1-1 /-1 2-1 1-/ /-/ 2-/ 2-2 /-2 1-2 ++ -- 1X 12 X2 U O

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]

Διαβάστε περισσότερα

Τρίπολη, 24/09/2015 Αρ. Πρωτ : 120315/45207 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΟΣ :

Τρίπολη, 24/09/2015 Αρ. Πρωτ : 120315/45207 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΟΣ : Τρίπολη, 24/09/2015 Αρ. Πρωτ : 120315/45207 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ Ταχ. Δ/νση: Πλατεία Εθνάρχου Μακαρίου ΤΚ 22100 Τρίπολη Πληροφορίες: Μαρία Καραλή Χριστίνα Κάτσουλα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 22 Ιουνίου 2012 11:00-14:00 Δίνεται ο παρακάτω

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΕΙΣΑΓΩΓΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2009 ΑΕΙ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 10%

ΒΑΣΕΙΣ ΕΙΣΑΓΩΓΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2009 ΑΕΙ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 10% 231 APXITEKTONΩN MHXANIKΩN ΕΜΠ ΗΜ. 22080 18,82 35,8 21678 18,95 38,0 402 127 AΓΓΛΙΚΗΣ ΓΛΩΣΣAΣ KAI ΦIΛOΛOΓIAΣ ΑΘΗΝΑΣ ΗΜ. 21765 18,09 37,3 21414 18,30 33,8 351 129 AΓΓΛΙΚΗΣ ΓΛΩΣΣAΣ KAI ΦIΛOΛOΓIAΣ ΘΕΣ/ΝΙΚΗΣ

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co. Θερµοστάτης PJEZSNH000.

Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co. Θερµοστάτης PJEZSNH000. Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co Θερµοστάτης PJEZSNH000 Οδηγίες χρήσης Ηλεκτρολογικό σχέδιο 4-5 : ρελέ µηχανής 6 (L) : Φάση (230V)

Διαβάστε περισσότερα

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L)

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L) ΑΠΑΝΤΗΣΕΙΣ σε ol ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ) Πόσα ol είναι τα 4,48 L αέριας NH 3 τα οποία μετρήθηκαν σε συνθήκες ST; n= n= 4,48 n= 0, ol ol,4 ( ol οποιουδήποτε αερίου σε συνθήκες ST καταλαμβάνει όγκο,4 L, κατά

Διαβάστε περισσότερα

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση ιδάσκων: Kώστας Μαριάς 1. Εισαγωγή Ιατρική Απεικόνιση Κλασική ακτινολογία Ηλεκτρονική λυχνία A D B C Πυρηνική ιατρική δέκτης σπινθηριστής Υπερηχοτοµογραφία Υπολογιστική τοµογραφία

Διαβάστε περισσότερα

Η μεθόδευση στην εύρεση συνάρτησης. Μέθοδοι Παρατηρήσεις Ιδέες - Εφαρμογές - Θέματα

Η μεθόδευση στην εύρεση συνάρτησης. Μέθοδοι Παρατηρήσεις Ιδέες - Εφαρμογές - Θέματα Σελίδα από 5 Η μεθόδευση στην εύρεση συνάρτησης Μέθοδοι Παρατηρήσεις Ιδέες - Εφαρμογές - Θέματα Μπάμπης Στεργίου Μαθηματικός ( Η παρουσίαση του θέματος έγινε στο wwwmathematicagr Οι λύσεις των ασκήσεων

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Η έρευνα χρηµατοδοτείται από τη ΓΓΕΤ, στο πλαίσιο του προγράµµατος ΠΕΝΕ 03Ε 588. Φίλιππος Σοφός Υποψήφιος διδάκτωρ Επιβλέποντες:

Διαβάστε περισσότερα

Πόσο θα κατέβει το βαρίδι;

Πόσο θα κατέβει το βαρίδι; Πόσο θα κατέβει το βαρίδι; Στο σχήμα ο κόκκινος δίσκος ακτίνας r=0,m φέρει αυλάκι στην περιφέρειά του στο οποίο έχουμε τυλίξει αβαρές νήμα. Η ακτίνα της τροχαλίας είναι R 2 =2r. Συγκρατούμε το βαρίδι έτσι

Διαβάστε περισσότερα

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π:

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π: 1. Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα ορίζεται ως ο ρυθμός μιας συνισταμένης κίνησης φορτίων. Δηλαδή εάν στα άκρα ενός μεταλλικού αγωγού εφαρμοστεί μια διαφορά δυναμικού, τότε το παραγόμενο ηλεκτρικό πεδίο

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΚΑΜΠΥΛΩΝ

ΕΠΙΛΥΣΗ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΚΑΜΠΥΛΩΝ ΕΠΙΛΥΣΗ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΚΑΜΠΥΛΩΝ Ανδρέας Αρβανιτογεώργος και Μαρίνα Σταθά Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών 1 Περιγραφή του προβλήματος 2 Θέλουμε να προσαρμόσουμε σε μια

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Σχεδιασµός Αεροδροµίων

Σχεδιασµός Αεροδροµίων Σχεδιασµός Β. Ψαριανός Ακαδ. Έτος 00-003 Εργαστήριο Συγκοινωνιακής Τεχνικής Κωδικός Αναφοράς Αεροδροµίου Ψηφίο Ψηφίο Αριθµός Μήκος αναφοράς Αεροδροµίου (m) Γράµµα Άνοιγµα πτερύγων (m) Απόσταση Τροχών (m)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Αποτίμηση Δικαιωμάτων Προαίρεσης σε Διακριτό Χρόνο - Διωνυμικό Μοντέλο Πολλών Περιόδων

ΚΕΦΑΛΑΙΟ 4. Αποτίμηση Δικαιωμάτων Προαίρεσης σε Διακριτό Χρόνο - Διωνυμικό Μοντέλο Πολλών Περιόδων ΚΕΦΑΛΑΙΟ 4 Αποτίμηση Δικαιωμάτων Προαίρεσης σε Διακριτό Χρόνο - Διωνυμικό Μοντέλο Πολλών Περιόδων 4 Αυτοχρηματοδοτούμενη επενδυτική στρατηγική σε διακριτό χρόνο Ας θεωρήσουμε μια χρηματοοικονομική αγορά

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις

Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις 1 Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις Ανίσωση με έναν άγνωστο ονομάζουμε κάθε ανισότητα που περιέχει μια μεταβλητή και η οποία αληθεύει για ορισμένες τιμές της μεταβλητής. Πχ: Οι x + > 7, 2(y

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Άσκηση 1 η 1 η Εργασία ΔΙΠ50 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών

Διαβάστε περισσότερα

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ Καηηγορημαηικός Λογιζμός Μοπθέρ Θεωπημάηων Υπάξρεη έλα αληηθείκελν ώζηε λα ηζρύεη θάηη. Υπαξμηαθόο πνζνδείθηεο Γηα θάζε αληηθείκελν ηζρύεη όηη θάηη. Καζνιηθόο πνζνδείθηεο 2 Καηηγοπήμαηα

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Δικτύωση της έρευνας στη σύγχρονη φυσική με επιχειρήσεις στον τομέα της νανοτεχνολογίας. Κβαντική Φυσική

Δικτύωση της έρευνας στη σύγχρονη φυσική με επιχειρήσεις στον τομέα της νανοτεχνολογίας. Κβαντική Φυσική Δικτύωση της έρευνας στη σύγχρονη φυσική με επιχειρήσεις στον τομέα της νανοτεχνολογίας Κβαντική Φυσική Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές Μέρος 2 Κβαντικές Ιδιότητες και Τεχνολογία

Διαβάστε περισσότερα

Schindler 2400 Ο όγκος και η αγάπη για την λεπτομέρεια δεν αποτελούν αντιφατικές έννοιες. Ειδικοί ανελκυστήρες και ανελκυστήρες φορτίων της Schindler

Schindler 2400 Ο όγκος και η αγάπη για την λεπτομέρεια δεν αποτελούν αντιφατικές έννοιες. Ειδικοί ανελκυστήρες και ανελκυστήρες φορτίων της Schindler Ο όγκος και η αγάπη για την λεπτομέρεια δεν αποτελούν αντιφατικές έννοιες. Ειδικοί ανελκυστήρες και ανελκυστήρες φορτίων της Schindler O ταιριάζει. Μπορεί να χρησιμοποιηθεί οπουδήποτε. Σεεμπορικά κέντρα

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

www.inarcadia.gr Σελίδα 2 από 12

www.inarcadia.gr Σελίδα 2 από 12 ΕΠΙΤΥΧΟΝΤΕΣ ΣΕ ΑΕΙ ΚΑΙ ΤΕΙ ΑΠΌ ΑΡΚΑΔΙΑ (90%) (ταξινόμηση με βάση τη σχολή επιτυχίας) α/α Επώνυμο Όνομα Όν. Πατρός Όν. Μητρός Σχολή Επιτυχίας ΕΞ 1 ΔΙΚΑΙΟΥ ΣΟΦΙΑ ΒΑΣΙΛΕΙΟΣ ΓΕΩΡΓΙΑ 102 ΦΙΛΟΣΟΦΙΑΣ ΠΑΤΡΑΣ ΗΜ.

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια)

ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια) ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια) Πολλαπλασιασμός: μπορούμε καλύτερα; Διαισθητικά, επειδή ο πολλαπλασιασμός φαίνεται να απαιτεί άθροιση περίπου n πολλαπλασίων μιας από τις εισόδους, και δεδομένου ότι κάθε πρόσθεση

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 6. Ορισμός επικαμπύλιου ολοκληρώματος 36 KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Τα επικαμπύλια ολοκληρώματα αποτελούν επέκταση της έννοιας του απλού ολο κληρώματος στην περίπτωση κατά την

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε.

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. Κεφάλαιο 4 Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. 4.1 Προβλήματα αρχικών τιμών Στο κεφάλαο αυτό θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις

Διαβάστε περισσότερα

Προσοµοίωση Ανάλυση Απ ο τ ε λε σµ άτ ω ν ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Ανάλυση Απ ο τ ε λε σµ άτ ω ν Τα απ ο τ ε λ έ σ µ ατ α απ ό τ η ν π αρ αγ ω γ ή κ αι τ η χ ρ ή σ η τ υ χ αί ω ν δ ε ι γ µ

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΑΙΤΗΣΗΣ ΑΙΤΗΣΗ ΠΡΟΣ: ΣΤΟΙΧΕΙΑ ΕΠΙΧΕΙΡΙΣΗΣ. Τελωνείο.. ΕΠΩΝΥΜΙΑ:

ΥΠΟΔΕΙΓΜΑ ΑΙΤΗΣΗΣ ΑΙΤΗΣΗ ΠΡΟΣ: ΣΤΟΙΧΕΙΑ ΕΠΙΧΕΙΡΙΣΗΣ. Τελωνείο.. ΕΠΩΝΥΜΙΑ: ΥΠΟΔΕΙΓΜΑ ΑΙΤΗΣΗΣ ΑΙΤΗΣΗ ΣΤΟΙΧΕΙΑ ΕΠΙΧΕΙΡΙΣΗΣ ΕΠΩΝΥΜΙΑ: ΑΦΜ: ΔΙΕΥΘΥΝΣΗ : Τ.Κ : ΤΗΛ.:. ΠΡΟΣ: Τελωνείο.. Με την παρούσα, παρακαλούμε για την έγκριση παραλαβής του ΕΙΧ.. με αριθμό πλαισίου. σύμφωνα με τις

Διαβάστε περισσότερα

Βίβλος προϊόντων. Εφαρμογές προϊόντων ΜΕΤΑΛΛΟ ΞΥΛΟ ΓΥΨΟΣΑΝΙΔΑ ΓΥΑΛΙ ΤΣΙΜΕΝΤΟ

Βίβλος προϊόντων. Εφαρμογές προϊόντων ΜΕΤΑΛΛΟ ΞΥΛΟ ΓΥΨΟΣΑΝΙΔΑ ΓΥΑΛΙ ΤΣΙΜΕΝΤΟ Βίβλος προϊόντων Εφαρμογές προϊόντων ΜΕΤΑΛΛΟ ΞΥΛΟ ΓΥΨΟΣΑΝΙΔΑ ΓΥΑΛΙ ΤΣΙΜΕΝΤΟ Βίβλος προϊόντων Βίδες 1 MF 4D MF Βίβλος προϊόντων Βίδες 2 Βίβλος προϊόντων Βίδες Ανοξείδωτες Βίβλος προϊόντων Στήριξη - Στερέωση

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΙV. ΕΞΑΙΡΕΣΕΙΣ ΑΠΟ ΤΗΝ ΥΠΟΧΡΕΩΣΗ ΚΑΤΑΧΩΡΙΣΗΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΑΡΘΡΟ 2, ΠΑΡΑΓΡΑΦΟΣ 7, ΣΤΟΙΧΕΙΟ α)

ΠΑΡΑΡΤΗΜΑ ΙV. ΕΞΑΙΡΕΣΕΙΣ ΑΠΟ ΤΗΝ ΥΠΟΧΡΕΩΣΗ ΚΑΤΑΧΩΡΙΣΗΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΑΡΘΡΟ 2, ΠΑΡΑΓΡΑΦΟΣ 7, ΣΤΟΙΧΕΙΟ α) L 396/298 EL Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 30.12.2006 ΠΑΡΑΡΤΗΜΑ ΙV ΕΞΑΙΡΕΣΕΙΣ ΑΠΟ ΤΗΝ ΥΠΟΧΡΕΩΣΗ ΚΑΤΑΧΩΡΙΣΗΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΑΡΘΡΟ 2, ΠΑΡΑΓΡΑΦΟΣ 7, ΣΤΟΙΧΕΙΟ α) CAS 200-061-5 D-γλυκιτόλη C6H14O6

Διαβάστε περισσότερα

ΑΕΙ ΑΠΟ ΕΣΠΕΡΙΝΑ 90% Σελίδα 1

ΑΕΙ ΑΠΟ ΕΣΠΕΡΙΝΑ 90% Σελίδα 1 231 APXITEKTONΩN MHXANIKΩN ΕΜΠ ΕΣ. 22444 18,93 39,8 20694 17,67 35,8 1750 201 ΠOΛITIKΩN MHXANIKΩN ΕΜΠ ΕΣ. 19616 19,52 40 19386 19,33 39,4 230 295 IATPIKHΣ ΑΘΗΝΑΣ ΕΣ. 19154 19,3 37,8 19382 19,38 38,6-228

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις Π Δ Μ Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Συνήθεις Διαφορικές Εξισώσεις Δρ. Θεόδωρος Ζυγκιρίδης 28 Δεκεμβρίου 211 2 Περιεχόμενα 1 Εισαγωγή 1 1.1 Ορισμοί.........................................

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

1.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

1.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ . ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ Έστω ότι με Κ συμβολίζουμε ένα οποιοδήποτε σώμα, όταν με την έννοια «σώμα» αναφερόμαστε σε ένα σύνολο, όπως για παράδειγμα το των πραγματικών αριθμών, το των μιγαδικών αριθμών, το

Διαβάστε περισσότερα

Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings

Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ Συνέδριο Μαρτίου Απριλίου 00 Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings f( x) = sin( x )+sin( x) 8 nzc * SR f = N + i t F( ω) = f () t e ω dt -10-5 5 10 - - - f X = klog (

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Φυλλο 1, 28 Οκτωβριου 2009. Ν.Σ. Μαυρογιάννης

Φυλλο 1, 28 Οκτωβριου 2009. Ν.Σ. Μαυρογιάννης ÐÐ Å Ñ Ø È Φυλλο 1, 28 Οκτωβριου 29 Ò Ñ Ø Ò Ô Ö Ø Ð Ö º ƺ˺ŠÙÖÓ ÒÒ ÖÅ Ñ Ø ôò ØÙ Ì ÔÓ Ù Ð ËÕÓÐ ËÑ ÖÒ È Ö Ñ Ø Ä Ó Ô Ñ Ð ËØÓ Õ Ó Ø Ø Ñ ØÓLA www.nsmavrogiannis.gr/ekthetis.htm TEX¾ε mavrogiannis@gmail.com

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.9.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 1 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.9.4.450 ΚΕΦΑΛΑΙΟ Ο Μελέτη μονοτονίας (αύξουσα φθίνουσα) συνάρτησης f i) Βρίσκουμε την παράγωγο f ii)

Διαβάστε περισσότερα

Προϋπολογισθέντα Ενταλθέντα Ψηφισθέντα Εγκριθέντα

Προϋπολογισθέντα Ενταλθέντα Ψηφισθέντα Εγκριθέντα ΔΗΜΟΣ ΜΑΝΔΡΑΣ-ΕΙΔΥΛΛΙΑΣ ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ ΕΞΟΔΩΝ (Ανά Υπηρεσία) Προηγούμενο Οικ. έτος (2011) Οικ. έτος 2012 Κωδικός Περιγραφή Προϋπολογισθέντα Ενταλθέντα Ψηφισθέντα Εγκριθέντα Αναμορφώσ εις 00 ΓΕΝΙΚΕΣ ΥΠΗΡΕΣΙΕΣ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 3: Απόκριση Συχνότητας - Φίλτρα. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 3: Απόκριση Συχνότητας - Φίλτρα. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 3: Απόκριση Συχνότητας - Φίλτρα Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

Παρουσίαση περιστατικού Σπυρόπουλος Γεώργιος Ειδικευόμενος Πνευμονολογίας Πνευμονολογική Κλινική Α.Π.Θ Γ.Π.Ν. Γ. Παπανικολάου

Παρουσίαση περιστατικού Σπυρόπουλος Γεώργιος Ειδικευόμενος Πνευμονολογίας Πνευμονολογική Κλινική Α.Π.Θ Γ.Π.Ν. Γ. Παπανικολάου Παρουσίαση περιστατικού Σπυρόπουλος Γεώργιος Ειδικευόμενος Πνευμονολογίας Πνευμονολογική Κλινική Α.Π.Θ Γ.Π.Ν. Γ. Παπανικολάου Ασθενής 55 ετών, προσήλθε στο ΤΕΠ αναφέροντας δύσπνοια από 4ημέρου, ιδίως κατά

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ Για ιδανικά διαλύματα : μ i = μ i lnx i x= γ=1 Για αραιά διαλύματα : x 1 : μ i = μ i lnx i χ μ i = μ i φ lnx i όπου μ i φ =μ i χ Χημική Ισορροπία λ Από σελ. 7 Χημική Ισορροπία όταν ν i μ i = (T,P σταθερό)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Τέλος, στη δημιουργία των αριθμητικών συστημάτων:

Διαβάστε περισσότερα

ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN

ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN ΠANEΠIΣTHMIO ΘEΣΣAΛIAΣ TMHMA MHXANOΛOΓΩN MHXANIKΩN EPΓAΣTHPIO ΦYΣIKΩN & XHMIKΩN ΔIEPΓAΣIΩN ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN Tεύχος 1ο: Eναλλάκτες μονοφασικής ροής B. Mποντόζογλου BOΛOΣ ΝΟΕΜΒΡΙΟΣ 2013 1. ΠΡΟΚΑΤΑΡΚΤΙΚΟΣ

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

Συναλλαγές. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών. Συναλλαγές. Βάσεις Δεδομένων ΙΙ

Συναλλαγές. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών. Συναλλαγές. Βάσεις Δεδομένων ΙΙ Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 1 2 3 T read(a) A -= 30 write(a) read(b)

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση

Διαβάστε περισσότερα

Στατική και Σεισµική Ανάλυση

Στατική και Σεισµική Ανάλυση ΑΠΟΣΤΟΛΟΥ ΚΩΝΣΤΑΝΤΙΝΙ Η ΠΟΛΙΤΙΚΟΥ ΜΗΧΑΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΑ ΚΤΙΡΙΑ από οπλισµένο σκυρόδεµα ΤΟΜΟΣ Β Στατική και Σεισµική Ανάλυση ISBN set 978-960-85506-6-7 ISBN τ. Β 978-960-85506-0-5 Copyright: Απόστολος

Διαβάστε περισσότερα

ΔΝΓΔΙΚΣΙΚΟ ΣΙΜΟΚΑΣΑΛΟΓΟ ΛΙΑΝΙΚΗ

ΔΝΓΔΙΚΣΙΚΟ ΣΙΜΟΚΑΣΑΛΟΓΟ ΛΙΑΝΙΚΗ ΔΝΓΔΙΚΣΙΚΟ ΣΙΜΟΚΑΣΑΛΟΓΟ ΣΙΜΟΛΟΓ ΗΗ 1 FLY 50 2T 49 101 4,5 (3,4)/7.000 1.105,69 1.360,00 1.360,00 2 NEW FLY 50 4T 4V 50 99 3,5 (2,6)/8.500 1.292,68 1.590,00 1.590,00 3 NRG Power DT A x 49 98 4,4 (3,3)/6.500

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πραγματικές Συναρτήσεις Πολλών Μεταβλητών (μέρος 1) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος. Υπολογίστε τις ακόλουθες ορίζουσες a) 4 b) c) a b + a) 4 4 Παρατήρηση: Προσέξτε ότι ο συμβολισμός της ορίζουσας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ-ΓΕΩΜΕΤΡΙΑΣ ΤΟΠΟΛΟΓΙΑ ΚΑΜΠΥΛΩΝ (ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ) ΠΑΝΑΓΙΩΤΗ ΣΠΥΡΟΥ

ΜΑΘΗΜΑΤΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ-ΓΕΩΜΕΤΡΙΑΣ ΤΟΠΟΛΟΓΙΑ ΚΑΜΠΥΛΩΝ (ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ) ΠΑΝΑΓΙΩΤΗ ΣΠΥΡΟΥ ΜΑΘΗΜΑΤΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ-ΓΕΩΜΕΤΡΙΑΣ ΤΟΠΟΛΟΓΙΑ ΚΑΜΠΥΛΩΝ (ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ) ΠΑΝΑΓΙΩΤΗ ΣΠΥΡΟΥ Επίκουρου Καθηγητή ΑΘΗΝΑ 2011 ΠΡΟΛΟΓΟΣ Η Τοπολογία Καμπύλων είναι ένα κεφάλαιο της Γενικής

Διαβάστε περισσότερα

Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις. Σηµειώσεις

Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις. Σηµειώσεις Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις Σηµειώσεις Ε. Στεϕανόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αιγαίου Πρόλογος Οι σηµειώσεις αυτές αποτελούν εξέλιξη σηµειώσεων οι οποίες χρησιµοποιήθηκαν σε παραδόσεις

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ, ΥΠΟΔΟΜΩΝ, ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ, ΥΠΟΔΟΜΩΝ, ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ ΔΙΕΥΘΥΝΗ ΔΗΜΟΙΩΝ ΕΠΕΝΔΥΕΩΝ ΤΜΗΜ: ΚΤΡΤΙΗ ΠΡΟΓΡΜΜΤΟ ΔΗΜΟΙΩΝ ΕΠΕΝΔΥΕΩΝ ΠΛΗΡΟΦΟΡΙΕ : ΜΡΙΚΙΤΗ ΠΠΓΕΩΡΓΙΟΥ ΤΗΛ.210-3332469 ΝΡΤΗΤΕ ΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙ, ΥΠΟΔΟΜΩΝ, ΝΥΤΙΛΙ ΚΙ ΤΟΥΡΙΜΟΥ

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ZODIAC Ζ200 ZODIAC Z 200 M2 6.1 KW + ΔΩΡΟ 1.433,00 ZODIAC Z 200 M3 9 KW + ΔΩΡΟ 1.895,00 ZODIAC Z 200 M4 12 KW + ΔΩΡΟ 2.416,00 ZODIAC Z 200 M5 14.1

Διαβάστε περισσότερα

504. Έτσι προκύπτει. ΠΕΡΙΠΤΩΣΗ 1η. Υπολογισμός Ορισμένου ολοκλήρωματος που βρίσκεται μέσα σε ορισμένο ολοκλήρωμα. Χαρακτηριστική Άσκηση:

504. Έτσι προκύπτει. ΠΕΡΙΠΤΩΣΗ 1η. Υπολογισμός Ορισμένου ολοκλήρωματος που βρίσκεται μέσα σε ορισμένο ολοκλήρωμα. Χαρακτηριστική Άσκηση: 6 ΠΕΡΙΠΤΩΣΗ η Υπολογισμός Ορισμένου ολοκλήρωματος που βρίσκεται μέσα σε ορισμένο ολοκλήρωμα. Χαρακτηριστική Άσκηση: Δίνεται συνεχής συνάρτηση f:,για την οποία ισχύει 3 t f()d dt 54.Να βρεθεί το ολοκλήρωμα

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1.

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1. Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4.1 Η ροή μιας διαφορικής εξίσωσης Θεωρούμε πάλι το πρόβλημα αρχικών τιμών ẋ = f (x), x (0) = x 0, (4.1.1) όπου το διανυσματικό πεδίο f είναι κλάσεως C 1 σε ένα

Διαβάστε περισσότερα

1ος Θερμοδυναμικός Νόμος

1ος Θερμοδυναμικός Νόμος ος Θερμοδυναμικός Νόμος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Θερμότητα Ολική Ενέργεια Ενθαλπία Θερμοχωρητικότητα Διεργασίες Ιδανικών Αερίων ΕΡΓΟ Κεφάλαιο3,

Διαβάστε περισσότερα

ΤΡΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΤΗΣ ΔΗΜΟΚΡΑΤΙΚΗΣ ΚΙΝΗΣΗΣ ΚΥΠΡΙΩΝ ΕΡΓΑΖΟΜΕΝΩΝ Τ.Θ. 16775, Τ.Κ. 11502 ΤΕΥΧΟΣ 4 ΟΚΤΩΒΡΙΟΣ-ΔΕΚΕΜΒΡΙΟΣ 2011

ΤΡΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΤΗΣ ΔΗΜΟΚΡΑΤΙΚΗΣ ΚΙΝΗΣΗΣ ΚΥΠΡΙΩΝ ΕΡΓΑΖΟΜΕΝΩΝ Τ.Θ. 16775, Τ.Κ. 11502 ΤΕΥΧΟΣ 4 ΟΚΤΩΒΡΙΟΣ-ΔΕΚΕΜΒΡΙΟΣ 2011 ΤΡΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΤΗΣ ΔΗΜΟΚΡΑΤΙΚΗΣ ΚΙΝΗΣΗΣ ΚΥΠΡΙΩΝ ΕΡΓΑΖΟΜΕΝΩΝ Τ.Θ. 16775, Τ.Κ. 11502 ΤΕΥΧΟΣ 4 ΟΚΤΩΒΡΙΟΣ-ΔΕΚΕΜΒΡΙΟΣ 2011 02 03 04 05 06 08 Η κρίση και οι κροίσοι του Κακουλλή Θεοδούλου Δημοτικές εκλογές

Διαβάστε περισσότερα

Πρόγραμμα Εκπαιδεύσεων & Εξετάσεων Πιστοποίησης

Πρόγραμμα Εκπαιδεύσεων & Εξετάσεων Πιστοποίησης SAP Information Sheet Εκπαίδευση SAP Πρόγραμμα Εκπαιδεύσεων & Εξετάσεων Πιστοποίησης Η Εκπαίδευση της SAP Hellas & Cyprus προσφέρει τις κάτωθι προγραμματισμένες Ανοιχτές Εκπαιδεύσεις που διεξάγονται στο

Διαβάστε περισσότερα

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z) 1 ιανυσματικοί χώροι Άσκηση 1.1 Στο σύνολο R 3 όλων των διατεταγμένων τριάδων διατηρούμε την πρόσθεση, που ορίσαμε στο αντίστοιχο παράδειγμα, και ορίζουμε εξωτερικό πολλαπλασιασμό με τη σχέση λ(a 1,a 2,a

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Σύσταση και λειτουργία του αίματος

Σύσταση και λειτουργία του αίματος ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΜΟΙΡΩΝ Ερευνητική εργασία: «Μαθαίνοντας το αίμα μας» Σύσταση και λειτουργία του αίματος Ομάδα: Αιμοπετάλια Ζαχαριουδάκη Χαρίκλεια Α1 Ζεάκη Ελευθερία Α2 Παπαδάκη Μαρία Α3 Τσικριτσάκη Μήνα

Διαβάστε περισσότερα

Συντήρηση και Αντιμετώπιση συχνών προβλημάτων ΣΕΠΕΗΥ ΕΠΙΜΟΡΦΩΤΙΚΗ ΣΥΝΑΝΤΗΣΗ ΥΠΕΥΘΥΝΩΝ ΣΕΠΕΗΥ ΑΙΤ/ΝΙΑΣ

Συντήρηση και Αντιμετώπιση συχνών προβλημάτων ΣΕΠΕΗΥ ΕΠΙΜΟΡΦΩΤΙΚΗ ΣΥΝΑΝΤΗΣΗ ΥΠΕΥΘΥΝΩΝ ΣΕΠΕΗΥ ΑΙΤ/ΝΙΑΣ Συντήρηση και Αντιμετώπιση συχνών προβλημάτων ΣΕΠΕΗΥ ΕΠΙΜΟΡΦΩΤΙΚΗ ΣΥΝΑΝΤΗΣΗ ΥΠΕΥΘΥΝΩΝ ΣΕΠΕΗΥ ΑΙΤ/ΝΙΑΣ Περιεχόμενο Ubuntu 12.04 ltsp Εγκατάσταση Λειτουργικού Εγκατάσταση scripts Κέντρο Λογισμικού Διαχείριση

Διαβάστε περισσότερα

Ασύρµατες Επικοινωνίες

Ασύρµατες Επικοινωνίες Ασύρµατες Επικοινωνίες Στο κεφάλαιο αυτό µελετάµε τεχνικές διαµόρφωσης και αποδιαµόρφωσης που είναι κατάλληλες για κανάλια ασύρµατων επικοινωνιών, των οποίων τα χαρακτηριστικά µετάδοσης είναι χρονικά µεταβαλλόµενα.

Διαβάστε περισσότερα

Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1

Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1 Έργο Κινητική Ενέργεια ΦΥΣ 131 - Διαλ.16 1 Είδη δυνάµεων q Δύο είδη δυνάμεων: Ø Συντηρητικές ή διατηρητικές δυνάμεις και μή συντηρητικές ü Μια δύναμη είναι συντηρητική όταν το έργο που παράγει ασκούμενη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #20 Πόλοι και μηδενικά Διάγραμμα πόλων και μηδενικών Ιδιότητες της περιοχής σύγκλισης Ο αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace Αμφίπλευρος μετασχηματισμός

Διαβάστε περισσότερα

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t

Διαβάστε περισσότερα

«Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία. Πληθυσµιακά Μοντέλα

«Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία. Πληθυσµιακά Μοντέλα «Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία Μοντέλα Πληθυσµών Ενός Είδους: Συνεχή Διακριτά Μοντέλα Αλληλεπιδρώντων Πληθυσµών: Συνεχή Διακριτά Μαθηµατική Μοντελοποίηση:

Διαβάστε περισσότερα