Προγραμματισμός Ι (ΗΥ120)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προγραμματισμός Ι (ΗΥ120)"

Transcript

1 Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή

2 Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις θέσεις. Ζητούμενο: μετακίνησε την στοίβα σε μια άλλη θέση χωρίς ποτέ να βάλεις μια μεγαλύτερη πλάκα πάνω από μια μικρότερη πλάκα. 2 Α Β Γ

3 Λύση με 1 πλάκα 3 Α Β Γ

4 Λύση με 2 πλάκες 4 Α Β Γ

5 Λύση με 2 πλάκες 5 Α Β Γ

6 Λύση με 2 πλάκες 6 Α Β Γ

7 Λύση με 2 πλάκες 7 Α Β Γ

8 Λύση με 2 πλάκες 8 Α Β Γ

9 Λύση για Ν πλάκες Θεωρούμε ότι οι μικρότερες Ν-1 πλάκες είναι μια πλάκα, η μετακίνηση της οποίας μπορεί να γίνει πλέον αναδρομικά (Ν-1 πλάκες πρέπει να μετακινηθούν από μια θέση σε μια άλλη μέσω μιας τρίτης). 9 Α Β Γ

10 Μοντελοποίηση της λύσης Μετακίνησε Ν πλάκες από την θέση Α μέσω της θέσης Β στην θέση Γ: Απλή περίπτωση: αν Ν==1 τότε μεταφέρουμε την πλάκα από την θέση Α απ ευθείας στην θέση Γ. Πολύπλοκη περίπτωση: αν Ν>1, τότε (α) μεταφέρουμε τις πάνω Ν-1 πλάκες από την θέση Α μέσω της θέσης Γ στην θέση Β, (β) μεταφέρουμε την (μια) πλάκα που απέμεινε από την θέση Α απ ευθείας στην θέση Γ, και (γ) μεταφέρουμε τις Ν-1 πλάκες από την θέση Β μέσω της θέσης Α στην θέση Γ. 10

11 11 void movetower(int from, int through, int to, int n) { if (n==1) { movepiece(from,to); else { movetower(from,to,through,n-1); movepiece(from,to); movetower(through,from,to,n-1);

12 Αναδρομή και επανάληψη Οι περισσότερες μορφές επανάληψης μπορεί να εκφραστούν με αναδρομή, αρκεί η συνάρτηση να περνά στον εαυτό της τις κατάλληλες παραμέτρους. Αντίθετα, υπάρχουν αρκετές μορφές αναδρομής που είναι δύσκολο να εκφραστούν με επανάληψη. Το κύριο πλεονέκτημα της αναδρομής είναι ότι η συνάρτηση κρατά δυναμική ενδιάμεση κατάσταση μέσα από τις τοπικές μεταβλητές (πλαίσιο εκτέλεσης) κάθε (αλυσιδωτής) αναδρομικής κλήσης. Παρόμοιο αποτέλεσμα μπορεί να επιτευχθεί και με συμβατικό τρόπο, αλλά η διαχείριση της κατάστασης πρέπει να γίνει από τον ίδιο τον προγραμματιστή (συνήθως χρησιμοποιώντας δυναμική μνήμη). 19

13 Συνδυαστικά προβλήματα

14 Επίλυση συνδυαστικών προβλημάτων 21 Συχνά ένα πρόβλημα μπορεί να εκφραστεί ως μια «αναζήτηση» ενός επιτρεπτού συνδυασμού κάποιων μεταβλητών μέσα από όλους τους δυνατούς συνδυασμούς που μπορεί να γίνουν. Κάποιες φορές, το ζητούμενο είναι να βρεθεί ο βέλτιστος συνδυασμός, που ελαχιστοποιεί ή μεγιστοποιεί κάποια συνάρτηση των μεταβλητών. Λύση με αναδρομή: 1. Κατασκευάζουμε το σύνολο των συνδυασμών αναδρομικά (με διεξοδική «αναζήτηση» σε βάθος). 2. Ελέγχουμε κάθε συνδυασμό για το κατά πόσο είναι επιτρεπτός ή/και καλύτερος σε σχέση με τους συνδυασμούς που έχουν κατασκευαστεί / εξεταστεί.

15 Δέντρα συνδυασμών και αποφάσεων Όλοι οι δυνατοί συνδυασμοί (μεταβλητών) μπορεί να μοντελοποιηθούν (αναπαρασταθούν) ως ένα δέντρο. Κάθε κόμβος του δέντρου σε επίπεδο L αντιστοιχεί σε ένα συγκεκριμένο συνδυασμό επιλογών (τιμών) για L διαφορετικές μεταβλητές. Ξεκινώντας από ένα κόμβο σε επίπεδο L, επιλέγουμε την επόμενη μεταβλητή, και για κάθε τιμή που αυτή μπορεί να λάβει κατασκευάσουμε ένα κόμβο παιδί σε επίπεδο L+1, κλπ. Ένας κόμβος αποτελεί «φύλλο» όταν δεν υπάρχουν άλλες «ελεύθερες» μεταβλητές όλες έχουν λάβει συγκεκριμένες τιμές. 22

16 (αναδρομική) παραγωγή όλων των δυνατών συνδυασμών 23 έλεγχος για επιθυμητούς ή βέλτιστους συνδυασμούς δυνατοί συνδυασμοί επιθυμητοί συνδυασμοί

17 Αποφυγή της συνδυαστικής έκρηξης Ο αριθμός των μεταβλητών μπορεί να είναι μεγάλος και οι πιθανές τιμές για κάθε μεταβλητή πολλές. Η παραγωγή όλων των δυνατών συνδυασμών απαιτεί πόρους (μνήμη, χρόνος) μπορεί να είναι πρακτικά ανέφικτη (ακόμα και με τη σημερινή τεχνολογία). Επιπλέον, οι περισσότεροι από τους συνδυασμούς που παράγονται «στα τυφλά» είναι καταδικασμένοι εκ των προτέρων (πολύ πριν δημιουργηθούν οι τερματικοί κόμβοι «φύλλα» του δέντρου) να μην επιλεγούν ποτέ ως επιθυμητοί (ή βέλτιστοι). Βελτιστοποίηση: πρόωρος αποκλεισμός ολόκληρων υποδέντρων από την ρίζα τους χωρίς υπολογισμό των αντίστοιχων συνδυασμών (branch and bound). 24

18 παραγωγή των συνδυασμών με αποκλεισμό όλων των «αδιάφορων» υποδέντρων 25 δεν παράγεται επιπλέον έλεγχος για επιθυμητούς ή/και βέλτιστους συνδυασμούς επιθυμητοί συνδυασμοί

19 Απλό παράδειγμα - 8 Queens Ζητούμενο: να βρεθεί λύση στο εξής πρόβλημα: να τοποθετηθούν 8 ντάμες σε μια σκακιέρα έτσι ώστε να μην απειλούνται μεταξύ τους 26

20 Εντοπισμός σύγκρουσης (col,row) ίδια στήλη: col==col διαγώνιος 1: col+row==col +row 27 (0,0) ίδια γραμμή: row==row διαγώνιος 2: col-row==col -row int check(int col1,int row1,int col2,int row2) { return((col1!=col2) && (row1!=row2) && (col1+row1!=col2+row2) && (col1-row1!=col2-row2));

21 Δύο προσεγγίσεις Προσέγγιση 1 (brute force): 1. Δημιουργούμε όλους τους συνδυασμούς θέσεων. 2. Διαγράφουμε τους συνδυασμούς όπου δύο ή περισσότερες ντάμες απειλούν η μια την άλλη. 3. Οι συνδυασμοί που απομένουν είναι αποδεκτοί. Προσέγγιση 2 (branch and bound - b&b): 1. Για κάθε νέα ντάμα που τοποθετούμε, ελέγχουμε προκαταβολικά κατά πόσο απειλεί μια από τις ντάμες που έχουν ήδη τοποθετηθεί στη σκακιέρα. 2. Σε αυτή τη περίπτωση, τερματίζουμε την αναδρομή (όλοι οι περαιτέρω συνδυασμοί είναι μη αποδεκτοί). 3. Οι συνδυασμοί που μένουν είναι οι επιθυμητοί. 28

22 αριθμός στήλης για τις ντάμες 0<=i<n που έχουν τοποθετηθεί μέχρι στιγμής αριθμός γραμμής για τις ντάμες 0<=i<n που έχουν τοποθετηθεί μέχρι στιγμής 29 void putnxtqueen(int cols[], int rows[], int n, int M) { αριθμός επόμενης ντάμας προς τοποθέτηση τελικός αριθμός από ντάμες προς τοποθέτηση /* κλήση */ #define Μ 8 int main (int argc, char *argv[]) { int cols[μ],rows[μ]; putnxtqueen(cols,rows,0,μ); return(0);

23 Προσέγγιση 1 (έλεγχος στο τέλος) void putnxtqueen(int cols[], int rows[], int n, int M) { int i,j; (άσκοπη) δημιουργία όλων των συνδυασμών (φύλλων του δέντρου) if (n<m) { for (i=0; i<m; i++) { for (j=0; j<m; j++) { cols[n]=j; rows[n]=i; putnxtqueen(cols,rows,n+1,m); απόρριψη συνδυασμού (φύλλου) αν υπάρχει κάποια σύγκρουση else { for (i=0; i<m; i++) { for (j=i; j<m; j++) { if (!check(cols[i],rows[i],cols[j],rows[j])) {return; for (i=0; i<m; i++) {printf("(%d,%d)\n",cols[i],rows[i]); εκτύπωση αποδεκτού συνδυασμού 30

24 Προσέγγιση 2 (έλεγχος στην τοποθέτηση) void putnxtqueen(int cols[], int rows[], int n, int M) { int i,j,k,ok; if (n<m) { for (i=0; i<m; i++) { for (j=0; j<m; j++) { ok = 1; for (k=0; (k<n) && (ok); k++) { ok = check(j,i,cols[k],rows[k]); if (ok) { col[n]=j; row[n]=i; putnxtqueen(cols,rows,n+1,m); εκτύπωση αποδεκτού συνδυασμού else { for (i=0; i<m; i++) {printf("(%d,%d)\n",cols[i],rows[i]); έλεγχος σύγκρουσης για την νέα τοποθέτηση j,i 31

25 Βελτιστοποίηση Ακόμα και ένας πρωτάρης σκακιστής, μπορεί να συμπεράνει ότι κάθε ντάμα πρέπει υποχρεωτικά να τοποθετηθεί σε ξεχωριστή γραμμή. Ιδέα: παράγουμε τους συνδυασμούς υπό τον περιορισμό ότι η i-οστή ντάμα τοποθετείται (κάπου) στην i-οστή γραμμή. Η λύση ακολουθεί τη φιλοσοφία της προσέγγισης 2, αλλά αποφεύγει με ιδιαίτερα αποδοτικό τρόπο πάρα πολλούς μη αποδεκτούς συνδυασμούς. Σημείωση: η συνάρτηση δεν χρειάζεται να δέχεται πλέον ως παράμετρο τους αριθμούς γραμμής από τις ντάμες που έχουν τοποθετηθεί, αφού row[i]==i. 32

26 αριθμός στήλης για τις ντάμες 0<=i<n που έχουν τοποθετηθεί μέχρι στιγμής ο αριθμός γραμμής για τις ντάμες 0<=i<n που έχουν τοποθετηθεί μέχρι στιγμής είναι row[i]==i 33 void putnxtqueen(int cols[], int n, int M) { /* κλήση */ #define Μ 8 αριθμός επόμενης ντάμας προς τοποθέτηση int main (int argc, char *argv[]) { int cols[μ],rows[μ]; putnxtqueen(cols,0,μ); return(0); τελικός αριθμός από ντάμες προς τοποθέτηση

27 Προσέγγιση 3 void putnxtqueen(int cols[], int n, int M) { int i,k,ok; if (n<m) { for (i=0; i<m; i++) { ok = 1; for (k=0; (k<n) && (ok); k++) { ok=check(i,n,cols[k],k); if (ok) { col[n]=i; putnxtqueen(col,n+1,m); έλεγχος σύγκρουσης για τη νέα τοποθέτηση i,n εκτύπωση αποδεκτού συνδυασμού else { for (i=0; i<m; i++) {printf("(%d,%d)\n",cols[i],i); 34

28 Σχόλιο Οι παραπάνω προσεγγίσεις βρίσκουν όλους τους επιτρεπτούς συνδυασμούς (συμπεριλαμβανομένων και ισοδύναμων «συμμετρικών» λύσεων). Όταν απορρίπτεται ένας συνδυασμός (φύλλο ή/και υποδέντρο) είναι εγγυημένα μη αποδεκτός. 35

29 Μονοπάτι σε γράφο 36 Ένας γράφος κωδικοποιείται μέσω ενός 2-διάστατου πίνακα c, όπου c[i][j]==1 αν υπάρχει ακμή από τον κόμβο i στον j, διαφορετικά c[i][j]==0. Επιθυμούμε να βρούμε ένα μονοπάτι από τον κόμβο n1 προς ένα άλλο κόμβο n2: path(n1,n2) Περίπτωση εύκολου τερματισμού: c[n1][n2]==1 Γενική περίπτωση: αν n:[n1][n]==1 και path(n,n2) τότε το ζητούμενο μονοπάτι είναι n+path(n,n2), διαφορετικά, δεν υπάρχει κανένα μονοπάτι που να οδηγεί από n1 προς n2.

30 c[0][0]=0; c[0][1]=0; c[0][2]=1; c[0][3]=0; c[1][0]=1; c[1][1]=0; c[1][2]=0; c[1][3]=0; c[2][0]=0; c[2][1]=1; c[2][2]=0; c[2][3]=0; c[3][0]=0; c[3][0]=0; c[3][2]=1; c[3][3]=0;

31 int path(int n1, int n2) { int n; 38 if (c[n1][n2]) { return(1); else { for (n=0; n<n; n++) { if ((c[n1][n]) && path(n,n2)) { return(1); return(0);

32 Σχόλια για την προηγούμενη λύση Η αναζήτηση του μονοπατιού γίνεται «σε βάθος» (depth first) Υπάρχει και αναζήτηση «σε πλάτος». Επιστρέφεται το πρώτο μονοπάτι που θα βρεθεί, χωρίς να εξερευνώνται οι υπόλοιπες πιθανές λύσεις. Δεν επιστρέφεται εγγυημένα η πιο σύντομη διαδρομή (μόνο κατά τύχη, αν αυτή τυχαίνει να είναι η πρώτη διαδρομή που βρέθηκε μέσω της αναδρομής). Δεν λαμβάνονται υπ όψη πιθανοί κύκλοι στον γράφο, οπότε υπάρχει πιθανότητα ατέρμονης αναδρομής. Η υλοποίηση μπορεί να επεκταθεί «σχετικά» εύκολα έτσι ώστε να αντιμετωπιστούν όλες οι παραπάνω αδυναμίες / ατέλειες. 39

33 Παράδειγμα Knapsack / Rucksack Δίνεται: αντικείμενα Ο[i] με βάρος W[i] και αξία V[i]. Ζητούμενο: να επιλεγούν τα αντικείμενα τα οποία μεγιστοποιούν την αξία ενός φορτίου με μέγιστο συνολικό βάρος ένα γνωστό άνω όριο maxweight. Προσέγγιση 1 (brute force): κατασκευή όλων των συνδυασμών, και επιλογή του συνδυασμού με την μεγαλύτερη αξία στα πλαίσια του επιτρεπτού βάρους. Προσέγγιση 2 (branch & bound): όπως 1, αλλά σε κάθε βήμα ελέγχεται το βάρος του συνδυασμού και αυτός απορρίπτεται (πρόωρα) αν υπερβαίνει το όριο. Προσέγγιση 3 (heuristic b&b): όπως 2, αλλά σε κάθε βήμα επιλέγεται (αμετάκλητα) το αντικείμενο με το μεγαλύτερο ειδικό βάρος που χωρά στο φορτίο. 45

34 Μη βέλτιστες (ευρετικές) λύσεις Μερικά προβλήματα είναι δύσκολο να λυθούν διεξοδικά, με έλεγχο όλων των επιτρεπτών συνδυασμών (με b&b). Ακόμα και για «σχετικά μικρά» Ν, π.χ , ένας σύγχρονος Η/Υ μπορεί να χρειαστεί μέρες ή και βδομάδες να ολοκληρώσει τον υπολογισμό (αν στο μεταξύ δεν του έχει ήδη σωθεί η διαθέσιμη μνήμη). Ευρετικές μέθοδοι: εκτός από τα υποδέντρα που σίγουρα δεν οδηγούν σε λύση, αποκλείουμε και τα υποδέντρα που πιστεύουμε, σύμφωνα με μια «κοινή» λογική, ότι δεν θα οδηγήσουν σε κάποια (καλή) λύση. Οι ευρεστικές μέθοδοι μειώνουν σημαντικά τον αριθμό των συνδυασμών προς έλεγχο, αλλά στην γενική περίπτωση δεν οδηγούν εγγυημένα σε βέλτιστη λύση. 46

35 αποκλεισμός υποδέντρων που σίγουρα δεν οδηγούν σε λύση αποκλεισμός υποδέντρων που μάλλον δεν οδηγούν σε λύση 47 βέλτιστος συνδυασμός

36 Λίστα ως αναδρομική δομή Μια λίστα μπορεί να θεωρηθεί ως αναδρομική δομή, όχι μόνο συντακτικά αλλά και ουσιαστικά: μια λίστα είναι είτε κενή, είτε αποτελείται από ένα κόμβο που δείχνει σε μια λίστα. Η αναζήτηση μπορεί να υλοποιηθεί αναδρομικά, π.χ. για λίστα χωρίς τερματικό στοιχείο ως εξής: 1. Αν το πρώτο στοιχείο της λίστας είναι NULL, τότε το στοιχείο που αναζητούμε δεν υπάρχει. 2. Αν το πρώτο στοιχείο της λίστας περιέχει την τιμή που αναζητούμε, τότε βρέθηκε. 3. Αν το πρώτο στοιχείο της λίστας δεν περιέχει την τιμή που αναζητούμε, συνέχισε την αναζήτηση στην λίστα στην οποία δείχνει ο πρώτος κόμβος. 49

37 50 root A nxt C nxt B nxt

38 int list_find_rec(struct list *root, int v) { 51 if (root == NULL) { return(0); else if (root->v == v) { return(1); else { return(list_find_rec(root->nxt,v));

Αναδροµή. Προγραµµατισµός Ι 1

Αναδροµή. Προγραµµατισµός Ι 1 Αναδροµή Προγραµµατισµός Ι lalis@inf.uth.gr 1 Συναρτήσεις που καλούν τον εαυτό τους Μια συνάρτηση ονοµάζεται αναδροµική όταν καλεί τον εαυτό της άµεσα ή έµµεσα (µέσα από άλλες συναρτήσεις). Μια αναδροµική

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 15: Διασυνδεμένες Δομές - Λίστες Διασυνδεδεμένες δομές δεδομένων Η μνήμη ενός πίνακα δεσμεύεται συνεχόμενα. Η πρόσβαση στο i-οστό στοιχείο είναι άμεση καθώς η διεύθυνση

Διαβάστε περισσότερα

Προγραµµατισµός Ι (ΗΥ120)

Προγραµµατισµός Ι (ΗΥ120) Προγραµµατισµός Ι (ΗΥ120) Διάλεξη 15: Διασυνδεµένες Δοµές - Λίστες Δοµές δεδοµένων! Ένα τυπικό πρόγραµµα επεξεργάζεται δεδοµένα Πώς θα τα διατάξουµε? 2 Τι λειτουργίες θέλουµε να εκτελέσουµε? Πώς θα υλοποιήσουµε

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 9: Συναρτήσεις Ορισμός συναρτήσεων () { /* δήλωση μεταβλητών */ /* εντολές ελέγχου/επεξεργασίας */ o Μια συνάρτηση ορίζεται δίνοντας

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 11: Δείκτες & Πίνακες Δείκτες και πίνακες Μια μεταβλητή «μονοδιάστατος πίνακας από αντικείμενα τύπου Τ» μπορεί να θεωρηθεί ως (είναι συντακτικά συμβατή με) μια μεταβλητή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Ενδεικτικές Απαντήσεις Εξετάσεων Α' Περιόδου Θέµα 1. (α') 2 - ii 3 - iii 4 - iv

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Ενδεικτικές Απαντήσεις Εξετάσεων Α' Περιόδου Θέµα 1. (α') 2 - ii 3 - iii 4 - iv ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Ενδεικτικές Απαντήσεις Εξετάσεων Α' Περιόδου 2011 Θέµα 1 (α') 1 - i 2 - ii 3 - iii 4 - iv 5 - v 6 - vi 7 - vii 8 - viii 9 - ix 10 - x Το αποτέλεσµα είναι η αντιστοιχία των

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Πανεπιστήµιο Θεσσαλίας Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

Εισαγωγή στον Προγραµµατισµό. Πανεπιστήµιο Θεσσαλίας Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Εισαγωγή στον Προγραµµατισµό Πανεπιστήµιο Θεσσαλίας Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Συναρτήσεις 19.11.16 Β. Ντουφεξή 2 Προβλήματα: Οσο μεγαλώνουν τα προγράμματα, γίνονται πιο πολύπλοκα.

Διαβάστε περισσότερα

Διάλεξη 15η: Αναδρομή, μέρος 1ο

Διάλεξη 15η: Αναδρομή, μέρος 1ο Διάλεξη 15η: Αναδρομή, μέρος 1ο Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αναδρομή I CS100, 2016-2017

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Δυναμική Κατανομή Μνήμης Δυναμική εκχώρηση μνήμης Σωρός Συναρτήσεις malloc(), calloc(), realloc(), free() Δυναμικές δομές

Διαβάστε περισσότερα

Sheet2. - Άσκηση 1 οκ - Άσκηση 2 οκ. Σκέψου πώς θα µπορούσες να την

Sheet2. - Άσκηση 1 οκ - Άσκηση 2 οκ. Σκέψου πώς θα µπορούσες να την AEM ΒΑΘΜΟΣ ΣΧΟΛΙΑ 1413. Σκέψου πώς θα µπορούσες να την 1417 κάνεις χωρίς χρήση της βοηθητικής µεταβλητής curr - Πρώτη άσκηση οκ - Στη δεύτερη άσκηση το free(head) δεν έπρεπε να είναι στο else, αλλά να

Διαβάστε περισσότερα

Διάλεξη 6: Δείκτες και Πίνακες

Διάλεξη 6: Δείκτες και Πίνακες Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 6: Δείκτες και Πίνακες (Κεφάλαιο 12, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 6-1 Περιεχόμενο

Διαβάστε περισσότερα

Πξνγξακκαηηζκόο Ι (ΗΥ120)

Πξνγξακκαηηζκόο Ι (ΗΥ120) Πξνγξακκαηηζκόο Ι (ΗΥ120) Γηάιεμε 18: Λύζε Πξνβιεκάησλ κε Αλαδξνκή Οη πύξγνη ηνπ Hanoi Γίλεηαη έλα ρώξνο κε ηξείο ζέζεηο απνζήθεπζεο. Γίλεηαη κηα ζηνίβα από Ν πιάθεο ζε θζίλσλ κέγεζνο, ζε κηα από ηηο ηξείο

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Συναρτήσεις της C Τα Λοιπά Στοίβα και μηχανισμός κλήσης Αναδρομικές συναρτήσεις Στατικές μεταβλητές Άλλα θέματα Μηχανισμός

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Σχεδίαση Αλγορίθμων Δυναμικός Προγραμματισμός http://delab.csd.auth.gr/~gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Δυναμικός προγραμματισμός Ο Δυναμικός Προγραμματισμός

Διαβάστε περισσότερα

Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Αλγόριθμοι Δυναμικός Προγραμματισμός http://delab.csd.auth.gr/courses/algorithms/ Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Δυναμικός προγραμματισμός Ο Δυναμικός Προγραμματισμός προτάθηκε από τον

Διαβάστε περισσότερα

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εργαστήριο 10η σειρά ασκήσεων. Κοζάνη, 10 Ιανουαρίου 2008. Έχοντας γνωρίσει τις εντολές και μεθόδους που επιτρέπουν την ανάπτυξη δομημένου κώδικα, μπορούμε

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται

Διαβάστε περισσότερα

Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος

Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ KΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ http://www.cslab.ece.ntua.gr Λειτουργικά

Διαβάστε περισσότερα

είκτες και Πίνακες (2)

είκτες και Πίνακες (2) είκτες και Πίνακες (2) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πολυδιάστατοι πίνακες Πέρασµα παραµέτρων σε προγράµµατα C ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1-1 Πίνακες εικτών Πίνακας δεικτών είναι

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 7: Διαχείριση Μνήμης,Δυναμικές Δομές Δεδομένων, Αναδρομή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Δυναμικές Δομές Δεδομένων Γενικά - Δυναμική Δέσμευση/Αποδέσμευση

Διαβάστε περισσότερα

Προγραμματισμός Δομές Δεδομένων

Προγραμματισμός Δομές Δεδομένων Προγραμματισμός Δομές Δεδομένων Προγραμματισμός Δομές Δεδομένων (Data Structures) Καινούργιοι τύποι δεδομένων που αποτελούνται από την ομαδοποίηση υπαρχόντων τύπων δεδομένων Ομαδοποίηση πληροφορίας που

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» Σάββατο, 31 Οκτωβρίου 2015 ΔΙΑΡΚΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ 150 ΛΕΠΤΑ ΘΕΜΑ 1.

Διαβάστε περισσότερα

Επανάληψη για τις Τελικές εξετάσεις. (Διάλεξη 24) ΕΠΛ 032: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ

Επανάληψη για τις Τελικές εξετάσεις. (Διάλεξη 24) ΕΠΛ 032: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΩΝ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ Επανάληψη για τις Τελικές εξετάσεις (Διάλεξη 24) Εισαγωγή Το μάθημα EPL032 έχει ως βασικό στόχο την επίλυση προβλημάτων πληροφορικής με την χρήση της γλώσσας προγραμματισμού C. Επομένως πρέπει: Nα κατανοήσετε

Διαβάστε περισσότερα

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990, ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Πίνακες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Πίνακες Πολλές φορές θέλουμε να κρατήσουμε στην μνήμη πολλά αντικείμενα

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

που θα δώσει αποτέλεσµα 48, λόγω της αριστερής προσεταιριστικότητας των τελεστών / και *, ενώ η επιθυµητή αντικατάσταση θα ήταν η

που θα δώσει αποτέλεσµα 48, λόγω της αριστερής προσεταιριστικότητας των τελεστών / και *, ενώ η επιθυµητή αντικατάσταση θα ήταν η ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Ενδεικτικές Απαντήσεις Εξετάσεων Α' Περιόδου 2013 Θέµα 1 (α') Η απάντηση είναι λάθος. Αν χρησιµοποιήσουµε την µακροεντολή, για παράδειγµα, στην έκφραση 24/CUBE(2) η έκφραση

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ (ΤΛ2007 )

Προγραμματισμός Η/Υ (ΤΛ2007 ) Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ2007 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 2015-16

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λύβας Χρήστος Αρχική επιµέλεια Πιτροπάκης Νικόλαος και Υφαντόπουλος Νικόλαος

Λύβας Χρήστος Αρχική επιµέλεια Πιτροπάκης Νικόλαος και Υφαντόπουλος Νικόλαος ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ IΙ Λύβας Χρήστος chrislibas@ssl-unipi.gr Αρχική επιµέλεια Πιτροπάκης Νικόλαος και Υφαντόπουλος Νικόλαος >_ ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΗ C (1/3) +- Στη C χρησιμοποιούμε συχνα τις συναρτήσεις (functions),

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 10: Στοίβες:Υλοποίηση& Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης - Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις - Εφαρμογή

Διαβάστε περισσότερα

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εργαστήριο 9η εβδομάδα. Κοζάνη, 2 Δεκεμβρίου 2008. Δίνονται παραδείγματα που αποσαφηνίζουν και συμπληρώνουν όσα αναφέρθηκαν στο μάθημα σχετικά με τις δομές

Διαβάστε περισσότερα

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Διαβάστε περισσότερα

Εικονική Μνήμη (Virtual Memory) Προγραμματισμός II 1

Εικονική Μνήμη (Virtual Memory) Προγραμματισμός II 1 Εικονική Μνήμη (Virtual Memory) Προγραμματισμός II 1 lalis@inf.uth.gr Μνήμη και επικοινωνία διεργασιών Κάθε διεργασία έχει δική της ιδιωτική μνήμη Μια διεργασία δεν μπορεί να γράψει/διαβάσει από/σε θέσεις

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 8: Πίνακες, Αλφαριθμητικά Πίνακες Ο πίνακας είναι μια ειδική δομή για την αποθήκευση μιας σειράς από δεδομένα του ίδιου τύπου. Η δήλωση ενός πίνακα γίνεται όπως για μια

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα

Διαβάστε περισσότερα

Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }

Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } } Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 4: Δείκτες (pointers) και Πίνακες Δεικτών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Πίνακες Δεικτών - Πολυδιάστατοι πίνακες - Πέρασμα παραμέτρων σε προγράμματα

Διαβάστε περισσότερα

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες (Διάλεξη 19)

Κεφάλαιο 8.7. Πολυδιάστατοι Πίνακες (Διάλεξη 19) Κεφάλαιο 8.7 Πολυδιάστατοι Πίνακες (Διάλεξη 19) Πολυδιάστατοι πίνακες Μέχρι τώρα μιλούσαμε για Μονοδιάστατους Πίνακες. ή π.χ. int age[5]= {31,28,31,30,31; για Παράλληλους πίνακες, π.χ. int id[5] = {1029,1132,1031,9991,1513;

Διαβάστε περισσότερα

Διάλεξη 20: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 20: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου 1 Διάλεξη 20: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Η έννοια της αναδρομής - Μη-αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων - Παραδείγματα Ανάδρομης - Αφαίρεση

Διαβάστε περισσότερα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα

Διαβάστε περισσότερα

Διερεύνηση γραφήματος

Διερεύνηση γραφήματος Διερεύνηση γραφήματος Διερεύνηση γραφήματος Ένας αλγόριθμος διερεύνησης γραφήματος επισκέπτεται τους κόμβους του γραφήματος με μια καθορισμένη στρατηγική, π.χ. κατά εύρος ή κατά βάθος. Καθοδική διερεύνηση

Διαβάστε περισσότερα

Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.

Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. Διάλεξη 11: Φροντιστήριο για Στοίβες Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1 ΑΤΔ Στοίβα- Πράξεις Θυμηθείτε τον ΑΤΔ στοίβα με τις πράξεις του: MakeEmptyStack()

Διαβάστε περισσότερα

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη

Διαβάστε περισσότερα

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8 Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Δείκτες Δείκτες Υπάρχουν περιπτώσεις που δεν ενδιαφέρει το περιεχόμενο αλλά η μιας μεταβλητής. Χρειάζεται κατάλληλος μηχανισμός αναφοράς και επεξεργασίας τιμών που

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 12: Συναρτήσεις & Δείκτες Αλλαγή του «εξωτερικού» περιβάλλοντος Αν σαν παράμετρος μιας συνάρτησης δοθεί μια μεταβλητή, σαν πραγματική παράμετρος θα περαστεί η τιμή της.

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων

Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων 3. Δυναμικός Προγραμματισμός Ζαγορίσιος Παναγώτης Παπαοικονόμου Χριστίνα Δυναμικός Προγραμματισμός Μέθοδος επίλυσης σύνθετων προβλημάτων. Όπως

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Ενδεικτικές λύσεις και στατιστικά

Ενδεικτικές λύσεις και στατιστικά Προγραμματισμός 1 Σύντομο Quiz 25/9/9 Ενδεικτικές λύσεις και στατιστικά Ερώτηση 1: Γράψτε παρακάτω συνάρτηση η οποία δέχεται ως παραμέτρους ένα string και ένα χαρακτήρα και επιστρέφει τον αριθμό των εμφανίσεων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

Συνδετικότητα γραφήματος (graph connectivity)

Συνδετικότητα γραφήματος (graph connectivity) Συνδετικότητα γραφήματος (graph connectivity) Συνδετικότητα γραφήματος (graph connectivity) Υπάρχει μονοπάτι μεταξύ α και β; α Παραδείγματα: υπολογιστές ενός δικτύου ιστοσελίδες ισοδύναμες μεταβλητές ενός

Διαβάστε περισσότερα

Κεφάλαιο 10 Ψηφιακά Λεξικά

Κεφάλαιο 10 Ψηφιακά Λεξικά Κεφάλαιο 10 Ψηφιακά Λεξικά Περιεχόμενα 10.1 Εισαγωγή... 213 10.2 Ψηφιακά Δένδρα... 214 10.3 Υλοποίηση σε Java... 222 10.4 Συμπιεσμένα και τριαδικά ψηφιακά δένδρα... 223 Ασκήσεις... 225 Βιβλιογραφία...

Διαβάστε περισσότερα

Προγραµµατισµός. Αναδροµή (1/2)

Προγραµµατισµός. Αναδροµή (1/2) Προγραµµατισµός Αναδροµή (1/2) Προγραµµατισµός Κλήσεις Συναρτήσεων Όταν καλείται µια συνάρτηση, πρέπει Να θυµάται σε ποιο σηµείο του προγράµµατος θα επιστρέψει Να δεσµεύσει χώρο για την τιµή που θα επιστρέψει

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 7: Δομές Επανάληψης - Αναγνωσιμότητα 19/10/2015 Επανάληψη εκτέλεσης: while 2 while () lexpr true false body Όσο η λογική συνθήκη επανάληψης lexpr αποτιμάται

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα: Συναρτήσεις θεωρία Δ. Ε. Μετάφας Τμ. Ηλεκτρονικών Μηχ. Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Τρίτη Διάλεξη Εντολές Επιλογής και Επανάληψης Εντολές επιλογής Εντολή if Η πιο απλή μορφή της if συντάσσεται ως εξής: if ( συνθήκη ) Οι εντολές μέσα στα άγκιστρα αποτελούν

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών με C++

Προγραμματισμός Υπολογιστών με C++ Προγραμματισμός Υπολογιστών με C++ ( 2012-13 ) 5η διάλεξη Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Πίνακες ως ορίσματα συναρτήσεων. Τα ορίσματα argc και argv της main.

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ (Functions)

ΣΥΝΑΡΤΗΣΕΙΣ (Functions) ΣΥΝΑΡΤΗΣΕΙΣ (Functions) Δομή Συνάρτησης τύπος όνομα ( λίστα τυπικών παραμέτρων ) Δηλώσεις μεταβλητών εντολή_1 εντολή_2 : εντολή_ν Σώμα της συνάρτησης Δομή της Λίστας Τυπικών Παραμέτρων τύπος_1 τύπος_2

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 14 η Διαχείριση Μνήμης και Δομές Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ (ΤΛ2007 )

Προγραμματισμός Η/Υ (ΤΛ2007 ) Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ2007 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 2014-15

Διαβάστε περισσότερα

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 6: Δομές Ελέγχου Δομές ελέγχου 2 Με τις εντολές εισόδου, εξόδου και επεξεργασίας των τιμών των μεταβλητών μπορεί να γραφτούν απλά προγράμματα. Οι δυνατότητες είναι περιορισμένες.

Διαβάστε περισσότερα

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

lab14grades ΑΕΜ ΒΑΘΜΟΣ ΣΧΟΛΙΑ

lab14grades ΑΕΜ ΒΑΘΜΟΣ ΣΧΟΛΙΑ ΑΕΜ ΒΑΘΜΟΣ ΣΧΟΛΙΑ 00497 lab14grades - Σωστός έλεγχος του argc για όλες τις περιπτώσεις. - Θα έπρεπε να καλέσεις τη συνάρτηση strlen_r και στην περίπτωση του κενού string, strlen_r("\0"). - Σωστή χρήση

Διαβάστε περισσότερα

Προγραμματισμός Ι. Δείκτες. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Δείκτες. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Δείκτες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Τι είναι ο δείκτης Ένας δείκτης είναι μια μεταβλητή που περιέχει μια διεύθυνση μνήμης. Θυμηθείτε πως

Διαβάστε περισσότερα

Προγραμματισμό για ΗΜΥ

Προγραμματισμό για ΗΜΥ ΕΠΛ 34: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 12 Πίνακες εικτών (Pointers Arrays) Θέματα ιάλεξης Στην ενότητα

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 1

Αλγόριθμοι Ταξινόμησης Μέρος 1 Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις

Διαβάστε περισσότερα

Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού

Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Μεταγλωττιστής Πρόγραμμα Διαβάζει προγράμματα δεδομένης γλώσσας (πηγαία γλώσσα) και τα μετατρέπει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 35: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 21 211, Χειµερινό εξάµηνο Όλες οι ασκήσεις να δακτυλογραφηθούν

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Φροντιστήριο 4 Σκελετοί Λύσεων

Φροντιστήριο 4 Σκελετοί Λύσεων Φροντιστήριο 4 Σκελετοί Λύσεων 1. Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως εξής: (i) Διαδοχική χορήγηση μνήμης Υποθέτουμε ότι οι λίστες μας έχουν μέγιστο μέγεθος max και χρησιμοποιούμε τη δομή type elements[max];

Διαβάστε περισσότερα