Μηχανική Πετρωμάτων Τάσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μηχανική Πετρωμάτων Τάσεις"

Transcript

1 Μηχανική Πετρωμάτων Τάσεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης Τελευταία ενημέρωση: 28 Φεβρουαρίου 2017 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

2 Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

3 Βασικές υποθέσεις και έννοιες Γραμμικά Ελαστικό Συνεχές (στερεό) σε στατική ισορροπία Υποθέσεις 1 Το σώμα είναι συνεχές και παραμένει συνεχές υπό την επίδραση εξωτερικών δυνάμεων 2 Νόμος του Hooke: Αν η αναλογία των δυνάμεων P 1 : P 2 : : P n παραμένει σταθερή τότε u = a 1 P 1 + a 2 P a n P n 3 Υπάρχει μια μοναδική κατάσταση στην οποία το σώμα επιστρέφει όποτε του αφαιρεθούν όλες οι εξωτερικές δυνάμεις Ορισμός Ένα σώμα που ικανοποιεί αυτές τις υποθέσεις ονομάζεται γραμμικά ελαστικό στερεό Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

4 Βασικές υποθέσεις και έννοιες Αρχή της υπέρθεσης Ορισμός Ο νόμος του Hooke ισχύει ανεξάρτητα από την σειρά με την οποία θα επιβληθούν οι δυνάμεις Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

5 Τανυστής των τάσεων κατά Cauchy Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

6 Τανυστής των τάσεων κατά Cauchy Η έννοια της τάσης Τι είναι τάση; Η τάση ορίζεται ως δύναμη ανά μονάδα επιφάνειας Αντιπροσωπεύει την ένταση με την οποία δρουν οι δυνάμεις επί ενός τυχαίου επιπέδου F T = lim A 0 A όπου T είναι ο ελκυστής των τάσεων στο επίπεδο Μονάδες: Pa Σύμβαση προσήμου: Θλίψη θετική Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

7 Τανυστής των τάσεων κατά Cauchy Τετράεδρο του Cauchy Θεμελιώδες θεώρημα του Cauchy (Augustin-Louis Cauchy, ) T j = σ ij n i T j : σ ij : n i : Ελκυστής των τάσεων στο επίπεδο Τανυστής τάσεων κατά Cauchy συνημίτονα κατεύθυνσης του μοναδιαίου διανύσματος του επιπέδου Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

8 Τανυστής των τάσεων κατά Cauchy Στοιχειώδης κύβος και τανυστής τάσεων κατά Cauchy Τανυστής τάσεων κατά Cauchy σ 11 σ 12 σ 13 σ ij = σ 21 σ 22 σ 23 σ 31 σ 32 σ 33 1ος νόμος της κίνησης κατά Cauchy Διατήρηση της ορμής σ ij,j + f i = 0 2ος νόμος της κίνησης κατά Cauchy Διατήρηση της στροφορμής Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36 σ ij = σ ji

9 Περί των τανυστών και των δεικτών στη Μηχανική Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

10 Περί των τανυστών και των δεικτών στη Μηχανική Γενικές έννοιες Ορισμός τανυστή Οι τανυστές είναι γεωμετρικά αντικείμενα που περιγράφουν γραμμικές σχέσεις μεταξύ διανυσμάτων, βαθμωτών μεγεθών ή και άλλων τανυστών Οι τανυστές μπορούν να αποτυπωθούν ως πολυδιάστατα διανύσματα (πηγή: Wikipedia) Παραδείγματα Το εσωτερικό και το εξωτερικό γινόμενο διανυσμάτων είναι τανυστές Επίσης όλα τα βαθμωτά μεγέθη και τα διανύσματα είναι επίσης τανυστές Τάξη ή βαθμός τανυστή Η τάξη του τανυστή μας δείχνει πόσους δείκτες χρειαζόμαστε για να αποτυπώσουμε όλα τα στοιχεία του τανυστή Για την μηχανική το πλήθος των στοιχείων του τανυστή δίδεται από την σχέση 3 ν όπου ν η τάξη του τανυστή Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

11 Περί των τανυστών και των δεικτών στη Μηχανική Παραδείγματα τανυστών Τανυστές μηδενικής τάξης (ν = 0) - βαθμωτά μεγέθη Υδραυλική πίεση p, θερμοκρασία T Τανυστές πρώτης τάξης (ν = 1) - διανύσματα Ταχύτητα v i, ελκυστής τάσης T i, μοναδιαίο διάνυσμα n i (συνημίτονα κατεύθυνσης), διάνυσμα μετατοπίσεων u i Τανυστές δεύτερης τάξης (ν = 2) Τανυστής των τάσεων σ ij, τανυστής των παραμορφώσεων ϵ ij Τανυστές τέταρτης τάξης (ν = 4) Τανυστής δυστροπίας (stiffness matrix) C ijkl που περιέχει τις ελαστικές σταθερές του υλικού στον γενικευμένο νόμο του Hooke Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

12 Περί των τανυστών και των δεικτών στη Μηχανική Κανόνες δεικτών Επιλογή δεικτών Μπορεί να χρησιμοποιηθεί οποιοδήποτε σύμβολο για τους δείκτες Συνήθως χρησιμοποιούνται τα i,j,k,l,m,n,r,s Ελεύθερος δείκτης (Free index) Όποιος δείκτης εμφανίζεται μόνο μια φορά σε ένα μονώνυμο ονομάζεται ελεύθερος δείκτης Στις τρεις διαστάσεις παίρνει τις τιμές 1,2 και 3 Η τιμή του δείκτη δείχνει σε ποιά κατεύθυνση στο χώρο αναφέρεται η ποσότητα του τανυστή Άεργος δείκτης (Dummy index) Όποιος δείκτης εμφανίζεται ακριβώς δύο φορές σε ένα μονώνυμο υποδηλώνει άθροιση των ποσοτήτων του τανυστή για όλες τις δυνατές τιμές του δείκτη (Σύμβαση άθροισης του Einstein) Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

13 Περί των τανυστών και των δεικτών στη Μηχανική Κανόνες δεικτών Δείκτης που επαναλαμβάνεται τρεις φορές ή παραπάνω Όποιος δείκτης εμφανίζεται 3 φορές ή παραπάνω σε ένα μονώνυμο τότε είναι λάθος Ειδικός κανόνας Το κόμμα πριν από ένα δείκτη υποδηλώνει παραγώγιση ως προς αυτόν τον δείκτη Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

14 Περί των τανυστών και των δεικτών στη Μηχανική Κανόνες δεικτών - Παραδείγματα Ελεύθερος δείκτης n i = (n 1, n 2, n 3 ) σ i = (σ 1, σ 2, σ 3 ) Άεργος δείκτης σ kk = σ 11 + σ 22 + σ 33 Ελεύθερος και άεργος δείκτης μαζί T j = T j = σ ij n i σ 11 n 1 + σ 21 n 2 + σ 31 n 3 σ 12 n 1 + σ 22 n 2 + σ 32 n 3 σ 13 n 1 + σ 23 n 2 + σ 33 n 3 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

15 Περί των τανυστών και των δεικτών στη Μηχανική Κανόνες δεικτών - Παραδείγματα Ελέυθερος και άεργος δείκτης και ταυτόχρονα παραγώγιση σ ij,j + f i = 0 σ 11 x 1 + σ 12 x 2 + σ 13 σ 21 x 1 + σ 22 x 2 + σ 23 σ 31 x 1 + σ 32 x 2 + σ 33 x 3 + f 1 = 0 x 3 + f 2 = 0 x 3 + f 3 = 0 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

16 Βασικοί υπολογισμοί με τον τανυστή της τάσης Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

17 Βασικοί υπολογισμοί με τον τανυστή της τάσης Ορθή και διατμητική τάση σε επίπεδο Μέτρο ελκυστή (Πυθαγόρειο Θεώρημα) T = T T2 2 + T2 3 Ορθή τάση επί του επιπέδου σ (n) = T j n j = σ ij n i n j Διατμητική τάση επί του επιπέδου τ (n) = T 2 ( σ (n)) 2 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

18 Βασικοί υπολογισμοί με τον τανυστή της τάσης Τανυστής στροφής Ορισμός τανυστή στροφής l ij = l 11 l 12 l 13 l 21 l 22 l 23 l 31 l 32 l 33 Τα στοιχεία του τανυστή είναι τα συνημίτονα κατεύθυνσης των αξόνων του νέου συστήματος συντεταγμένων ως προς τους άξονες του παλαιού συστήματος Παράδειγμα Η πρώτη γραμμή του τανυστή είναι τα συνημίτονα των γωνιών που σχηματίζει στο χώρο ο άξονας x 1 με τους άξονες x 1, x 2 και x 3, αντίστοιχα Προσοχή! Ο τανυστής l ij δεν είναι συμμετρικός Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

19 Βασικοί υπολογισμοί με τον τανυστή της τάσης Κανόνας μετασχηματισμού σε νέο σύστημα συντεταγμένων Κανόνας μετασχηματισμού (στροφής) τανυστή σ ij = l im l jn σ mn Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

20 Κύριες τάσεις και αναλλοίωτες Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

21 Κύριες τάσεις και αναλλοίωτες Ορισμός κύριων τάσεων Ορισμός κύριων τάσεων Από κάθε σημείο εντός ενός σώματος που ισορροπεί περνάνε τρία επίπεδα κάθετα μεταξύ τους στα οποία ασκείται μόνο ορθή τάση Τα τρία αυτά επίπεδα ονομάζονται κύρια επίπεδα και οι τρεις ορθές τάσεις ονομάζονται κύριες τάσεις Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

22 Κύριες τάσεις και αναλλοίωτες Υπολογισμός κύριων τάσεων (1) Ιδιοτιμές και ιδιοδιανύσματα Ο υπολογισμός των κύριων τάσεων και των κατευθύνσεών τους ταυτίζεται με το αλγεβρικό πρόβλημα της εύρεσης των ιδιοτιμών και των ιδιοδιανυσμάτων ενός τετραγωνικού συμμετρικού πίνακα Σύστημα ομογενών εξισώσεων ( σij σδ ij ) nj = 0 σ: άγνωστη σταθερά αναλογίας (ιδιοτιμές) η οποία αντιστοιχεί στις κύριες τάσεις δ ij : Kronecker Δέλτα ή μοναδιαίος πίνακας (δ ij = 1 αν i = j και δ ij = 0 αν i j) n j : τα άγνωστα ιδιοδιανύσματα που αντιστοιχούν στην κατεύθυνση της αντίστοιχης κύριας τάσης Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

23 Κύριες τάσεις και αναλλοίωτες Υπολογισμός κύριων τάσεων (2) Λύση συστήματος ομογενών εξισώσεων Για να έχει το σύστημα των ομογενών εξισώσεων μη τετριμμένη λύση (n j = 0) θα πρέπει σij σδ ij = 0 Χαρακτηριστική εξίσωση σ 3 I 1 σ 2 + I 2 σ I 3 = 0 Οι ρίζες της χαρακτηριστικής εξίσωσης είναι οι τρεις κύριες τάσεις σ 1, σ 2 και σ 3 Εφόσον ο σ ij είναι πραγματικός και συμμετρικός πίνακας, μπορεί να αποδειχθεί ότι η χαρακτηριστική εξίσωση έχει πάντα τρεις πραγματικές ρίζες Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

24 Κύριες τάσεις και αναλλοίωτες Αναλλοίωτες του τανυστή των τάσεων Ορισμός Οι σταθερές I 1, I 2 και I 3 της χαρακτηριστικής εξίσωσης δεν εξαρτώνται από το σύστημα συντεταγμένων του τανυστή σ ij και ονομάζονται αναλλοίωτες του τανυστή των τάσεων Δηλαδή, όπως και να στραφεί ο τανυστής των τάσεων, οι I 1, I 2 και I 3 είναι πάντα ίδιες Εκφράσεις αναλλοίωτων I 1 = Tr ( ) σ ij = σkk = σ 11 + σ 22 + σ 33 I 2 = σ 11 σ 12 σ 21 σ 22 + σ 11 σ 13 σ 31 σ 33 + σ 22 σ 23 σ 32 σ 33 I 3 = det ( ) σ 11 σ 12 σ 13 σ ij = σ 21 σ 22 σ 23 σ 31 σ 32 σ 33 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

25 Κύριες τάσεις και αναλλοίωτες Υπολογισμός κατευθύνσεων κύριων τάσεων Γραμμικά ανεξάρτητες εξισώσεις Αν ο τανυστής σ ij έχει τρεις διαφορετικές μεταξύ τους ιδιοτιμές (κύριες τάσεις) τότε σύμφωνα με την γραμμική άλγεβρα μόνο δύο από τις τρεις εξισώσεις του συστήματος ομογενών εξισώσεων είναι γραμμικά ανεξάρτητες μεταξύ τους Υπολογισμός κατεύθυνσης κύριας τάσης Για τον υπολογισμό των συνημιτόνων κατεύθυνσης n j μιας κύριας τάσης (πχ της σ 1 ) χρησιμοποιούνται οποιεσδήποτε δύο από τις τρεις εξισώσεις του συστήματος ομογενών εξισώσεων (όπου τείθεται πχ σ = σ 1 ) και η ταυτότητα n n n 2 3 = 1 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

26 Αποκλίνων τανυστής τάσεων και αναλλοίωτες Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

27 Αποκλίνων τανυστής τάσεων και αναλλοίωτες Μέση πίεση και αποκλίνων τανυστής των τάσεων Διασπαση τανυστή τάσεων σε σφαιρικό και αποκλίνoν τμήμα σ ij = pδ ij + s ij Μέση πίεση p = 1 3 I 1 = 1 3 σ kk = 1 3 (σ 11 + σ 22 + σ 33 ) Ο υδροστατικός ή σφαιρικός τανυστής pδ ij μεταβάλλει τον όγκο του σώματος Αποκλίνων τανυστής Ο αποκλίνων τανυστής s ij μεταβάλλει το σχήμα του σώματος και αναφέρεται στο διατμητικό τμήμα του τανυστή των τάσεων Γιατί; Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

28 Αποκλίνων τανυστής τάσεων και αναλλοίωτες Αναλλοίωτες του αποκλίνοντα τανυστή των τάσεων Χαρακτηριστική εξίσωση Εκφράσεις αναλλοίωτων s 3 J 1 s 2 J 2 s J 3 = 0 J 1 = s kk = 0 J 2 = 1 2 s ijs ji = 1 3 I2 1 I 2 = 1 [(σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2] 6 J 3 = det ( ) 1 s ij = 3 s ijs jk s ki = 2 27 I I 1I 2 + I 3 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

29 Οκταεδρικές τάσεις Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

30 Οκταεδρικές τάσεις Οκταεδρικές τάσεις Οκταεδρικό επίπεδο Το επίπεδο του οποίου το κάθετο διάνυσμα σχηματίζει ίσες γωνίες στο χώρο με τις διευθύνσεις των κυρίων τάσεων ονομάζεται οκταεδρικό επίπεδο Υπάρχουν συνολικά οκτώ τέτοια επίπεδα που σχηματίζουν ένα οκτάεδρο Ορθή οκταεδρική τάση σ (oct) = 1 3 I 1 = p Διατμητική οκταεδρική τάση 2 τ (oct) = 3 J 2 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

31 Κύκλος του Mohr Περιεχόμενα 1 Βασικές υποθέσεις και έννοιες 2 Τανυστής των τάσεων κατά Cauchy 3 Περί των τανυστών και των δεικτών στη Μηχανική 4 Βασικοί υπολογισμοί με τον τανυστή της τάσης 5 Κύριες τάσεις και αναλλοίωτες 6 Αποκλίνων τανυστής τάσεων και αναλλοίωτες 7 Οκταεδρικές τάσεις 8 Κύκλος του Mohr Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

32 Κύκλος του Mohr Συνθήκες επίπεδης τάσης σ ij = [ σ11 σ 12 σ 21 σ 22 ] σ 13 = σ 23 = σ 33 = 0 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

33 Κύκλος του Mohr Υπολογισμός ορθής και διατμητικής τάσης σε τυχαίο επίπεδο σ n = σ ij n i n j τ n = T 2 σn 2 σ n : Ορθή τάση τ n : Διατμητική τάση T: Μέτρο ελκυστή Σύμβαση Οι τάσεις θεωρούνται θετικές όταν έχουν την φορά του σχήματος Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

34 Κύκλος του Mohr Κύκλος του Mohr Παραμετρικές εξισώσεις κύκλου σ n = 1 2 (σ 11 + σ 22 ) (σ 11 σ 22 ) cos 2θ + σ 12 sin 2θ τ n = 1 (σ11 σ22) sin 2θ + σ12 cos 2θ 2 Εξίσωση κύκλου του Mohr ( σ n 1 ) 2 ( ) 2 2 (σ 11 + σ 22 ) + τn 2 1 = 2 (σ 11 σ 22 ) + σ12 2 Ειδικός κανόνας Για τον σχεδιασμό του κύκλου, οι διατμητικές τάσεις που στρέφουν δεξιόστροφα τον στοιχειώδη όγκο θεωρούνται θετικές και αρνητικές αντίθετα Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

35 Κύκλος του Mohr Πόλοι των επιπέδων και των καθέτων Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

36 Κύκλος του Mohr Υπολογισμός κύριων τάσεων { σ1 σ 2 } = 1 2 (σ11 + σ22) ± ( σ11 σ 22 2 ) 2 + σ 2 12 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου / 36

ΑΣΚΗΣΗ 1: Υπολογίστε την ορθή και διατμητική τάση, οι οποίες ασκούνται στα επίπεδα με κλίση α ως, όπως φαίνονται στα παρακάτω σχήματα.

ΑΣΚΗΣΗ 1: Υπολογίστε την ορθή και διατμητική τάση, οι οποίες ασκούνται στα επίπεδα με κλίση α ως, όπως φαίνονται στα παρακάτω σχήματα. Ν. Ηράκλειο, Αττικής Τ.Κ. 4 2 Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π.

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΤΩΝ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ 1. ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ:

Κεφάλαιο 2 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΤΩΝ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ 1. ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: Κεφάλαιο 2 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΤΩΝ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ 1. ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: 2. ΟΤΙ ΤΟ ΥΛΙΚΟ ΔΙΑΔΟΣΗΣ ΕΧΕΙ ΑΠΟΛΥΤΑ ΕΛΑΣΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο ΚΑΡΤΕΣΙΑΝΟΙ ΤΑΝΥΣΤΕΣ ΠΕΡΙΛΗΨΗ ΤΟΥ ΚΕΦΑΛΑΙΟΥ

Κ Ε Φ Α Λ Α Ι Ο ΚΑΡΤΕΣΙΑΝΟΙ ΤΑΝΥΣΤΕΣ ΠΕΡΙΛΗΨΗ ΤΟΥ ΚΕΦΑΛΑΙΟΥ ΠΕΡΙΛΗΨΗ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 1 Κ Ε Φ Α Λ Α Ι Ο E1 ΚΑΡΤΕΣΙΑΝΟΙ ΤΑΝΥΣΤΕΣ ΠΕΡΙΛΗΨΗ ΤΟΥ ΚΕΦΑΛΑΙΟΥ Στο Κεφάλαιο αυτό Ε1 γίνεται μια πολύ απλή εισαγωγή στους Καρτεσιανούς τανυστές, δηλαδή στους τανυστές σε Καρτεσιανά

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ Νικόλαος Ι. Ιωακειμίδης Ομότιμος Καθηγητής Πολυτεχνικής Σχολής Πανεπιστημίου Πατρών ΠΑΤΡΑ 2014 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Θέματα εξέτασης στο μάθημα «Μηχανική του Συνεχούς Μέσου» (ΕΜ57) Ηράκλειο, 9 Μαΐου 009 Θέμα 1 ο (μονάδες.0) Έστω ο τανυστής προβολής P= 1 n n, όπου n

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 3: Στοιχεία Θεωρίας Ελαστικότητας Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας,

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών. «Μηχανική Συνεχούς Μέσου» (ΕΜ257) Εαρινό Εξάμηνο , Διδάσκων: Ι.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών. «Μηχανική Συνεχούς Μέσου» (ΕΜ257) Εαρινό Εξάμηνο , Διδάσκων: Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών «Μηχανική Συνεχούς Μέσου» (ΕΜ57) Εαρινό Εξάμηνο 008-09 Διδάσκων: Ι Τσαγράκης ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ 1 μια βάση του Ευκλείδειου χώρου E Δείξτε ότι τα διανύσματα

Διαβάστε περισσότερα

Μάθημα 2 ο. Στοιχεία Θεωρίας Ελαστικότητας

Μάθημα 2 ο. Στοιχεία Θεωρίας Ελαστικότητας Μάθημα ο Στοιχεία Θεωρίας Ελαστικότητας Τανυστής Τάσης Τανυστής Aνηγμένης Παραμόρφωσης Σχέση Τάσης και Ανηγμένης Παραμόρφωσης Ελαστικές Σταθερές ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΕΙΣΜΟΛΟΓΙΑ Μάθημα ο: Στοιχεία Θεωρίας Ελαστικότητας

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα

Διαβάστε περισσότερα

Και τα στερεά συγκρούονται

Και τα στερεά συγκρούονται Και τα στερεά συγκρούονται Εξετάζοντας την ελαστική κρούση υλικών σημείων, ουσιαστικά εξετάζουμε την κρούση μεταξύ δύο στερεών σωμάτων, δύο μικρών σφαιρών, τα οποία εκτελούν μόνο μεταφορική κίνηση. Τι

Διαβάστε περισσότερα

Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούμενου σώματος με άλλα σώματα),

Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούμενου σώματος με άλλα σώματα), ΑΝΑΛΥΣΗ ΤΩΝ ΤΑΣΕΩΝ Η έννοια του ελκυστή (tracto): M(συνισταμένη ροπή) F (συνισταμένη δύναμη) P S Θεωρείται παραμορφώσιμο στερεό σε ισορροπία υπό εξωτερική φόρτιση (αποκλείονται ταχέως μεταβαλλόμενες φορτίσεις

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Σακελλάριος 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

Ελαστικότητα. Δ. Ευταξιόπουλος

Ελαστικότητα. Δ. Ευταξιόπουλος Ελαστικότητα Δ. Ευταξιόπουλος 7 Ιανουαρίου 014 Περιεχόμενα 1 Ανάλυση τάσεων 5 1.1 Μαζικές δυνάμεις, επιφανειακές δυνάμεις και τάσεις......... 5 1. Ομοιόμορφη εντατική κατάσταση................... 7 1..1

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - Β. - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 06. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ελεύθερη Ταλάντωση Xωρίς Απόσβεση Πολυβάθμια Συστήματα: Δ0- Για ένα πολυβάθμιο σύστημα που ταλαντώνεται ελεύθερα χωρίς απόσβεση, λόγω μόνο επιβαλλόμενων αρχικών μετατοπίσεων

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ Θεώρημα της Μεταφοράς Rols Taspo To Μετατρέπει τη διατύπωση ενός θεμελιώδη νόμου ενός κλειστού συστήματος σ αυτήν για έναν όγκο ελέγχου Ο ρυθμός της εκτατικής

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 77 Κεφάλαιο 4 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 4.1 Εισαγωγή Στα προηγούμενα κεφάλαια υπολογίσαμε τάσεις και παραμορφώσεις που αναπτύσσονται σε ένα σημείο (σε μια πολύ μικρή περιοχή ) ενός δομικού

Διαβάστε περισσότερα

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Πολλά φυσικά μεγέθη είναι διανυσματικά (π.χ. δύναμη, ταχύτητα, επιτάχυνση, γωνιακή ταχύτητα, ροπή, στροφορμή ) Συμβολισμός του διανύσματος: Συμβολισμός του μέτρου

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,

Διαβάστε περισσότερα

( AB) + ( BC) = ( AC).

( AB) + ( BC) = ( AC). ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Διάλεξη 3 Προβολή, εσωτερικό γινόμενο Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης Σεπ 2014 Χ.Κουρουνιώτης (Παν.Κρήτης) ΜΕΜ 102-3 Σεπ 2014 1 / 12 Άξονας, αλγεβρική τιμή

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

Σχετικιστικές συμμετρίες και σωμάτια

Σχετικιστικές συμμετρίες και σωμάτια Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών

Διαβάστε περισσότερα

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 008-009 Μητρωικές Μέθοδοι Μετατοπίσεων και Δυνάμεων Ανάλυσης Κατασκευών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών «Μαθηματική Θεωρία Υλικών ΙΙ» (ΕΜ5) Εαρινό Εξάμηνο 007-08, Διδάσκων: Ι Τσαγράκης Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ (ΕΠΑΝΑΛΗΨΗ ΣΤΗ «ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι») μια

Διαβάστε περισσότερα

p = p n, (2) website:

p = p n, (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 5. Εισαγωγή στη διανυσματική άλγεβρα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 5. Εισαγωγή στη διανυσματική άλγεβρα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 5. Εισαγωγή στη διανυσματική άλγεβρα Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος Καθηγήτρια 1 Σημαντική σημείωση Δεδομένου ότι θα διδαχθεί

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 3 1.1 Γενικά.......................... 3 1.2 Ορισµοί......................... 4 1.3 Στοιχειώδεις Πράξεις Μεταξύ ιανυσµάτων....... 8 1.3.1 Γινόµενο Αριθµού επί ιάνυσµα.........

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ορθοκανονικοποίηση, Ορίζουσες, Ιδιοτιμές και Ιδιοδιανύσματα Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 105 Κεφάλαιο 5 ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια αναλύσαμε την εντατική κατάσταση σε δομικά στοιχεία τα οποία καταπονούνται κατ εξοχήν αξονικά (σε εφελκυσμό ή θλίψη) ή πάνω

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Κεφάλαιο 5. Ενέργεια συστήματος

Κεφάλαιο 5. Ενέργεια συστήματος Κεφάλαιο 5 Ενέργεια συστήματος Εισαγωγή στην ενέργεια Οι νόμοι του Νεύτωνα και οι αντίστοιχες αρχές μας επιτρέπουν να λύνουμε μια ποικιλία προβλημάτων. Ωστόσο, μερικά προβλήματα, που θεωρητικά μπορούν

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Μαθηματικά Α Τάξης Γυμνασίου

Μαθηματικά Α Τάξης Γυμνασίου Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ Βασικές έννοιες: Στερεά σώματα του φυσικού κόσμου - Ευκλείδειος χώρος - Σωματίδιο - Ελεύθερο σωματίδιο - Άκαμπτο σώμα - Σχετικές θέσεις σωματιδίων - Αδρανειακό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου,

Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου, Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (9/8/1) Θέμα 1: (1), (), (3), (4), όπου, (5),, (6), (7), (8), (9), όπου, (1), (11) ενέργεια [ ], όλες οι συνιστώσες της στροφορμής [ ], (1), (13), (κυματ

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος http://users.uoa.gr/ papost/ papost@phys.uoa.gr, papost@teiion.gr ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 018-019 Υπάρχουν φυσικά φαινόμενα κατά τα οποία η κίνηση ενός σώματος προκύπτει

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΤΜΗΜΑ Α.2 ΚΑΘΗΓ. ΖΑΧΑΡΙΑΔΟΥ ΚΑΤΕΡΙΝΑ ΓΡΑΦΕΙΟ ΖΒ114 (ΡΑΓΚΟΥΣΗ-ΖΑΧΑΡΙΑΔΟΥ) E-mail: zacharia@uniwa.gr

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΠΛΗ 12 - Ιδιοτιμές και ιδιοδιανύσματα

ΠΛΗ 12 - Ιδιοτιμές και ιδιοδιανύσματα 5 Ιδιοτιμές και ιδιοδιανύσματα Χαρακτηριστικό πολυώνυμο Έστω ο πίνακας Α: Αν από τα στοιχεία της κυρίας διαγωνίου α,α αφαιρέσουμε τον αριθμό λ, τότε προκύπτει ο πίνακας: του οποίου η ορίζουσα είναι η εξής:

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Ημερολόγιο μαθήματος

Ημερολόγιο μαθήματος ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤPΙΑ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Τμήμα Α Διδάσκων: Kαθηγητής Στυλιανός Σταματάκης Website URL: http://stamata.webpages.auth.gr/geometry/ Ημερολόγιο

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

= (2)det (1)det ( 5)det 1 2. u

= (2)det (1)det ( 5)det 1 2. u www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det

Διαβάστε περισσότερα

Διανύσματα. (α) μέτρο, (β) διεύθυνση και. (γ) φορά. (κατεύθυνση=διεύθυνση+φορά).

Διανύσματα. (α) μέτρο, (β) διεύθυνση και. (γ) φορά. (κατεύθυνση=διεύθυνση+φορά). Διανύσματα Βαθμωτή Ποσότητα: αυτή που μπορεί να οριστεί πλήρως με έναν αριθμό και μια μονάδα. Ο αριθμός και η μονάδα συνιστούν το μέτρο της βαθμωτής ποσότητας. Διάνυσμα: είναι η ποσότητα που έχει (α) μέτρο,

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους, C, διανύσματα στο χώρο (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα