# Envelope Periodic Solutions to Coupled Nonlinear Equations

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 Commun. Theor. Phys. (Beijing, China) 39 (2003) pp c International Academic Publishers Vol. 39, No. 2, February 15, 2003 Envelope Periodic Solutions to Coupled Nonlinear Equations LIU Shi-Da, 1,2 FU Zun-Tao, 1,2 LIU Shi-Kuo, 1 and ZHAO Qiang 1 1 School of Physics, Peking University, Beijing , China 2 State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, Peking University, Beijing , China (Received June 10, 2002) Abstract The envelope periodic solutions to some nonlinear coupled equations are obtained by means of the Jacobi elliptic function expansion method. And these envelope periodic solutions obtained by this method can degenerate to the envelope shock wave solutions and/or the envelope solitary wave solutions. PACS numbers: Jb Key words: Jacobi elliptic function, nonlinear coupled equations, envelope periodic solution 1 Introduction Numerous nonlinear models (nonlinear equations) are proposed to understand the physical mechanism in different physical problems. Generally speaking, the exact analytical solutions to these nonlinear equations are hardly obtained, and many numerical methods have to be applied to solve these nonlinear equations. Fortunately, a few exact analytical solutions for some nonlinear equations can be found under certain conditions, for example, the solitary wave solutions, shock wave solutions and periodic solutions, and so on. Applying these analytical solutions, we can check the reliability of numerical solutions in the same control parameters. Much effort has been spent on the construction of exact solutions of nonlinear equations. A number of methods have been proposed, such as the homogeneous balance method, [1 3] the hyperbolic tangent function expansion method, [4 6] the nonlinear transformation method, [7,8] the trial function method, [9,10] and sine-cosine method. [11] These methods, however, can only obtain the shock and solitary wave solutions or the periodic solutions with the elementary functions, [1 12] but cannot get the generalized periodic solutions of nonlinear equations. Although Porubov et al. [13 15] have obtained some periodic solutions to some nonlinear equations, they used the Weierstrass elliptic function and involved complicated deduction. The Jacobi elliptic function expansion method [16,17] has been proposed and applied to obtain the generalized periodic solutions to some nonlinear equations and their corresponding shock wave and solitary wave solutions. In this paper, this method is applied to get the envelope periodic solutions and corresponding envelope shock or solitary wave solutions to some coupled nonlinear equations. 2 Envelope Periodic Solutions for Coupled NLS Equations The coupled nonlinear Schrödinger (NLS) equations read i u t + α 2 u x 2 + [β 1 u 2 + β 2 v 2 ]u = 0, i v t + α 2 v x 2 + [β 1 v 2 + β 2 u 2 ]v = 0. (1) We seek the following wave packet solutions Substituting Eq. (2) into Eqs. (1) yields Taking 2αk = c g, ω αk 2 = ( > 0), we have u = φ(ξ) e i(kx ωt), v = ψ(ξ) e i(kx ωt), ξ = p(x c g t). (2) dξ 2 + ip(2αk c g) dφ dξ + (ω αk2 )φ + β 1 φ 3 + β 2 φψ 2 = 0, αp 2 d2 ψ dξ 2 + ip(2αk c g) dψ dξ + (ω αk2 )ψ + β 1 ψ 3 + β 2 φ 2 ψ = 0. (3) dξ 2 φ + β 1φ 3 + β 2 φψ 2 = 0, αp 2 d2 ψ dξ 2 ψ + β 1ψ 3 + β 2 φ 2 ψ = 0. (4) The project supported by National Natural Science Foundation of China (No ) and the State Key Project of National Natural Science Foundation of China (No )

2 168 LIU Shi-Da, FU Zun-Tao, LIU Shi-Kuo, and ZHAO Qiang Vol. 39 Next, we solve Eq. (4) using Jacobi elliptic function expansions. 2.1 Jacobi Elliptic Sine Function Expansion By the Jacobi elliptic function expansion method, φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi elliptic function, sn ξ, i.e., φ(ξ) = a j sn j ξ, ψ(ξ) = b j sn j ξ, (5) we can select n 1 and n 2 to balance the derivative term of the highest order and nonlinear term in Eq. (4) and get the ansatz solution of Eq. (4) in terms of sn ξ Substituting Eq. (6) into Eqs. (4), one can get φ(ξ) = a 0 + a 1 sn ξ, ψ(ξ) = b 0 + b 1 sn ξ. (6) ( + β 1 a β 2 b 2 0)a 0 + {[ + 3β 1 a 2 0 (1 + m 2 )αp 2 ]a 1 + β 2 (2a 0 b 1 + a 1 b 0 )b 0 }sn ξ + [3β 1 a 0 a β 2 (a 0 b 1 + 2a 1 b 0 )b 1 ]sn 2 ξ + (β 1 a αp 2 + β 2 b 2 1)a 1 sn 3 ξ = 0, ( + β 1 b β 2 a 2 0)a 0 + {[ + 3β 1 b 2 0 (1 + m 2 )αp 2 ]b 1 + β 2 (2a 1 b 0 + a 0 b 1 )a 0 }sn ξ + [3β 1 b 0 b β 2 (a 1 b 0 + 2a 0 b 1 )a 1 ]sn 2 ξ + (β 1 b αp 2 + β 2 a 2 1)b 1 sn 3 ξ = 0, (7) and then set the coefficients of the different powers for sn ξ to be zeros to obtain the algebraic equations about a j and b j, ( + β 1 a β 2 b 2 0)a 0 = 0, [ + 3β 1 a 2 0 (1 + m 2 )αp 2 ]a 1 + β 2 (2a 0 b 1 + a 1 b 0 )b 0 = 0, 3β 1 a 0 a β 2 (a 0 b 1 + 2a 1 b 0 )b 1 = 0, (β 1 a αp 2 + β 2 b 2 1)a 1 = 0, ( + β 1 b β 2 a 2 0)a 0 = 0, [ + 3β 1 b 2 0 (1 + m 2 )αp 2 ]b 1 + β 2 (2a 1 b 0 + a 0 b 1 )a 0 = 0, 3β 1 b 0 b β 2 (a 1 b 0 + 2a 0 b 1 )a 1 = 0, (β 1 b αp 2 + β 2 a 2 1)b 1 = 0, (8) from which the coefficients a j and b j and corresponding constraints can be determined as a 0 = b 0 = 0, p 2 = (1 + m 2 )α, a 1 = b 1 = ± 2 αp 2. (9) β 1 + β 2 Then the envelope periodic solutions for u and v are 2 (1 + m 2 )(β 1 + β 2 ) sn (1 + m 2 )α (x c gt) e i(kx ωt) (10) and when m 1, corresponding envelope solitary wave solutions are tanh β 1 + β 2 2α (x c gt) e i(kx ωt). (11) 2.2 Jacobi Elliptic Cosine Function Expansion φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi cosine elliptic function, cn ξ, i.e., φ(ξ) = a j cn j ξ, ψ(ξ) = b j cn j ξ, (12) and the ansatz solution of Eq. (4) in terms of cn ξ is φ(ξ) = a 0 + a 1 cn ξ, ψ(ξ) = b 0 + b 1 cn ξ. (13) Similarly, another kind of envelope periodic solutions can be obtained, for cn ξ, which are 2 (β 1 + β 2 )( 2 1) cn α( 2 1) (x c gt) e i(kx ωt), (14)

3 No. 2 Envelope Periodic Solutions to Coupled Nonlinear Equations 169 and the limited solutions are 2 sech β 1 + β 2 α (x c gt) e i(kx ωt). (15) 2.3 Jacobi Elliptic Function of the Third Kind Expansion φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi elliptic function of the third kind, dn ξ, i.e., φ(ξ) = a j dn j ξ, ψ(ξ) = b j dn j ξ, (16) and the ansatz solution of Eq. (4) in terms of dn ξ is φ(ξ) = a 0 + a 1 dn ξ, ψ(ξ) = b 0 + b 1 dn ξ. (17) Similarly, another kind of envelope periodic solutions can be obtained, for dn ξ, which are 2 (β 1 + β 2 )(2 m 2 ) dn α(2 m 2 ) (x c gt) e i(kx ωt), (18) and the limited solutions are the same one as Eq. (15). 2.4 Jacobi Elliptic Function cs ξ Expansion φ(ξ) and ψ(ξ) can be expressed as a finite series of Jacobi elliptic function, cs ξ, i.e., φ(ξ) = a j cs j ξ, ψ(ξ) = b j cs j ξ, and the ansatz solution of Eq. (4) in terms of cs ξ is cs ξ = cn ξ sn ξ (19) φ(ξ) = a 0 + a 1 cs ξ, ψ(ξ) = b 0 + b 1 cs ξ. (20) Similarly, another kind of envelope periodic solutions can be obtained, for cs ξ, which are 2 (β 1 + β 2 )(2 m 2 ) cs α(2 m 2 ) (x c gt) e i(kx ωt), (21) and the limited solutions are 2 β 1 + β 2 csch α (x c gt) e i(kx ωt). (22) The above analysis shows that the expansion in terms of different Jacobi elliptic functions can lead to different envelope periodic solutions and envelope solitary wave solutions, and more new results can be got in these expansions. 3 Envelope Periodic Solutions for Coupled Nonlinear Schrödinger KdV Equations The coupled nonlinear Schrödinger KdV equations read We seek its following wave packet solutions where both φ(ξ) and u(ξ) are real functions. Substituting Eq. (24) into Eqs. (23) yields u t + u u x + β 3 u x 3 v 2 x = 0, i v t + α 2 v δuv = 0. (23) x2 u = u(ξ), v = φ(ξ) e i(kx ωt), ξ = p(x c g t), (24) c g du dξ + u du dξ + βp2 d3 u dξ 3 dφ2 dξ = 0, dξ 2 + ip(2αk c g) dφ dξ + (ω αk2 )φ δuφ = 0. (25a) (25b)

4 170 LIU Shi-Da, FU Zun-Tao, LIU Shi-Kuo, and ZHAO Qiang Vol. 39 Integrating Eq. (25a) once and taking integration constant as zero, setting c g = 2αk and ω αk 2 = in Eq. (25b), then equations (25a) and (25b) take the following forms c g u u2 + βp 2 d2 u dξ 2 φ2 = 0, φ δuφ = 0. (26) dξ2 By the Jacobi elliptic function expansion method, φ(ξ) and u(ξ) can be expressed as a finite series of Jacobi elliptic function, sn ξ, i.e., u(ξ) = a j sn j ξ, φ(ξ) = b j sn j ξ. (27) We can select n 1 and n 2 to balance the derivative term of the highest order and nonlinear terms in Eq. (26) and get the ansatz solution of Eq. (26) in terms of sn ξ, It is obvious that there are the following formula u(ξ) = a 0 + a 1 sn ξ + a 2 sn 2 ξ, φ(ξ) = b 0 + b 1 sn ξ + b 2 sn 2 ξ. (28) d 2 u dξ 2 = 2a 2 (1 + m 2 )a 1 sn ξ 4(1 + m 2 )a 2 sn 2 ξ + 2 a 1 sn 3 ξ + 6m 2 a 2 sn 4 ξ, d 2 φ dξ 2 = 2b 2 (1 + m 2 )b 1 sn ξ 4(1 + m 2 )b 2 sn 2 ξ + 2 b 1 sn 3 ξ + 6m 2 b 2 sn 4 ξ, u 2 = a a 0 a 1 sn ξ + (2a 0 a 2 + a 2 1)sn 2 ξ + 2a 1 a 2 sn 3 ξ + a 2 2sn 4 ξ, φ 2 = b b 0 b 1 sn ξ + (2b 0 b 2 + b 2 1)sn 2 ξ + 2b 1 b 2 sn 3 ξ + b 2 2sn 4 ξ, uφ = a 0 b 0 + (a 0 b 1 + a 1 b 0 )sn ξ + (a 0 b 2 + a 1 b 1 + a 2 b 0 )sn 2 ξ + (a 1 b 2 + a 2 b 1 )sn 3 ξ + a 2 b 2 sn 4 ξ. (29) Then substituting Eqs. (28) and (29) into Eq. (26) leads to [ c g a 0 + a 2 0/2 + 2βp 2 a 2 b 2 0] + [ c g a 1 + a 0 a 1 βp 2 (1 + m 2 )a 1 2b 0 b 1 ]sn ξ + [ c g a 2 + (2a 0 a 2 + a 2 1)/2 4βp 2 (1 + m 2 )a 2 (2b 0 b 2 + b 2 1)]sn 2 ξ + [a 1 a βp 2 a 1 2b 1 b 2 ]sn 3 ξ + [a 2 2/2 + 6m 2 βp 2 a 2 b 2 2]sn 4 ξ = 0, [2αp 2 b 2 b 0 δa 0 b 0 ] + [ αp 2 (1 + m 2 )b 1 b 1 δ(a 0 b 1 + a 1 b 0 )]sn ξ + [ 4αp 2 (1 + m 2 )b 2 b 2 δ(a 0 b 2 + a 1 b 1 + a 2 b 0 )]sn 2 ξ + [2αp 2 m 2 b 1 δ(a 1 b 2 + a 2 b 1 )]sn 3 ξ + [6αp 2 m 2 b 2 δa 2 b 2 ]sn 4 ξ = 0. (30) Setting the coefficients of each power of sn ξ to be zero, one can get the algebraic equations about a i and b i (i = 0, 1, 2), i.e., c g a 0 + a 2 0/2 + 2βp 2 a 2 b 2 0 = 0, c g a 1 + a 0 a 1 βp 2 (1 + m 2 )a 1 2b 0 b 1 = 0, c g a 2 + (2a 0 a 2 + a 2 1)/2 4βp 2 (1 + m 2 )a 2 (2b 0 b 2 + b 2 1) = 0, a 1 a βp 2 a 1 2b 1 b 2 = 0, a 2 2/2 + 6m 2 βp 2 a 2 b 2 2 = 0, 2αp 2 b 2 b 0 δa 0 b 0 = 0, αp 2 (1 + m 2 )b 1 b 1 δ(a 0 b 1 + a 1 b 0 ) = 0, 4αp 2 (1 + m 2 )b 2 b 2 δ(a 0 b 2 + a 1 b 1 + a 2 b 0 ) = 0, 2αp 2 m 2 b 1 δ(a 1 b 2 + a 2 b 1 ) = 0, 6αp 2 m 2 b 2 δa 2 b 2 = 0, (31) from which one can determine the coefficients a 2 = 6m2 αp 2 δ α a 0 = 2(α + βδ) b 0 = ± 1 2δ, b 2 = ±6m 2 p 2 α2 + 2αβδ 2δ 2, a 1 = b 1 = 0, { c g + 4βp 2 (1 + m 2 (α + 2βδ) [ ) 4p 2 (1 + m 2 ) + δ α 2δ 2 α 2 + 2αβδ [a 0 c g 4βp 2 (1 + m 2 )]. (32) ]},

5 No. 2 Envelope Periodic Solutions to Coupled Nonlinear Equations 171 So the periodic solutions for the coupled nonlinear Schrödinger KdV equations are u = a 0 + 6m2 αp 2 sn 2 [ p(x c g t)], δ (33a) v = b 0 ± 6m 2 p 2 α2 + 2αβδ 2δ 2 sn 2 [ p(x c g t)] e i(kx ωt), (33b) where a 0 and b 0 are given in Eqs. (32), and equation (33b) is envelope periodic solutions. When m 1, equations (33a) and (33b) degenerate to soliton and envelope soliton solution, respectively. Moreover, there are relations sn 2 ξ + cn 2 ξ = 1, m 2 sn 2 ξ + dn 2 ξ = 1, (34) so one can get the same results by using sn ξ, cn ξ or dn ξ expansion in solving the coupled nonlinear Schrödinger-KdV equations. 4 Envelope Periodic Solutions for Coupled Nonlinear Klein Gordon Schrödinger Equations The coupled nonlinear Klein Gordon Schrödinger equations read 2 u t 2 2 u c2 0 x 2 + f 0 2 u v 2 = 0, We seek its following wave packet solutions where both φ(ξ) and u(ξ) are real functions. Substituting Eq. (36) into Eqs. (35) yields i v t + α 2 v + βuv = 0. (35) x2 u = u(ξ), v = φ(ξ) e i(kx ωt), ξ = p(x c g t), (36) p 2 (c 2 g c 2 0) d2 u dξ 2 + f 2 0 u φ 2 = 0, dξ 2 + ip(2αk c g) dφ dξ + (ω αk2 )φ + βuφ = 0. Setting c g = 2αk and ω αk 2 = δ in Eq. (37b), then equations (37a) and (37b) take the following forms p 2 (c 2 g c 2 0) d2 u dξ 2 + f 2 0 u φ 2 = 0, (37a) (37b) δφ + βuφ = 0. (38) dξ2 By the Jacobi elliptic function expansion method, φ(ξ) and u(ξ) can be expressed as a finite series of Jacobi elliptic function sn ξ, i.e., u(ξ) = a j sn j ξ, φ(ξ) = b j sn j ξ. (39) We can select n 1 and n 2 to balance the derivative term of the highest order and nonlinear term in Eq. (38) and get the ansatz solution of Eq. (38) in terms of sn ξ, u(ξ) = a 0 + a 1 sn ξ + a 2 sn 2 ξ, φ(ξ) = b 0 + b 1 sn ξ + b 2 sn 2 ξ. (40) Similarly, substituting Eq. (40) into Eq. (38) will lead to the following results a 2 = 6m2 αp 2, b 2 = ±6m 2 p 2 α(c2 g c 2 0 ), a 1 = b 1 = 0, β β a 0 = α { f0 2β 1 2 p 4 (c 2 g c 2 0) [f 0 2 4(1 + m 2 )p 2 (c 2 g c 2 } 0)] 4(c 2 g c 2 0 ), b 0 = ± [f 2 0 4(1 + m 2 )p 2 (c 2 g c 2 0)] 2(c 2 g c 2 0 ) α(c2 g c 2 0 ) β So the periodic solutions for the coupled nonlinear Klein Gordon Schrödinger equations are u = α { f0 2β 1 2 p 4 (c 2 g c 2 0) [f 0 2 4(1 + m 2 )p 2 (c 2 g c 2 } 0)] 4(c 2 g c 2 0 ) 6m2 αp 2 sn 2 [ p(x c g t)], β. (41) (42a)

6 172 LIU Shi-Da, FU Zun-Tao, LIU Shi-Kuo, and ZHAO Qiang Vol. 39 v = ± [f 0 2 4(1 + m 2 )p 2 (c 2 g c 2 0)] 2(c 2 g c 2 0 ) α(c2 g c 2 0 ) ± 6m 2 p 2 α(c2 g c 2 0 ) sn 2 [ p(x c g t)] e i(kx ωt), β β where equation (42b) is envelope periodic solutions. When m 1, equations (42a) and (42b) degenerate to soliton and envelope soliton solution, respectively. 5 Conclusion In this paper, the exact envelope periodic solutions to some coupled nonlinear equations are obtained by use of Jacobi elliptic function expansion method. The envelope periodic solutions got by this method can degenerate as the envelope shock wave and envelope solitary wave solutions. Similarly, this solving process can be applied to other nonlinear equations, such as Landau Lifshitz equations, Kadomtsev Petviashvili equation and some others. (42b) References [1] M.L. WANG, Phys. Lett. A199 (1995) 169. [2] M.L. WANG, Y.B. ZHOU, and Z.B. LI, Phys. Lett. A216 (1996) 67. [3] L. YANG, Z. ZHU, and Y. WANG, Phys. Lett. A260 (1999) 55. [4] L. YANG, J. LIU, and K. YANG, Phys. Lett. A278 (2001) 267. [5] E.J. Parkes and B.R. Duffy, Phys. Lett. A229 (1997) 217. [6] E. FAN, Phys. Lett. A277 (2000) 212. [7] R. Hirota, J. Math. Phys. 14 (1973) 810. [8] N.A. Kudryashov, Phys. Lett. A147 (1990) 287. [9] M. Otwinowski, R. Paul, and W.G. Laidlaw, Phys. Lett. A128 (1988) 483. [10] S.K. LIU, Z.T. FU, S.D. LIU, and Q. ZHAO, Appl. Math. Mech. 22 (2001) 326. [11] C. YAN, Phys. Lett. A224 (1996) 77. [12] J.F. ZHANG, Chin. Phys. 8 (1999) 326. [13] A.V. Porubov, Phys. Lett. A221 (1996) 391. [14] A.V. Porubov and M.G. Velarde, J. Math. Phys. 40 (1999) 884. [15] A.V. Porubov and D.F. Parker, Wave Motion 29 (1999) 97. [16] S.K. LIU, Z.T. FU, S.D. LIU, and Q. ZHAO, Phys. Lett. A289 (2001) 69. [17] Z.T. FU, S.K. LIU, S.D. LIU, and Q. ZHAO, Phys. Lett. A290 (2001) 72.

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### Second Order RLC Filters

ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### Instruction Execution Times

1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

### derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### 6.3 Forecasting ARMA processes

122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

### Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### New Exact Solutions of Two Nonlinear Physical Models

Commun. Theor. Phys. Beijing China 53 00 pp. 596 60 c Chinese Physical Society and IOP Publishing Ltd Vol. 53 No. April 5 00 New Exact Solutions of Two Nonlinear Physical Models M.M. Hassan Mathematics

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Forced Pendulum Numerical approach

Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

### k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### Strain gauge and rosettes

Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

### Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

### Variational Wavefunction for the Helium Atom

Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### High order interpolation function for surface contact problem

3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

### Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

Commun. Theor. Phys. (Beijing, China 44 (005 pp. 83 87 c International Academic Publishers Vol. 44, No., August 5, 005 Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

Διαβάστε περισσότερα

### Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### w o = R 1 p. (1) R = p =. = 1

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

### A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### Quick algorithm f or computing core attribute

24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### 9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

### Section 9.2 Polar Equations and Graphs

180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

### Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

### ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

### CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

### Jacobian Elliptic Function Method and Solitary Wave Solutions for Hybrid Lattice Equation

Commun. Theor. Phys. (Beijing China) 45 (2006) pp. 057 062 c International Academic Publishers Vol. 45 No. 6 June 5 2006 Jacobian Elliptic Function Method Solitary Wave Solutions for Hybrid Lattice Equation

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System with Variable Coefficients

Commun. Theor. Phys. (Beijing, China) 44 (005) pp. 80 806 c International Academic Publishers Vol. 44, No. 5, November 15, 005 New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

### 2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation

Commun. Theor. Phys. 63 (2015) 136 140 Vol. 63, No. 2, February 1, 2015 Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation HU Heng-Chun ( ), 1, WANG Jing-Bo ( ), 1 and ZHU Hai-Dong

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ Π.Μ.Σ: «Σύγχρονες Προσεγγίσεις στη γλώσσα και στα κείμενα» ΚΑΤΕΥΘΥΝΣΗ ΓΛΩΣΣΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Το φωνηεντικό

Διαβάστε περισσότερα

### Lecture 2. Soundness and completeness of propositional logic

Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

### A Note on Intuitionistic Fuzzy. Equivalence Relation

International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

### Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

### New Applications of an Improved (G /G)-expansion Method to Construct the Exact Solutions of Nonlinear PDEs

Freund Publishing House Ltd. International Journal of Nonlinear Sciences & Numerical Simulation (4): 7-8 00 New Applications of an Improved (G /G)-epansion Method to Construct the Eact Solutions of Nonlinear

Διαβάστε περισσότερα

### Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

### LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin

Διαβάστε περισσότερα

### Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

### Durbin-Levinson recursive method

Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

### ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ιπλωµατική Εργασία Ιωάννη Σ. Προµπονά

Διαβάστε περισσότερα

### ,,, (, 100875) 1989 12 25 1990 2 23, - 2-4 ;,,, ; -

25 3 2003 5 RESOURCES SCIENCE Vol. 25 No. 3 May 2003 ( 100875) : 500L - 2-4 - 6-8 - 10 114h - 120h 6h 1989 12 25 1990 2 23-2 - 4 : ; ; - 4 1186cm d - 1 10cm 514d ; : 714 13 317 714 119 317 : ; ; ; :P731

Διαβάστε περισσότερα

### HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV

Διαβάστε περισσότερα

### ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

### ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

### «ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

### ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

### The Spiral of Theodorus, Numerical Analysis, and Special Functions

Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

### Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

### Math 5440 Problem Set 4 Solutions

Math 544 Math 544 Problem Set 4 Solutions Aaron Fogelson Fall, 5 : (Logan,.8 # 4) Find all radial solutions of the two-dimensional Laplace s equation. That is, find all solutions of the form u(r) where

Διαβάστε περισσότερα

### n=2 In the present paper, we introduce and investigate the following two more generalized

MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

0 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων Καθηγητής: Δρ. Βασίλειος Ραφτόπουλος ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΤΑΣΗΣ ΤΩΝ ΝΟΣΗΛΕΥΤΩΝ ΓΙΑ ΤΗΝ ΕΥΘΑΝΑΣΙΑ Ονοματεπώνυμο:

Διαβάστε περισσότερα

### EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

### Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα