6η Διάλεξη Οπτικές ίνες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6η Διάλεξη Οπτικές ίνες"

Transcript

1 6η Διάεξη Οπτικές ίνες Γ. Έηνας, Διάεξη 6, σε. Χρματική Διασπορά Γ. Έηνας, Διάεξη 6, σε. Pae

2 Χρματική Διασπορά Οι οπτικές πηγές δεν είναι μονοχρματικές: Οπτική Ισχύς Μήκος κύματος Χρόνος Ώστε πρέπει να άβουμε υπόψη διασπορά ανάμεσα σε ένα τρόπο Γ. Έηνας, Διάεξη 6, σε. 3 Χρματική Διασπορά Διασπορά Υικού: Συμβαίνει επειδή το δ.δ. είναι μη-γραμμική συνάρτηση του μήκους κύματος (Σχεδ. A). Η ταχύτητα ομάδας ενός συγκεκριμένου τρόπου είναι συνάρτηση του δ.δ., που σημαίνει ότι τα διάφορα φασματικά συστατικά ενός τρόπου ταξιδεύουν με διαφορετικές ταχύτητες σύμφνα με το μήκος κύματος τους. Είναι σημαντική σε μονότροπες οπτικές ίνες, και χειροτερεύει όταν χρησιμοποιούμε LEDs (τα οποία έχουν μεγαύτερο φασματικό πάτος σε σύγκριση με τις διόδους έιζερ). Γ. Έηνας, Διάεξη 6, σε. 4 Pae

3 Χρματική Διασπορά Σχεδ. A Δείκτης Διάθασης σε Συνάρτηση με το μήκος κύματος για οπτικές ίνες διοξειδίου του πυριτίου Γ. Έηνας, Διάεξη 6, σε. 5 Χρματική Διασπορά 999 S.O. Kasa, Otoelectronics Inut Claddin v () Emitter Core v ( ) Very short liht ulse Outut Intensity Intensity Intensity Sectrum, Δ Sread, Δ t t t o t Όες οι πηγές είναι μη-μονοχρματικές και εκπέμπουν φώς μέσα σε ένα φάσμα από μήκη κύματος Δ. Τα κύματα μέσα στην ίνα με διαφορετικά μήκη κύματος ταξιδεύουν με διαφορετικές ταχύτητες ομάδας, όγ στην εξάρτηση του n απότομήκοςκύματος. Τα κύματα φτάνουν στην άη άκρη της ίνας σε διαφορετικούς χρόνους, και αυτό σημαίνει ότι ο παμός στην έξοδο διασκορπίζεται. Γ. Έηνας, Διάεξη 6, σε. 6 Pae 3

4 Χρματική Διασπορά Διασπορά Κυματοδηγού: Συμβαίνει επειδή περίπου 8% της οπτικής ισχύος περιορίζεται στον πυρήνα σε μονότροπες οπτικές ίνες. Το φώς που διαδίδεται στον μανδύα ταξιδεύει πιο γρήγορα. Δεν είναι σημαντικό σε πούτροπες οπτικές ίνες. Για μονότροπες ίνες, διασπορά υικού είναι η πιο σημαντική μορφή διασποράς {Σχεδ. B}. Ακόμη και αν δεν έχουμε διασπορά υικού, διασπορά κυματοδηγού θα υπάρχει όγ της κατασκευής της διαχριστικής επιφάνειας μεταξύ πυρήνα-μανδύα. Γ. Έηνας, Διάεξη 6, σε. 7 Διασπορά Κυματοδηγού Όσο πιο πού αυξάνεται το μήκος κύματος, τόσο περισσότερο από το οπτικό πεδίο (ισχύς του οπτικού σήματος) εισχρεί μέσα στον μανδύα: y y Claddin > c > v Core v > v Claddin E(y) Όσο περισσότερο από το πεδίο μεταφέρεται από τον μανδύα, ηταχύτηταομάδας αυξάνεται. Γ. Έηνας, Διάεξη 6, σε. 8 Pae 4

5 Διασπορά για μονότροπες οπτικές ίνες Διασπορά (s/(nm.m)) - Σχεδ. B: Διασπορά για μονότροπες οπτικές ίνες διοξειδίου του πυριτίου - Γ. Έηνας, Διάεξη 6, σε. 9 Διασπορά Αυτό σημαίνει ότι για μονότροπες οπτικές ίνες, η εάχιστηδιασπορά συμβαίνει στα 3 nm Από την άη, η εάχιστη εξασθένιση συμβαίνει στα 55 nm. Οι μονάδες της διασποράς είναι: s/(nm.m) Ο διασκορπισμός του παμού (σε s) γίνεται χειρότερος όσο αυξάνει η απόσταση (m) και όσο αυξάνει το φασματικό πάτος της οπτικής πηγής (nm) D σ L σ D διασπορά, σ ενεργός τιμή του διασκορπισμού του παμού, σ ενεργός τιμή του φασματικού πάτους της πηγής, L μήκος ίνας Γ. Έηνας, Διάεξη 6, σε. Pae 5

6 Φάση και Ταχύτητα Ομάδας Για ένα υικό που παρουσιάζει φαινόμενα διασποράς, όπς για παράδειγμα μια μονότροπη οπτική ίνα, το σχήμα του παμού θα αάζει καθώς κινείται μέσα στην ίνα: Εκτός από την διασπορά κυματοδηγού, ο κύριος όγος για τον διασκορπισμό του παμού είναι η διασπορά υικού (μη-γραμμική ααγή του n με το ) σε συνδυασμό με το πάτος φάσματος της πηγής. Γ. Έηνας, Διάεξη 6, σε. Φάση και Ταχύτητα Ομάδας Όες οι οπτικές πηγές (συμπεριαμβανομένν και τν έιζερ) έχουν ένα ορισμένο πάτος φάσματος: Intensity (arbitrary units) Δ: πάτος φάσματος, FWHM Κάθε μήκος κύματος «βέπει» μια διαφορετική τιμή του δείκτη διάθασης, και ταξιδεύει με διαφορετική ταχύτητα: n Γ. Έηνας, Διάεξη 6, σε. Pae 6

7 Φάση και Ταχύτητα Ομάδας Παρά το ότι δουεύουμε με μήκη κύματος αντί με συχνότητα, για την συζήτηση που ακοουθεί είναι πιο βοικό να χρησιμοποιήσουμε την συχνότητα. Θα χρησιμοποιήσουμε πού κοντινές συχνότητες μέσα στην ομάδα: Intensity (arbitrary units) δ - Γ. Έηνας, Διάεξη 6, σε. 3 Φάση και Ταχύτητα Ομάδας Για ένα ορισμένο μήκος κύματος, μπορούμε να θερήσουμε ότι το φώς είναι ένα ηεκτρομαγνητικό κύμα του οποίου το ηεκτρικό πεδίο είναι ένα ημιτονοειδές οδεύον κύμα (στην κατεύθυνση + z): E ( z, t) E cos ( z t) () π π v ( f ) T Σταθερά φάσης Γνιακή συχνότητα Ταχύτητα φάσης Γ. Έηνας, Διάεξη 6, σε. 4 Pae 7

8 Φάση και Ταχύτητα Ομάδας Άρα εάν πάρουμε την αποποιημένη περίπτση που υποθέτει ότι η πηγή μας εκπέμπει δύο πού κοντινές συχνότητες και, τα αντίστοιχα κύματα είναι: E E cos ( z ) E E cos ( z t) t Η υπέρθεση (suerosition (addition)) αυτών τν δύο κυμάτν μας δίνει το κύμα: E T [ ( z t) + cos ( z )] E cos t Γ. Έηνας, Διάεξη 6, σε. 5 Φάση και Ταχύτητα Ομάδας Χρησιμοποιώντας τις τριγνομετρικές ισότητες: παίρνουμε: cos α + cos β cos ( α β ) cos ( α + E T E cos cos β ( ) z ( ) ( + ) z ( ) + t t ) () Γ. Έηνας, Διάεξη 6, σε. 6 Pae 8

9 Φάση και Ταχύτητα Ομάδας Θερήστε: E ~ E T E cos cos [ ( ) ( ) ] z t [ ( + ) z ( + ) t] E T [ z t] [ z t] ~ E cos cos (3) Γ. Έηνας, Διάεξη 6, σε. 7 Φάση και Ταχύτητα Ομάδας Εάν οι συχνότητες είναι πού κοντά η μια στην άη τότε: ( + ) ( ) Με άα όγια, >> και μπορούμε να σκεφτόμαστε το ηεκτρικό πεδίο E T που προκύπτει σαν ένα κύμα με διαμόρφση πάτους: E T [ z t] [ z t] ~ E cos cos Περιβάουσα Συχνότητα διαμόρφσης Φέρον Συχνότητα φέρον Γ. Έηνας, Διάεξη 6, σε. 8 Pae 9

10 Φάση και Ταχύτητα Ομάδας Άρα η τυπική μορφή του E T είναι: Normalised field - Time Γ. Έηνας, Διάεξη 6, σε. 9 Φάση και Ταχύτητα Ομάδας E T [ z t] [ z t] ~ E cos cos Περιβάουσα Φέρον Ταχύτητα του «φέρον» είναι: v + + Ταχύτητα φάσης (4) Γ. Έηνας, Διάεξη 6, σε. Pae

11 Φάση και Ταχύτητα Ομάδας E T [ z t] [ z t] ~ E cos cos Περιβάουσα Φέρον Ταχύτητα της περιβάουσας είναι: v d d Ταχύτητα ομάδας(5) Γ. Έηνας, Διάεξη 6, σε. Φάση και Ταχύτητα Ομάδας v Normalised field - Time v Το σήμα διαδίδεται με ταχύτητα ομάδας v. Σημείση: Η περιβάουσα δεν είναι ένα φυσικό αντικείμενο; Αντιπροσπεύει την μέγιστη τιμή του πάτους του κύματος σε κάθε χρονική στιγμή. Γ. Έηνας, Διάεξη 6, σε. Pae

12 Φάση και Ταχύτητα Ομάδας v v Από την (4): Αντικαθιστώντας στην (5): d v d + dv Τώρα, π/, άρα: d (6) d d π v v + d dv d d v v dv d (7) Γ. Έηνας, Διάεξη 6, σε. 3 Φάση και Ταχύτητα Ομάδας Εάν οι ταχύτητες ομάδας και φάσης είναι ίσες, τότε η περιβάουσα θα ταξιδέψει με την ίδια ταχύτητα όπς και το φέρον κύμα, και ς εκ τούτου δεν θα υπάρχει διασπορά. Από την εξίσση (7), αυτό υπονοεί ότι η ταχύτητα φάσης δεν πρέπει να εξαρτάται από το μήκος κύματος εάν θέουμε να πετύχουμε μετάδοση χρίς διασπορά. v v v v no disersion disersion Γ. Έηνας, Διάεξη 6, σε. 4 Pae

13 Σχέση Διασποράς Η γραφική παράσταση μεταξύ και ονομάζεται η σχέση διασποράς. Από την (5), η κίση αυτής της γραφικής παράστασης μας δίνει την ταχύτητα ομάδας: x v x x v d d x x Γ. Έηνας, Διάεξη 6, σε. 5 Κανονική Διασπορά Στην κανονική διασπορά, η ταχύτητα ομάδας είναι μικρότερη από την ταχύτητα φάσης. v v v < v normal disersion Γ. Έηνας, Διάεξη 6, σε. 6 Pae 3

14 Ανώμαη Διασπορά Στην ανώμαη διασπορά, η ταχύτητα ομάδας υπερβαίνει την ταχύτητα φάσης. v v v > v anomalous disersion Γ. Έηνας, Διάεξη 6, σε. 7 Δείκτης Διάθασης Ομάδας Αν μιούμε για οπτικές ίνες, φανταστείτε ότι έχουμε μια ίνα με δ.δ. πυρήνα n. Σε αυτή την περίπτση, c v (8) n Εάν μεταδώσουμε ένα φάσμα από μήκη κύματος, τότε μπορούμε να θερήσουμε την ομάδα που προκύπτει σαν να συναντά ένα δ.δ. ομάδας, ο οποίος ορίζεται ς: d c v (9) d n n c v () Γ. Έηνας, Διάεξη 6, σε. 8 Pae 4

15 Διασπορά Υικού Είδαμε προηγουμένς ότι: Οι οπτικές πηγές έχουν ορισμένο πάτος φάσματος Αυτό μας οδηγεί στον ορισμό της ταχύτητας ομάδας Οδ.δ. μεταβάεται (μη γραμμικά) με το μήκος κύματος Τώρα θα εξετάσουμε πς αυτά τα δύο φαινόμενα συνδυάζονται για να μας δώσουν διασπορά ταχύτητας ομάδας (rou velocity disersion) (διασπορά υικού (material disersion)). Γ. Έηνας, Διάεξη 6, σε. 9 Διασπορά Υικού Προηγουμένς θερήσαμε μόνο δύο, πού κοντινές συχνότητες μέσα στην ομάδα που εκπέμπεται από μια οπτική πηγή (πχ ένα έιζερ): Intensity (arbitrary units) δ - Γ. Έηνας, Διάεξη 6, σε. 3 Pae 5

16 Διασπορά Υικού Δύο κοντινές συχνότητες: φέρον -.5 ( + )/ περιβάουσα ( - )/ Μάθημα HMY 455Συστήματα και Δίκτυα Επικοιννιών -.5 με Οπτικές Ίνες Διαμορφμένη κυματομορφή Γ. Έηνας, Διάεξη 6, σε. 3 Διασπορά Υικού Εάνθερήσουμεόοτοφάσμαπουεκπέμπεταιαπόμιαπηγή, μπορούμε πάι να πάρουμε ένα διαμορφμένο κύμα με μια ταχύτητα ομάδας, κτ, όπς είδαμε και προηγουμένς. Θυμηθείτε τον μετασχηματισμό Fourier: f ( t) j t j t F ( ) e d F ( ) f ( t) e dt Στο χρόνο F() π Στη συχνότητα Σημείση: Το φάσμα της οπτικής πηγής έχει γκαουσιανή μορφή - δ ea frequency + δ Γ. Έηνας, Διάεξη 6, σε. 3 Pae 6

17 Διασπορά Υικού Μπορούμε να σκεφτούμε ότι το F() είναι ίσο με κάποιο φάσμα G() το οποίο έχει το ίδιο σχήμα αά το κέντρο του είναι στο αντί στο : G() F ) G ( ) ( F() - δ δ - δ + δ F ( ) j t f ( t) e dt π G ( ) π π ( t) e j ( ) t j t j t ( t) e e dt dt Γ. Έηνας, Διάεξη 6, σε. 33 Διασπορά Υικού Άρα: Κρουστική απόκρουση του: G() f ( t) ( t) e j t Αντιστοιχεί σε μια ημιτονοειδή καμπύη σε συχνότητα δίνει: (t) Σημείση: Μετασχηματισμός Fourier ενός γκαουσιανού παμού είναι επίσης γκαουσιανής μορφής Γ. Έηνας, Διάεξη 6, σε. 34 Pae 7

18 Διασπορά Υικού Με άα όγια, η κρουστική απόκρουση που σχετίζεται με την οπτική πηγή παίρνει την μορφή ενός διαμορφμένου κυματοπακέτου (modulated waveacet): (t) f (t) Αυτό το κυματοπακέτο αντιπροσπεύει ένα παμό φτός που εκπέμπεται από την πηγή, και περιέχει ένα αριθμό από συχνότητες (μήκη κύματος). Τώρα πρέπει να εξετάσουμε τι θα συμβεί στην ταχύτητα ομάδας αυτού του παμού καθώς διαδίδεται μέσα στην οπτική ίνα. t Γ. Έηνας, Διάεξη 6, σε. 35 Διασπορά Υικού Θερήστε ότι ένας οπτικός παμός μπαίνει μέσα σε μια μονότροπη οπτική ίνα. Λόγ του πάτους φάσματος της πηγής, αυτός ο παμός αποτεείται από μια ομάδα από μήκη κύματος τα οποία ταξιδεύουν με ταχύτητα ομάδας: Οπτική ισχύς v d d Μήκος κύματος απόσταση Γ. Έηνας, Διάεξη 6, σε. 36 Pae 8

19 Διασπορά Υικού Άρα ο χρόνος που χρειάζεται η κυματοομάδα να ταξιδέψει απόσταση L μέσα στην ίνα δίδεται από την καθυστέρηση ομάδας τ : L d τ L () v d Η ταχύτητα φάσης του κεντρικού μήκους κύματος δίδεται από: v c n Αντικαθιστώντας την () στην (): τ d L n c () dn n + d c d (3) Γ. Έηνας, Διάεξη 6, σε. 37 Διασπορά Υικού Ηεξίσση(3) δείχνει ότι η καθυστέρηση ομάδας ανά μονάδα μήκους εξαρτάται από το n και το dn/d. Εξαρτάται επίσης από την συχνότητα. Προτιμούμε όμς να δουεύουμε με το μήκος κύματος : n n Αντί από... Γ. Έηνας, Διάεξη 6, σε. 38 Pae 9

20 Διασπορά Υικού Λόγ της αντίστροφης σχέσης μεταξύ της συχνότητας και του μήκους κύματος (c f /π), θα περιμέναμε ότι: τ L n c dn + d c n dn d Ας αποδείξουμε αυτή τη σχέση... Γ. Έηνας, Διάεξη 6, σε. 39 Διασπορά Υικού Από την (): n π n πf c T c n f Άρα: π n (4) Από την (4) και (): n c πc (5) Γ. Έηνας, Διάεξη 6, σε. 4 Pae

21 Διασπορά Υικού Τώρα, από την (3), ηκαθυστέρησηομάδαςανάμονάδα μήκους μπορεί να εκφραστεί και ς: τ dn dn d (6) L n c + d Παίρνοντας την παράγγο της (5) ς προς το : n c πc d πc d τ L n c + d d dn d (7) Γ. Έηνας, Διάεξη 6, σε. 4 Διασπορά Υικού Προηγουμένς ορίσαμε τον δείκτη διάθασης ομάδας: n c/v τ dn n c n (7) L d Τώρα, ξέροντας ότι το n μεταβάεται με το μήκος κύματος: dn d n n v v disersion Το n θα είναι επίσης εξαρτώμενο από το μήκος κύματος και η κίση στην καμπύη n vs. μήκος κύματος είναι: dn d n (8) d d Γ. Έηνας, Διάεξη 6, σε. 4 Pae

22 Εξάρτηση του n και n στο μήκος κύματος για διοξείδιο του πυριτίου Στα.3 μm, το n έχει σημείο καμπής (oint of inflection), το n έχει εάχιστη τιμή (minimum), και η ταχύτητα ομάδας είναι άρα μέγιστη (maximum). Γ. Έηνας, Διάεξη 6, σε. 43 Διασπορά Υικού n dn d d n d n.3 μm Εάχιστη τιμή, δηαδή dn d Σημείο καμπής, δηαδή d n d Γ. Έηνας, Διάεξη 6, σε. 44 Pae

23 Διασπορά Ταχύτητας Ομάδας (GVD) Ξέρουμε ότι: Μια οπτική πηγή εκπέμπει ένα φάσμα από μήκη κύματος με κεντρικό μήκος κύματος το. Αυτό μπορούμε να το αντιπροσπεύσουμε με ένα κυματοπακέτο (waveacet) το οποίο ταξιδεύει με ταχύτητα ομάδας και «βέπει» ένα δείκτη διάθασης ομάδας n. Το n και συνεπώς η ταχύτητα ομάδας v και η καθυστέρηση ομάδας τ είναι όαεξαρτώμενααπότομήκοςκύματος. Κάθε διαφορετικό μήκος κύματος που εκπέμπεται από την πηγή ταξιδεύει με διαφορετική ταχύτητα ομάδας και αυτή η διασπορά ταχύτητας ομάδας (GVD) είναι η αιτία της διασποράς υικού. Γ. Έηνας, Διάεξη 6, σε. 45 Διαφορά καθυστέρησης (ανά μονάδα μήκους) για ένα μήκος κύματος δ μακριά από το κεντρικό μήκος κύματος τ τ ( ) L L δ τ n τ ( + δ ) c δ L Εάν η διαφορά στα μήκη κύματος είναι αρκετά μικρή, μπορούμε να αγνοήσουμε τους όρους δεύτερης τάξης στην ανάπτυξη της σειράς Taylor για να πάρουμε: ( τ + δ + δ ) τ ( ) δ dτ L L d (9) Γ. Έηνας, Διάεξη 6, σε. 46 Pae 3

24 Διασπορά Υικού Από την (7): δτ L δ τ L L dτ d dn n c d δτ d n () L δ c d Η διαφορά καθυστέρησης (ανά μονάδα μήκους) για ένα μήκος κύματος δ μακριά από το κεντρικό μήκος κύματος Διασπορά Υικού D mat Μονάδες: s/(nm.m) Γ. Έηνας, Διάεξη 6, σε. 47 Διασπορά Υικού D mat d n c d Γ. Έηνας, Διάεξη 6, σε. 48 Pae 4

25 Διασπορά Υικού D mat d n c d Το πρόσημο του D mat δεν παίζει ρόο. Απώς εκφράζει ποια μήκη κύματος είναι πιο γρήγορα από τα άα. Τα περισσότερα βιβία σχεδιάζουν την καμπύη - D mat με το μήκος κύματος και αναφέρονται στο D mat σαν την διασπορά υικού (όπς στην επόμενη διαφάνεια). Για μια πηγή με ενεργό τιμή του πάτους φάσματος σ, η αντίστοιχη ενεργός τιμή του διασκορπισμού του παμού μετά από μήκος L μέσα στην ίνα δίδεται από: σ mat D mat σ L () Διασκορπισμός στον χρόνο Διασκορπισμός στα μήκη κύματος Γ. Έηνας, Διάεξη 6, σε. 49 Διασπορά Υικού Αν και το D mat είναι στα.3 μm, πρέπει να αναφερόμαστε σε αυτό σαν το μήκος κύματος με εάχιστη διασπορά και όχι μηδενική διασπορά. Γιατί? Γ. Έηνας, Διάεξη 6, σε. 5 Pae 5

26 Προσέγγιση LP όπου x ρ w iβ z E Ae e A w β Πάτος Εύρος δέσμης Σταθερά διάδοσης Γ. Έηνας, Διάεξη 6, σε. 5 Σταθερά διάδοσης Η σταθερά διάδοσης εξαρτάται από τη συχνότητα. Με ανάπτυγμα σε σειρά Taylor βn n β ( ) (7) n n! n d β βn (8) n d Γ. Έηνας, Διάεξη 6, σε. 5 Pae 6

27 Διάδοση παμού Ένας παμός δημιουργείται στην είσοδο της ίνας E z E e β x x π E ( t,) f( t) (9) x Το φάσμα του παμού βρίσκεται με μετασχηματισμό Fourier it Ex(,) Ex( t,) e dt () Η διάδοση μιας συχνότητας περιγράφεται από τη σχέση i ( ) z x(, ) x(,) () Μετά τη διάδοση, το ΗΠ στο σημείο z βρίσκεται με αντίστροφο μετασχηματισμό Fourier it E ( t, z) E (, z) e d () Γ. Έηνας, Διάεξη 6, σε. 53 Προσέγγιση ης τάξης Κρατώ τους δύο πρώτους όρους της σειράς Taylor β ( ) β + β (3) (),(3) (9) iβz i( t βz) iβz Ex t z e Ex e d f t βz e π () (, ) (,) ( ) Χρόνος διάδοσης παμού L τ υ (4) όπου όρισα την ταχύτητα ομάδας υ β (5) Γ. Έηνας, Διάεξη 6, σε. 54 Pae 7

28 Διαφορική καθυστέρηση Ι Για παμό εύρους ζώνης Δ (4) (5) (8) dτ d L dβ Δ τ Δ Δ L Δ Lβ Δ (6) d d υ d όπου το β ονομάζεται παράμετρος διασποράς της ταχύτητας ομάδας Γ. Έηνας, Διάεξη 6, σε. 55 Διαφορική καθυστέρηση ΙΙ Εναακτική έκφραση, για εύρος ζώνης εκφρασμένο σε μ.κ. Δ (4) dτ d Δ τ Δ LΔ DLΔ d d υ (7) όπου όρισα την παράμετρο διασποράς d D d υ (8) Γ. Έηνας, Διάεξη 6, σε. 56 Pae 8

29 Σύνδεση D, β d dβ dβ d D d υ d d d (5) (8) (9 ) a π c d πc d (9 b) (9 c) (9 b ),(9 c ) π c (9 a) D β (3) Γ. Έηνας, Διάεξη 6, σε. 57 Μέγιστη επιτρεπτή διαφορική καθυστέρηση (5),(7) (4) Δτ T R DLΔ (3) b b Γ. Έηνας, Διάεξη 6, σε. 58 Pae 9

30 Αριθμητικό παράδειγμα Αριθμητικά δεδομένα Λύση (πούτροπο laser) ( μ ) D Δ 4 nm RL b s.3 m nm m Gb DΔ 5 m s δη. ένα σήμα.5 Gb/s πάει << m. Γ. Έηνας, Διάεξη 6, σε. 59 Μηχανισμοί χρματικής διασποράς Παράμετρος χρματικής διασποράς : D D + D M W (3) D D M W Διασπορά υικού Διασπορά κυματοδηγού Τα D, D έχουν αντίθετα πρόσημα και μηδενίζονται για.3 μm M W ZD Γ. Έηνας, Διάεξη 6, σε. 6 Pae 3

31 Βετίση χρματικής διασποράς Γ. Έηνας, Διάεξη 6, σε. 6 Συμπεράσματα Οι μονότροπες οπτικές ίνες επιτρέπουν τη μετάδοση σημάτν με ψηούς ρυθμούς μετάδοσης σε μεγάες αποστάσεις Η εξασθένιση κι η χρματική διασπορά θέτουν άν όρια στο ρυθμό σηματοδοσίας και την απόσταση μετάδοσης Οπτικοί ενισχυτές, ίνες με μικρή χρματική διασπορά κι εξιστές διασποράς χρησιμοποιούνται για την καταποέμηση τν παραπάν Γ. Έηνας, Διάεξη 6, σε. 6 Pae 3

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνοογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πηροφορικής & Επικοινωνιών Δίκτυα Τηεπικοινωνιών και Μετάδοσης Ίνες βηματικού δείκτη (step index fibres) Ίνα βηματικού δείκτη: απότομη (βηματική) μεταβοή του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 1. Ένα αυτοκίνητο κινείται με κατεύθυνση από το Νότο προς το Βορρά. Κάποια στιγμή ο οδηγός αντιαμβάνεται ένα εμπόδιο και φρενἀρει. Εάν το αυτοκίνητο διαθέτει Α.Β.S.,

Διαβάστε περισσότερα

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του

Διαβάστε περισσότερα

Εξαιτίας της συμβολής δύο κυμάτων του ίδιου πλάτους και της ίδιας συχνότητας. που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό ελαστικό μέσο

Εξαιτίας της συμβολής δύο κυμάτων του ίδιου πλάτους και της ίδιας συχνότητας. που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό ελαστικό μέσο ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Τι ονομάζουμε στάσιμο κύμα f()=0.5sin() Εξαιτίας της συμβοής δύο κυμάτων του ίδιου πάτους και της ίδιας συχνότητας που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό εαστικό μέσο με αντίθετη φορά,

Διαβάστε περισσότερα

θ r θ i n 2 HMY 333 Φωτονική Διάλεξη 03 - Γεωμετρική Οπτική& Οπτικές Ίνες Εφαρμογή της γεωμετρικής οπτικής στις οπτικές ίνες

θ r θ i n 2 HMY 333 Φωτονική Διάλεξη 03 - Γεωμετρική Οπτική& Οπτικές Ίνες Εφαρμογή της γεωμετρικής οπτικής στις οπτικές ίνες Uiversiy of Cyprus Πανεπιστήµιο Κύπρου Uiversiy of Cyprus Πανεπιστήµιο Κύπρου Εάν το μήκος κύματος του φωτός είναι μικρό σχετικά με το αντικείμενο μέσω του οποίου διαδίδεται, μπορούμε να αντιπροσωπεύσουμε

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ α. Τι ονοµάζουµε διασπορά οπτικού παλµού σε µια οπτική ίνα; Ποια φαινόµενα παρατηρούνται λόγω διασποράς; (Αναφερθείτε σε

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 8 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία

Διαβάστε περισσότερα

γ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος.

γ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος. ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ ΚΥΜΑΤΑ Ερωτήσεις ποαπής επιογής Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις ποαπής επιογής αρκεί να γράψετε στο φύο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν το γράμμα

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπα το γράμμα που αντιστοιχεί στη φράση η οποία συμπηρώνει σωστά

Διαβάστε περισσότερα

Περιεχόμενα διάλεξης

Περιεχόμενα διάλεξης 7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια

Διαβάστε περισσότερα

ΟΝΟΜΑ * A * HM/NIA ΤΕΣΤ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΗ ΦΩΤΟΣ ΔΙΑΔΟΣΗ ΤΟΥ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ

ΟΝΟΜΑ * A * HM/NIA ΤΕΣΤ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΗ ΦΩΤΟΣ ΔΙΑΔΟΣΗ ΤΟΥ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ ΟΝΟΜΑ * A * HM/NIA ΤΕΣΤ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΗ ΦΩΤΟΣ ΔΙΑΔΟΣΗ ΤΟΥ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ Κυκώστε τις σωστές απαντήσεις στις παρακάτω ερωτήσεις ποαπής επιογής (6Χ2 = 12 μονάδες): 1) Ποια από

Διαβάστε περισσότερα

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις.

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις. 6 Κύµατα 6.1 Ορισµός του κύµατος Κύµα ονοµάζεται η διάδοση µιας διαταραχής που µεταφέρει ενέργεια και ορµή µε στα- ϑερή ταχύτητα. Εαστικό µέσο ονοµάζεται κάθε υικό µέσο που, για όγους απότητας, δεχόµαστε

Διαβάστε περισσότερα

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2001 Τρίτη, 12 Ιουνίου 2001 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2001 Τρίτη, 12 Ιουνίου 2001 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Τρίτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

4. Όρια ανάλυσης οπτικών οργάνων

4. Όρια ανάλυσης οπτικών οργάνων 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών

Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών www.telecom.ntua.gr/photonics Ηρακλής Αβραμόπουλος Photonics Communications Research

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ/ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 30/09/12 ΛΥΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ/ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 30/09/12 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ/ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 30/09/ ΘΕΜΑ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας το αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4

Διαβάστε περισσότερα

6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου

6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου 6.8 Συµβοή Κυµάτων Οταν δύο ή περισσότερα κύµατα διαδίδονται ταυτόχρονα στο ίδιο εαστικό µέσο έµε ότι συµβάουν. Εχει διαπιστωθεί ότι για την κίνηση των σωµατιδίων του µέσου τα κύµατα ακοουθούν την αρχή

Διαβάστε περισσότερα

ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK

ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK To 1900 o Plank εισήγαγε την υπόθεση ότι το φως εκπέμπεται από την ύη με τη μορφή κβάντων ενέργειας hν. Το 190 ο Einstein επέκτεινε αυτή την ιδέα προτείνοντας

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Πέµπτη, 22 Μαΐου 2008 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ

Πέµπτη, 22 Μαΐου 2008 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Πέµπτη, Μαΐου Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα, που αντιστοιχεί στη σωστ απάντηση.. Ακτίνα

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

1... Για τη δημιουργία ενός μηχανικού κύματος απαιτείται μόνο η πηγή της διαταραχής. 2... Τα διαμήκη κύματα διαδίδονται μόνο στα στερεά σώματα.

1... Για τη δημιουργία ενός μηχανικού κύματος απαιτείται μόνο η πηγή της διαταραχής. 2... Τα διαμήκη κύματα διαδίδονται μόνο στα στερεά σώματα. 1... Για τη δημιουργία ενός μηχανικού κύματος απαιτείται μόνο η πηγή της διαταραχής.... Τα διαμήκη κύματα διαδίδονται μόνο στα στερεά σώματα. 3... Τα σημεία ενός κύματος που παρουσιάζουν μεταξύ τους διαφορά

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ Όπως είναι ήδη γνωστό, ένα σύστημα επικοινωνίας περιλαμβάνει τον πομπό, το δέκτη και το κανάλι επικοινωνίας. Στην ενότητα αυτή, θα εξετάσουμε τη δομή και τα χαρακτηριστικά

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΘΕΜΑ Α Στις ερωτήσεις Α-Α3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπα το γράμμα που αντιστοιχεί στη φράση, η οποία συμπηρώνει σωστά την

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών

Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ - διαφάνεια 1 - Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών ιαµορφωτής Ηλεκτρικό Σήµα Ποµπός Οπτικό Σήµα Οπτική Ίνα διαµορφωτής: διαµορφώνει τη φέρουσα συχνότητα

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ ΚΑΙ ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΑ Η διάδοση μιας διαταραχής μέσα σ' ένα μέσο ονομάζεται κύμα. Για τη δημιοργία ενός μηχανικού κύματος

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η ιδάσκουσα: Παντάνο Ρόκου Φράνκα Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8 η : Το Φυσικό Επίπεδο Το Φυσικό Επίπεδο ιάδοση Σήµατος Ηλεκτροµαγνητικά Κύµατα Οπτικές Ίνες Γραµµές

Διαβάστε περισσότερα

Τα χαρακτηριστικά του κύματος

Τα χαρακτηριστικά του κύματος Τα χαρακτηριστικά του κύματος 1. Στην ήρεμη επιφάνεια μιας δεξαμενής με νερό αφήνουμε να πέφτουν μικρές σταγόνες νερού (από κάποια βρύση) με ρυθμό 4 σταγόνες το επτό. Αν η οριζόντια απόσταση δύο διαδοχικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5 ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 29 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) Για τις ημιτελείς

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz 1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Κλάδος: ΗΛΕΚΤΡΟΛΟΓΙΑ Μάθημα: ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Τάξη: A Τμήμα:

Διαβάστε περισσότερα

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β) Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από

Διαβάστε περισσότερα

Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής

Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής 2 η ΕΡΓΑΣΙΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Διδάσκων: Δρ. Βασίλης Κώτσος Λαμία 2013 Περιεχόμενα 1. Οπτική πηγή 1.1 Χαρακτηριστικές καμπύλες

Διαβάστε περισσότερα

, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998!

, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998! Η Κατανομή Poisso Ας δούμε ένα πρόβημα: Σε μια κτηνοτροφική περιοχή υπάρχουν 3 αιγοπρόβατα. Κάθε χρόνο όα τα αιγοπρόβατα εμβοιάζονται για προστασία από κάποια ασθένεια. Σύμφωνα με την άδεια χρήσης του

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I 6. Το Υπόδειγμα τν Επικαλυπτόμενν Γενεών: Ανταλλαγή I 6.. Ερτήσεις Σχολιάστε την εγκυρότητα τν παρακάτ προτάσεν. Αν πιστεύετε ότι μια πρόταση είναι σστή κάτ από ορισμένες προϋποθέσεις τότε να αναφέρετε

Διαβάστε περισσότερα

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ 1 ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 20 ΔΕΚΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) Α) Για κάθε μία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Στις ερωτήσεις -4 να γράψετε στ τετράδιό σας τν αριθµό της ερώτησης και δίπα τ γράµµα, πυ αντιστιχεί στη σωστή απάντηση.. Ακτίνα πράσινυ φωτός πρερχόµενη

Διαβάστε περισσότερα

Εισαγωγή Στοιχεία Θεωρίας

Εισαγωγή Στοιχεία Θεωρίας Εισαγωγή Σκοπός της άσκησης αυτής είναι η εισαγωγή στην τεχνογνωσία των οπτικών ινών και η μελέτη τους κατά τη διάδοση μιας δέσμης laser. Συγκεκριμένα μελετάται η εξασθένιση που υφίσταται το σήμα στην

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ

ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ ΔΙΑΔΟΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΤΥΠΟΛΟΓΙΟ ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ ΒΑΣΙΚΑ ΜΕΓΕΘΗ ΓΕΝΙΚΕΣ ΣΧΕΣΕΙΣ Φασική ταχύτητα διάδοσης των Η/Μ κυμάτων στο μέσο διάδοσης c [m s - ] Για τον αέρα: c 0 8 m s - Συχνότητα

Διαβάστε περισσότερα

5. Αυτεπαγωγή-Χωρητικότητα Inductance Capacitance

5. Αυτεπαγωγή-Χωρητικότητα Inductance Capacitance 5. Αυτεπαγγή-Χρητικότητα nucance Capaciance Εδώ εισάγουµε τα δύο τελευταία στοιχεία κυκλµάτν, τα πηνία και τους πυκντές. Οι τεχνικές ανάλυσης κυκλµάτν που εισήχθικαν νρίτερα ακόµα ισχύουν εδώ. Ένα πηνίο

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

2.1. Τρέχοντα Κύματα.

2.1. Τρέχοντα Κύματα. 2.1. Τρέχοντα Κύματα. 2.1.1. Στιγμιότυπο κύματος Στη θέση x=0 ενός γραμμικού ομογενούς ελαστικού μέσου υπάρχει πηγή κύματος η οποία αρχίζει να ταλαντώνεται σύμφωνα με την εξίσωση y= 0,2ημπt (μονάδες στο

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42

Διαβάστε περισσότερα

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 10 Μετάδοση και Αποδιαμόρφωση Ραδιοφωνικών Σημάτων Λευκωσία, 2010 Εργαστήριο 10

Διαβάστε περισσότερα

ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σπύρος Ρήγας - Φυσική Λυκείου - Ιούλιος 04 ΛΥΣΕΙΣ ου ΚΡΙΤΗΡΙΟΥ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο (δ) (γ) 3 (α) 4 (γ) 5 α (Σ), β (Λ), γ (Σ),

Διαβάστε περισσότερα

Η Φύση του Φωτός. Τα Δ Θεματα της τράπεζας θεμάτων

Η Φύση του Φωτός. Τα Δ Θεματα της τράπεζας θεμάτων Η Φύση του Φωτός Τα Δ Θεματα της τράπεζας θεμάτων Η ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ Θέμα Δ 4_2153 Δύο μονοχρωματικές ακτινοβολίες (1) και (2), που αρχικά διαδίδονται στο κενό με μήκη κύματος λ ο1 = 4 nm και λ ο2 = 6 nm

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα»

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ Δίκτυα Υπολογιστών Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» Φυσικό στρώμα: Προσδιορίζει τις φυσικές διεπαφές των συσκευών Μηχανικό Ηλεκτρικό Λειτουργικό Διαδικαστικό

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike Πολυπλεξία Ανάλυση σημάτων στο πεδίο χρόνου, συχνότητας, πολυπλεξία διαίρεσης συχνότητας, πολυπλεξία διαίρεσης χρόνου (1.6 ενότητα σελ 19-20, 29-30 και στοιχεία από 2.1 ενότητα σελ. 52-58). http://diktya-epal-b.ggia.info

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Στις

Διαβάστε περισσότερα

Πτυχιακή Εργασία. Αισθητήρες Οπτικών Ινών ΟΝΟΜΑ ΣΠΟΥΔΑΣΤΗ: ΛΙΓΚΑΝΑΡΗ ΔΗΜΗΤΡΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΛΑΜΠΡΟΥ ΚΩΝΣΤΑΝΤΙΝΟΣ

Πτυχιακή Εργασία. Αισθητήρες Οπτικών Ινών ΟΝΟΜΑ ΣΠΟΥΔΑΣΤΗ: ΛΙΓΚΑΝΑΡΗ ΔΗΜΗΤΡΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΛΑΜΠΡΟΥ ΚΩΝΣΤΑΝΤΙΝΟΣ Πτυχιακή Εργασία Αισθητήρες Οπτικών Ινών ΟΝΟΜΑ ΣΠΟΥΔΑΣΤΗ: ΛΙΓΚΑΝΑΡΗ ΔΗΜΗΤΡΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΛΑΜΠΡΟΥ ΚΩΝΣΤΑΝΤΙΝΟΣ Ιστορική Αναδρομή Η εξέλιξη των οπτικών συστημάτων εμφανίζεται σε πέντε γενιές Στις

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το ασύρματο

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

Ακτινοβολία µικρού µήκους κύµατος

Ακτινοβολία µικρού µήκους κύµατος Ακτινοβοία µικρού µήκους κύµατος 1 Ακτινοβοία µικρού µήκους κύµατος 1.1.Γενικά Ο Ήιος είναι µια γιγαντιαία µηχανή θερµοπυρηνικής σχάσης. Κάτω από συνθήκες πού υψηών πιέσεων και θερµοκρασιών στο εσωτερικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό

Διαβάστε περισσότερα

Πώς γίνεται η µετάδοση των δεδοµένων µέσω οπτικών ινών:

Πώς γίνεται η µετάδοση των δεδοµένων µέσω οπτικών ινών: 1 ΔΟΜΗ ΟΠΤΙΚΗΣ ΙΝΑΣ Κάθε οπτική ίνα αποτελείται από τρία μέρη: Την κεντρική γυάλινη κυλινδρική ίνα, που ονομάζεται πυρήνας(core core) και είναι το τμήμα στο οποίο διαδίδεται το φως. Την επικάλυψη (απλή

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 0 ΜΑΪΟΥ 013 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΑ. Τέλος όταν τα κύματα 'χτυπήσουν' την κεραία λήψης, το σήμα λαμβάνεται και έπειτα αποκωδικοποιείται πίσω στην αρχική μορφή δεδομένων

ΛΕΙΤΟΥΡΓΙΑ. Τέλος όταν τα κύματα 'χτυπήσουν' την κεραία λήψης, το σήμα λαμβάνεται και έπειτα αποκωδικοποιείται πίσω στην αρχική μορφή δεδομένων ΠΟΜΠΟΣ Στις τηλεπικοινωνίες ένας πομπός είναι μια ηλεκτρονική συσκευή η οποία, με τη βοήθεια μιας κεραίας, παράγει και εκπέμπει ραδιοκύματα, με απώτερο σκοπό την, αργότερα, λήψη τους από κάποιο δέκτη.

Διαβάστε περισσότερα

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: 39th Iteratioal Physis Olympiad - Haoi - Vietam - 008 Theoretial Problem No. Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Θεωρητική Μάθημα: Τεχνολ.& Εργ. Ηλεκτρονικών Τάξη: Β Αρ. Μαθητών: 8 Κλάδος: Ηλεκτρολογία

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ

ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ «Ίσως το φως θα ναι μια νέα τυραννία. Ποιος ξέρει τι καινούρια πράγματα θα δείξει.» Κ.Π.Καβάφης ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ LASER Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 7 ΙΟΥΛΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-5 να

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Μονοχρωματική

Διαβάστε περισσότερα

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή: 54 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 2014 ΘΕΜΑ Α Α1. Πράσινο και κίτρινο φως

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φυσική των Laser ΔΙΑΔΟΣΗ ΗΜ ΚΥΜΑΤΩΝ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ. Διδάσκων : Επίκ. Καθ. Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φυσική των Laser ΔΙΑΔΟΣΗ ΗΜ ΚΥΜΑΤΩΝ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ. Διδάσκων : Επίκ. Καθ. Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Φυσική των Laser ΔΙΑΔΟΣΗ ΗΜ ΚΥΜΑΤΩΝ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύματα. Ομάδα Δ.

2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 1: Εισαγωγή στη διαμόρφωση πλάτους (ΑΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ.

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2.21. σε γραμμικό ελαστικό μέσο. Δύο σύγχρονες πηγές Ο 1 και Ο 2 παράγουν αρμονικά κύματα που διαδίδονται με ταχύτητα υ=2m/s κατά μήκος ενός γραμμικού ελαστικού

Διαβάστε περισσότερα

Ανεμογενείς Κυματισμοί

Ανεμογενείς Κυματισμοί Ανεμογενείς Κυματισμοί Γένεση Ανεμογενών Κυματισμών: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. Η ενέργεια αρχικά περνά από την ατμόσφαιρα στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα