Εφαρµογές στη δυναµική του κέντρου µάζας στερεού σώµατος

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρµογές στη δυναµική του κέντρου µάζας στερεού σώµατος"

Transcript

1 Εφαρµογές στη δυναµική του κέντρου µάζας στρού σώµατος Εφαρµογή 1η Οµογνής δίσκος ακτίνας R ηρµί στην άκρη οριζόντιου τραπζιού µ το κέντρο του Κ να βρίσκται στην κατακόρυφη που διέρχται από την ία Ο του τραπζιού. ίνουµ στο δίσκο µια αµλητέα αρχική ταχύτητα και αυτός αρχίζι να στρέφται πρί το Ο χωρίς να ολισθαίνι. Να υπολογίστ: α. τη ία κατά την οποία έχι στραφί ο δίσκος µέχρι τη στιγµή που γκαταλίπι το τραπέζι β. τη ιακή ταχύτητα, την κντροµόλο πιτάχυνση και την πιτρόχιο πιτάχυνση του κέντρου µάζας του δίσκου και την ιακή πιτάχυνση του δίσκου, αµέσως µτά την γκατάλιψη του τραπζιού. Να θωρήστ αµλητέα την αντίσταση του αέρα. ίνονται η ακτίνα του δίσκου R και η πιτάχυνση της βαρύτητας g. ίνται η ροπή αδράνιας του δίσκου ως ος άξονα που διέρχται από το κέντρο µάζας του 1 και ίναι κάθτος σ αυτόν Ι = mr. Εφαρµογή η Η οµογνής ράβδος µήκους L του σχήµατος ίναι τοποθτηµένη πάνω σ L τραπέζι έτσι ώστ, το κέντρο µάζας της Κ O να απέχι από το άκρο Ο του τραπζιού d L/ απόσταση d. Η ράβδος συγκρατίται σ οριζόντια θέση και κάποια στιγµή αφήνται λύθρη οπότ αρχίζι να στρέφται γύρω από την άκρη Ο του τραπζιού. Αν ο συντλστής οριακής στατικής τριβής µταξύ της ράβδου και του άκρου Ο του τραπζιού ίναι µ στ,ορ =µ, να βρθί η ία που σχηµατίζι η ράβδος µ την αρχική οριζόντια διύθυνσή της, όταν αρχίζι να ολισθαίνι. Να θωρήστ αµλητέα την αντίσταση του αέρα. ίνται η ροπή αδράνιας της ράβδου ως ος άξονα που 1 διέρχται από το κέντρο µάζας της και ίναι κάθτος σ αυτήν Ι = ml. 1 Εφαρµογή 3 η Το τριικό ίσµα ΑΒ ίας ˆΒ = και µάζας m έχι τοποθτηθί πάνω σ λίο οριζόντιο δάπδο και ο οµογνής Α m R κύλινδρος µάζας m και ακτίνας R κυλίται ος τα κάτω κατά µήκος της έδρας ΑΒ του ίσµατος. m α. Να οσδιορίστ την κατύθυνση κίνησης του ίσµατος ως ος το δάπδο. Β (Το πόµνο ρώτηµα απυθύνται ος τους διδάσκοντς) β. Να υπολογίστ την πιτάχυνση του ίσµατος. Να θωρήστ αµλητέα την αντίσταση του αέρα. ίνονται η πιτάχυνση της βαρύτητας g και η ροπή αδράνιας του δίσκου ως ος άξονα που διέρχται από το κέντρο µάζας του και ίναι κάθτος σ αυτόν 1 Ι = mr. R O 1

2 Εφαρµογή 1η α. Ο δίσκος µέχρι να γκαταλίψι το τραπέζι στρέφται γύρω από οριζόντιο άξονα που διέρχται από το Ο. Από τον ορισµό του κέντρου µάζας και για την κυκλική κίνηση ακτίνας R που αυτό κτλί γύρω από το Ο έχουµ: Στη διύθυνση της ακτίνας ΟΚ: mυ συνθ ˆ Ν = R ˆ mgσυνθ Ν = mω R. Απαντήσις R-Rσυνθ Τη χρονική στιγµή που ο δίσκος χάνι την παφή του µ το τραπέζι, Ν=0 και ω R= gσυνθ (1) Στη διύθυνση της φαπτοµένης στο σηµίο Κ της κυκλικής τροχιάς που διαγράφι το κέντρο µάζας Κ: ηµθ ˆ = mα ˆ ˆ mgηµθ = mα α = gηµθ () Στο δίσκο ασκούνται η συντηρητική δύναµη του βάρους και η δύναµη Ν από το τραπέζι που έχι διαρκώς τη διύθυνση της ακτίνας ΚΟ και δν µτατοπίζι το σηµίο φαρµογής της, άρα η µηχανική του νέργια διατηρίται. Αν θωρήσουµ ότι η δυναµική νέργια του δίσκου ίναι µηδέν, όταν το κέντρο µάζας Κ βρίσκται στο οριζόντιο πίπδο στη θέση γκατάλιψης του τραπζιού (ΙΙ): (Θ.Steiner) E M(I) = E M(II) mg(r Rσυνθ) ˆ = 1 Ι ˆ 1 1 ( Ο) ω mgr(1 συνθ) = ( mr + mr )ω 3 4 Rg(1 συνθ) ˆ = R ω ω R = g(1 συνθ) ˆ (3) 4 3 Από (1) και (3): gσυνθ= ˆ 4 g(1 συνθ) ˆ 4 3συνθˆ = 4 4συνθˆ συνθˆ = g g β. Από (3) και : ω R = g(1 ) ω = ω= R 7R (3) 4g a κ = ω R aκ =. 7 R N θ O θ συνθ ˆ U β =0 ηµθ (Ι) (ΙΙ) ηµθ= 1 συν θ ηµθ= 1 ηµθ= ηµθ= (5) Από () και (5): α = g Ο δίσκος µτά την γκατάλιψη του τραπζιού κτλί σύνθτη κίνηση. Οι οηγούµνς τιµές των a κ και α σχτίζονται µ την καµπυλόγραµµη µταφορική που κτλί ο δίσκος ο οποίος ταυτόχρονα θα στρέφται µ g σταθρή ιακή ταχύτητα ω= καθόσον Στ (κ) =0 και α =0. 7 R

3 Εφαρµογή η Η ράβδος στρέφται γύρω από οριζόντιο άξονα που διέρχται από το Ο κατά ία Τ στ,ορ Ν ˆθµέχρι να αρχίσι η ολίσθησή της. Από (I) τον ορισµό του κέντρου µάζας και για την ˆθ O d dηµθ κυκλική κίνηση ακτίνας d που αυτό ˆθ (II) Σ x κτλί γύρω από το Ο έχουµ, ˆθ στη διύθυνση της ακτίνας ΟΚ: y Τστ,ορ x = maκ, ˆ µν mgηµθ = mω d (1), στη διύθυνση της φαπτοµένης στο σηµίο Κ της κυκλικής τροχιάς που διαγράφι το κέντρο µάζας Κ: N = ma mgσυνθˆ N = ma mgσυνθˆ N = mα d () y Όπου, a κ, = η κντροµόλος πιτάχυνση του κέντρου µάζας Κ της ράβδου, a = η πιτρόχιος πιτάχυνση του κέντρου µάζας της ράβδου και α = η ιακή πιτάχυνση της ράβδου. Από τον θµλιώδη νόµο της στροφικής κίνησης έχουµ: (Θ.Steiner) 1 1gdσυνθˆ Στ(ο) = Ι(ο) α ˆ mgdσυνθ = ( ml + md ) α ˆ α = (3) ( ΚΣ ) = dσυνθ 1 L + 1d Μέχρι να αρχίσι η ολίσθηση της ράβδου σ αυτήν ασκούνται η συντηρητική δύναµη του βάρους, η στατική τριβή Τ στ η οποία δν µτατοπίζι το σηµίο φαρµογής της και η δύναµη Ν από το τραπέζι που έχι διαρκώς τη διύθυνση της ακτίνας ΟΚ και δν κτλί έργο, άρα η µηχανική νέργια της ράβδου µέχρι αυτή να αρχίσι την ολίσθησή της διατηρίται. Αν θωρήσουµ ότι η δυναµική νέργια της ράβδου ίναι µηδέν, όταν το κέντρο µάζας Κ βρίσκται στο οριζόντιο πίπδο στη θέση γκατάλιψης του τραπζιού (ΙΙ): 1 1 4gdηµθˆ E M(I) = E M(II) mgdηµθ ˆ = ( ml + md ) ω ω = 1 L + 1d 4gdηµθˆ mgηµθˆ md 4gdηµθˆ Από (1) και : µν mgηµθ ˆ = md Ν = + ( ) (5) L + 1d µ µ L + 1d Από () και (5): mgηµθˆ md 4gdηµθˆ gσυνθˆ gηµθˆ 1 4gdηµθˆ mgσυνθ ˆ ( ) = mα d α = ( ) (6) µ µ L + 1d d µd µ L + 1d Από (3) και (6): 1gdσυνθˆ gσυνθˆ gηµθˆ 1 4gdηµθˆ 4d 1 1 1d = ( ) ηµθ ˆ = συνθˆ + ( ) L + 1d d µd µ L + 1d µ(l + 1d ) µd d L + 1d 1 1d L + 1d 1d ˆ d L 1d ˆ d(l + 1d ) µl φθ = + φθ = φθ ˆ =. 4d 1 4d L 1d L 36d µ(l + 1d ) µd µd(l + 1d ) Παρατήρηση Από την τλυταία σχέση οκύπτι ότι αν d=0, δηλαδή το κέντρο µάζας της ράβδου βρίσκται στην άκρη Ο του τραπζιού, τότ φ ˆθ = µ και η ία ˆθίναι η ία τριβής για την οποία πίκιται ολίσθηση της ράβδου ως ος το τραπέζι. Η ράβδος τότ δν στρέφται διότι Στ (Ο) =0. Εφαρµογή 3 η α. Στην οριζόντια διύθυνση xx κίνησης του ίσµατος το σύστηµα «κύλινδρος ίσµα» ίναι µονωµένο διότι οι δυνάµις T στκαι Tστ,ΝκαιΝ έχουν σχέση δράσης - αντίδρασης, δηλαδή ίναι σωτρικές δυνάµις του συστήµατος, άρα η ορµή του συστήµατος ως ος τον ακίνητο παρατηρητή διατηρίται: 3

4 υ υ m α α m R Σ α υ ω α Β x υ υ,x υ ηµ30 ο = υ υ κυλ ΑΒ y y υ,y υ συν30 ο υ,y υ,x υ x Α Ν x Τ στ Τ στ,x Ν δ Τ στ,y Ν Ν Τ στ,y y Ν y Ν x x Τ στ,x Τ στ Β Σχήµα 1 Σχήμα Σχήµα 3 p κυλ,xx + p = 0 p = p κυλ,xx mυ = mυ κυλ,xx υ = υ κυλ,xx, όπουυ κυλ,xx =η συνιστώσα της ταχύτητας του κυλίνδρου στην οριζόντια διύθυνση xx κίνησης του ίσµατος, αλλά ο κύλινδρος κατβαίνι σ σχέση µ την έδρα ΑΒ του ίσµατος, δηλαδή η έχι κατύθυνση ος τα δξιά, άρα το ίσµα κινίται ος τα αριστρά. (Σχήµα 1) υ κυλ,xx β. Επιδή ο κύλινδρος κυλίται πάνω στην έδρα ΑΒ του ίσµατος θα έπι το σηµίο Σ (Σχήµα 1) κάθ χρονική στιγµή να έχι την ίδια ταχύτητα µ την συνιστώσα της οριζόντιας ταχύτητας του ίσµατοςυ στην διύθυνση της έδρας ΑΒ του ίσµατος : υ συν30 = υ υ (Σχήµα ). dυ dυ dυ Μ παραγώγιση της τλυταίας σχέσης έχουµ: = = dt dt dt Σύµφωνα µ το (Σχήµα 3),από τον θµλιώδη νόµο της µηχανικής για τη µταφορική κίνηση του κυλίνδρου: T στ mg συν30 a συν30 a a ο T = ma mgηµ30 T = ma T = ma () x στ στ στ Από τον θµλιώδη νόµο της µηχανικής για τη στροφική κίνηση του κυλίνδρου: 1 1 T R = mr α T = ma (3) στ στ Από τις () και (3) : ma = mg ma a = g a Από τις (1) και : a συν30 = g a a a 3 = g 3a a = g a 3 (5) 3 6 ια να διατηρίται η παφή κυλίνδρου ίσµατος στη διύθυνση που ίναι κάθτη ος την έδρα ΑΒ του ίσµατος, έπι η ταχύτητα του κυλίνδρου υ κυλ ΑΒ,να ίναι ίση µ τη συνιστώσα της ταχύτητας του ίσµατος στην ίδια διύθυνσηυ = υ ηµ30, µ παραγώγιση κυλ ΑΒ dυ dυ ηµ30 κυλ ΑΒ = a = a ηµ30 (6). κυλ ΑΒ dt dt Ο θµλιώδης νόµος της µηχανικής για τον κύλινδρο στην ίδια διύθυνση δίνι: (6) y aκυλ ΑΒ aηµ30 mgσυν30 maηµ30 N = m mgσυν30 N = m N = (1) της τλυταίας σχέσης έχουµ: Από τον θµλιώδη νόµο της µηχανικής για την κίνηση του κέντρου µάζας του ίσµατος στην οριζόντια διύθυνση xx (Σχήµα 3): x στ,x Τστσυν30 T' στ =Tστ N' Τ = ma Nηµ30 = ma Ν ' =Ν mg Nηµ30 Τ συν30 ma mgσυν30 ηµ30 ma ηµ 30 ma συν30 ma = () = στ (7) (7) 4

5 mg 3 ma mg 3 3 g 3 3 5a (5) + ma = ma a = g 3 3 5a g 3 6a g 3 a = = a =

Ένα Φρένο Σε Μια Τροχαλία

Ένα Φρένο Σε Μια Τροχαλία Ένα Φρένο Σ Μια Τροχαλία Η ομογνής ράβδος του σχήματος έχι μάζα ΜΡ και μήκος = και μπορί να στρέφται ως προς κάθτο άξονα που διέρχται από το σημίο μ την βοήθια άρθρωσης. Πάνω στη ράβδο και σ απόσταση /4

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Στις ερωτήσεις -4 να βρείτε τη σωστή πρόταση.. Η ροπή αδράνειας ενός στερεού σώµατος εξαρτάται: α. Από τη ροπή της δύναµης που ασκείται στο στερεό. β. από

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Σάββατο, Απριλίου, 8 Ώρα: : - 4: Προτεινόµενες Λύσεις ΘΕΜΑ ( µονάδες) (Α) Ένα στερεό σώµα είναι σε ισορροπία όταν το διανυσµατικό άθροισµα των

Διαβάστε περισσότερα

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο ) Οµογενής κύλινδρος µάζας m, ακτίνας R φέρει λεπτή εγκοπή βάθους είναι τυλιγµένο νήµα αµελητέου πάχους. R r=, στην οποία Το άλλο άκρο του νήµατος έχει δεθεί σε οροφή όπως στο

Διαβάστε περισσότερα

= = = = 2. max,1 = 2. max,2

= = = = 2. max,1 = 2. max,2 ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ ΑΠΡΙΛΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. α Α. β Α3. β Α. γ Α5. α) Σ β) Λ γ)

Διαβάστε περισσότερα

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις - 29 Μάη Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις. Θέµα Β

Πανελλήνιες Εξετάσεις - 29 Μάη Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις. Θέµα Β Πανελλήνιες Εξετάσεις - 29 Μάη 2015 Α.1 (α) Α.2 (ϐ) Α.3 (α) Α.4 (δ) Α.5 Λ,Σ, Σ, Λ, Σ Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Πρόχειρες Λύσεις Θέµα Α Θέµα Β Β.1. (iii) Ο Ϲητούµενος ϱυθµός µεταβολής είναι

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 28 Φλεβάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΑΠΑΝΤΗΣΕΙΣ. ΕΡΩΤΗΣΗ Α1 Α2 Α3 Α4 ΑΠΑΝΤΗΣΗ δ β β γ.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΑΠΑΝΤΗΣΕΙΣ. ΕΡΩΤΗΣΗ Α1 Α2 Α3 Α4 ΑΠΑΝΤΗΣΗ δ β β γ. ΤΑΞΗ: ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 06 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ δ β

Διαβάστε περισσότερα

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α 1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι Ενδεικτικές Λύσεις Θέµα Α Α.1 Η εκτόξευση ενός σώµατος µικρών διαστάσεων από ένα ύψος h µε ορι- Ϲόντια

Διαβάστε περισσότερα

mu R mu = = =. R Γενική περίπτωση ανακύκλωσης

mu R mu = = =. R Γενική περίπτωση ανακύκλωσης Γενική περίπτωση ανακύκλωσης Με τον όρο ανακύκλωση εννοούμε την κίνηση ενός σώματος σε κατακόρυφο επίπεδο σε κυκλική τροχιά. Χαρακτηριστικό παράδειγμα τέτοιας κίνησης είναι η κίνηση στο roller coaster,

Διαβάστε περισσότερα

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α 6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

A) Να βρεθεί η γωνιακή επιτάχυνση του τροχού, καθώς και ο αριθµός των στροφών

A) Να βρεθεί η γωνιακή επιτάχυνση του τροχού, καθώς και ο αριθµός των στροφών Άσκηση ολίσθηση-κύλιση µε ολίσθηση-κύλιση χωρίς ολίσθηση Ο τροχός του σχήµατος έχει ακτίνα R0,m και αφήνεται τη χρονική στιγµή t0 µε αρχική γωνιακή ταχύτητα ω ο 300 rad/sec σε επαφή µε τα δύο κάθετα τοιχώµατα,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα

Διαβάστε περισσότερα

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

Μην ξεχνάμε τον άξονα περιστροφής.

Μην ξεχνάμε τον άξονα περιστροφής. Μην ξεχνάμε τον άξονα περιστροφής. Έχουμε πάρα πολλά προβλήματα, όπου ένα στερεό, όπως μια ράβδος, στρέφεται γύρω από έναν σταθερό άξονα. Συνήθως στις περιπτώσεις αυτές επιλύουμε το πρόβλημα, «αφήνοντας

Διαβάστε περισσότερα

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!!

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Σε πάρα πολλές περιπτώσεις κατά τη μελέτη του στερεού, το πρόβλημα επιλύεται με εφαρμογή του ου νόμου του Νεύτωνα, τόσο για την περιστροφική κίνηση

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ /9/015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα κινείται σε ευθύγραμμη οριζόντια τροχιά με την ταχύτητά του σε συνάρτηση

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Διερεύνηση της σχέσης L=ω Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. Η ροπή αδράνειας Ι

Διαβάστε περισσότερα

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: 6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Φυσικής Κατεύθυνσης 2014

Επαναληπτικό ιαγώνισµα Φυσικής Κατεύθυνσης 2014 Επαναληπτικό ιαγώνισµα Φυσικής Κατύθυνσης 014 ΘΕΜΑ 1 ο Να γράψτ στο φύλλο απαντήσών σας τον αριθµό καθµιάς από τις ακόλουθς ηµιτλίς προτάσις 1-4 και δίπλα της το γράµµα που αντιστοιχί στο σωστό συµπλήρωµά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Μελέτη στροφικής κίνησης µε στιγµιαίο άξονα

Μελέτη στροφικής κίνησης µε στιγµιαίο άξονα Παναιώτης Μόρφης Μελέτη στροφικής κίνησης µε στιµιαίο άξονα Ο θεµελιώδης νόµος της στροφικής κίνησης: Στ ( ) Σ ( Σ ) α ή Στ ( ) Σ ( Σ ) α ισχύει ια κάθε άξονα περιστροφής, ο οποίος περνά από το τυχαίο

Διαβάστε περισσότερα

Περί κύλισης και τριβής.

Περί κύλισης και τριβής. Περί κύλισης και τριβής. Με αφορμή ένα τεθέν ερώτημα, ας δούμε λίγο αναλυτικά τι σημαίνει κύλιση ενός τροχού και τι συμβαίνει με την ασκούμενη δύναμη τριβής. Ας δούμε αρχικά, τι γράφει το σχολικό βιβλίο:

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ ο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή Απριλίου 0 ΑΠΑΝΤΗΣΕΙΣ. β. δ 3. α 4. α Λ, β Σ, γ Λ, δ Λ, ε Λ 5. α Λ, β Λ, γ Λ, δ Σ, ε Σ ΘΕΜΑ ο. α) x β) x γ) υ δ)

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 5 Μάρτη 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Φυσικής Κατεύθυνσης 2014

Επαναληπτικό ιαγώνισµα Φυσικής Κατεύθυνσης 2014 Επαναληπτικό ιαγώνισµα Φυσικής Κατύθυνσης 014 ΘΕΜΑ 1 ο Να γράψτ στο φύλλο απαντήσών σας τον αριθµό καθµιάς από τις ακόλουθς ηµιτλίς προτάσις 1-4 και δίπλα της το γράµµα που αντιστοιχί στο σωστό συµπλήρωµά

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι

Διαβάστε περισσότερα

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τα

Διαβάστε περισσότερα

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΟ ΣΤΕΡΕΟ ΣΩΜΑ

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΟ ΣΤΕΡΕΟ ΣΩΜΑ ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΟ ΣΤΕΡΕΟ ΣΩΜΑ Παρατηρήσεις : I a. Όσο μεγαλύτερη είναι η ροπή αδράνειας ενός σώματος τόσο πιο δύσκολα αλλάζει η περιστροφική κατάσταση του σώματος.. Εάν η συνισταμένη

Διαβάστε περισσότερα

ΚΥΛΙΣΗ ΣΤΕΡΕΟΥ ΚΑΤΑ ΜΗΚΟΣ ΠΛΑΓΙΟΥ ΕΠΙΠΕΔΟΥ

ΚΥΛΙΣΗ ΣΤΕΡΕΟΥ ΚΑΤΑ ΜΗΚΟΣ ΠΛΑΓΙΟΥ ΕΠΙΠΕΔΟΥ ΚΥΛΙΣΗ ΣΤΕΡΕΟΥ ΚΑΤΑ ΜΗΚΟΣ ΠΛΑΙΟΥ ΕΠΙΠΕΔΟΥ Σε ένα πλάγιο επίπεδο γωνίας κλίσης κυλίεται χωρίς να ολισθαίνει προς τα κάτω, ένα στερεό σώµα µε κατανοµή µάζας συµµετρική ως προς το κέντρο του. ( Το στερεό

Διαβάστε περισσότερα

Δύο δίσκοι, μια ράβδος, και ένα ελατήριο

Δύο δίσκοι, μια ράβδος, και ένα ελατήριο Δύο δίσκοι, μια ράβδος, και ένα ελατήριο Στην διάταξη στου σχήματος εικονίζονται μια ράβδος μάζας Μ, δύο δίσκοι ακτίνας R και μάζας m και ένα ιδανικό ελατήριο σταθεράς k. Αρχικά το σύστημα βρίσκεται σε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση: Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ A κ. Θέµα 1 ο Στις ερωτήσεις 1 έως και 3 επιλέξτε τη σωστή απάντηση.

ΔΙΑΓΩΝΙΣΜΑ A κ. Θέµα 1 ο Στις ερωτήσεις 1 έως και 3 επιλέξτε τη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ A κ Θέµα ο Στις ερωτήσεις έως και επιλέξτε τη σωστή απάντηση.. Εάν υ είναι το µέτρο της γραµµικής ταχύτητας του άκρου ενός ωροδείκτη και υ το µέτρο της γραµµικής ταχύτητας του άκρου ενός λεπτοδείκτη

Διαβάστε περισσότερα

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση Α.1 Το στερεό του σχήματος δέχεται αντίρροπες δυνάμεις F 1 kαι F 2 που έχουν ίσα μέτρα. Το μέτρο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. Να επιλέξετε τη σωστή πρόταση σε κάθε µία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.. Σώµα µάζας m εκτελεί απλή αρµονική ταλάντωση πλάτους Α και

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΤΑΒΑΣΗ

ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΤΑΒΑΣΗ ΘΕΜΑ Α Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών Α. β Α. γ Α3. β Α4. δ Ημ/νία: 3 Μαΐου 06 Απαντήσεις Θεμάτων Α5. α) Σωστό β) Λάθος γ) Σωστό

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α 3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙOΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. δ. γ 3. α 4. δ 5. α.σ β.λ γ.σ δ.λ ε.λ ΘΕΜΑ Β. Σωστή είναι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2015

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑ Α Α. α Α.2 β Α.3 α Α.4 δ Α.5 α Λ β Σ γ Σ δ Λ ε Σ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 205 ΘΕΜΑ Β Β. Σωστή η απάντηση ( iii ) Αιτιολόγηση: Από το θεμελιώδη νόμο

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Τρίωρο Διαγώνισμα στη Φυσική Κατεύθυνσης Γ Λυκείου

Τρίωρο Διαγώνισμα στη Φυσική Κατεύθυνσης Γ Λυκείου Τρίωρο Διαγώνισμα στη Φυσική Κατεύθυνσης Γ Λυκείου Ύλη: Όλη η εξεταστέα ΘΕΜΑ ο Α. Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης

Διαβάστε περισσότερα

Άξονες περιστροφής στερεού

Άξονες περιστροφής στερεού Άξονες περιστροφής στερεού Πραγματικοί και νοητοί. Μιλάµε συνεχώς για περιστροφή ενός στερεού γύρω από άξονα, αλλά συνήθως ξεχνάµε να πούµε αν αυτός ο άξονας είναι πραγµατικός ή νοητός. εν είναι το ίδιο

Διαβάστε περισσότερα

( σφόνδυλος : τροχαλία με μεγάλη μάζα)

( σφόνδυλος : τροχαλία με μεγάλη μάζα) Ζήτημα 1 ο (μια σωστή στα ερωτήματα α,β,γ,) α) Οι πόλοι της γης βρίσκονται στα ίδια σημεία της επιφάνειας της γης Η σταθερότητα των πόλων οφείλεται; Στο γεγονός ότι ασκείται από τον ήλιο ελκτική δύναμη

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Για τις ηµιτελείς προτάσεις 1.1 έως 1.4 να γράψετε στο

Διαβάστε περισσότερα

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή Εισαγωγή στις Φυσικές Επιστήμες (8-7-007) Μηχανική Ονοματεπώνυμο Τμήμα ΘΕΜΑ A. Υλικό σώμα μάζας βρίσκεται σε οριζόντιο επίπεδο με μέγιστο συντελεστή στατικής τριβής η και συντελεστή τριβής ολίσθησης μ.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Σε ιδανικό

Διαβάστε περισσότερα

Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε.

Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε. Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε. ) Ένα σώμα ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή ασκείται πάνω του μια οριζόντια σταερή δύναμη F, όπως στο σχήμα. i) Σε ποια διεύυνση α κινηεί το σώμα;

Διαβάστε περισσότερα

Ένας δακτύλιος με μια μπίλια

Ένας δακτύλιος με μια μπίλια Ένας δακτύλιος με μια μπίλια Θεωρούμε ένα κατακόρυφο δακτύλιο ακτίνας R και μάζας m στο εσωτερικό του οποίου έχει προσκολληθεί σφαιρίδιο αμελητέων διαστάσεων μάζας m. O δακτύλιος μπορεί να κυλίεται χωρίς

Διαβάστε περισσότερα

- -

- - - 1 - - - - 3 - - 4 - - 5 - - 6 - ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. β Α. γ Α3. β Α4. γ Α5. α. Λάθος, β. Λάθος, γ. Σωστό, δ. Λάθος, ε. Σωστό ΘΕΜΑ Β Β1. α Το σημείο Σ ταλαντώνεται με πλάτος Α άρα η διαφορά των αποστάσεών

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΚΥΠΡΙΑ ΟΛΥΜΠΙΑΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ Κυριακή, 5 Απριλίου, 9 Ώρα: : : Προτεινόµενες Λύσεις ΘΕΜΑ ( µονάδες) (α) Να αποδείξετε για ένα δορυφόρο σε κυκλική τροχιά γύρω από ένα πλανήτη,

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: (Ιούνιος 009 Ηµερήσιο) Ο δίσκος του σχήµατος κυλίεται χωρίς

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Επαναληπτικά Θέµατα Φυσικής Προσανατολισµού Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Επαναληπτικά Θέµατα Φυσικής Προσανατολισµού Ενδεικτικές Λύσεις Θέµα Α Α.1. ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Επαναληπτικά Θέµατα Φυσικής Προσανατολισµού Ενδεικτικές Λύσεις Θέµα Α Ακίνητο πυροβόλο όπλο εκπυρσοκροτεί (δ) Η ορµή του συστήµατος σφαίρα - όπλο ϑα είναι ίση µε

Διαβάστε περισσότερα

Άλλη μια ράβδος στρέφεται

Άλλη μια ράβδος στρέφεται Άλλη μια ράβδος στρέφεται B υ Η ομογενής ράβδος του σχήματος μάζας Μkg και μήκους m, είναι αρθρωμένη στο άκρο της Ο, γύρω από το οποίο μπορεί να στρέφεται χωρίς τριβές. Η ράβδος ισορροπεί, κρεμασμένη στο

Διαβάστε περισσότερα

Επαναληπτικές εξετάσεις Φυσικής Κατεύθυνσης Γ Λυκείου

Επαναληπτικές εξετάσεις Φυσικής Κατεύθυνσης Γ Λυκείου Επαναληπτικές εξετάσεις Φυσικής Κατεύθυνσης Γ Λυκείου 3-6-0 ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα

γραπτή εξέταση στο μάθημα 3η εξεταστική περίοδος από 9/03/5 έως 9/04/5 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή

Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή Στροφορµή Στροφορµή υλικού σηµείου Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή ως προς σηµείο ή ως προς άξονα, που το µέτρο της υπολογίζεται από την εξίσωση L = mυr Όπου

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΙ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΙ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΙ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Να ράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το ράµµα που αντιστοιχεί στη σωστή απάντηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

( ) υ υ. ΘΕΜΑ Α Α1 - α Α2 - α A3 - α Α4 - γ Α5 α - Λάθος, β - Σωστό, γ - Λάθος, δ - Λάθος, ε - Σωστό.

( ) υ υ. ΘΕΜΑ Α Α1 - α Α2 - α A3 - α Α4 - γ Α5 α - Λάθος, β - Σωστό, γ - Λάθος, δ - Λάθος, ε - Σωστό. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α - α Α - α A - α Α4 - γ Α5 α - Λάθος, β - Σωστό,

Διαβάστε περισσότερα

Β. Σωστή απάντηση είναι η γ. Οι θέσεις των δεσµών στον θετικό ηµιάξονα είναι: χ = (κ + 1) λ 4 δεύτερος δεσµός είναι στη θέση που προκύπτει για κ = 1 δ

Β. Σωστή απάντηση είναι η γ. Οι θέσεις των δεσµών στον θετικό ηµιάξονα είναι: χ = (κ + 1) λ 4 δεύτερος δεσµός είναι στη θέση που προκύπτει για κ = 1 δ ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέµα Α Κυριακή 6 Μαρτίου 016 Α1. β Α. γ Α5. α) Λ β) Σ γ) Σ Α. γ Α4. γ δ) Σ ε) Σ Θέµα Β Β1. Σωστή απάντηση είναι η β. Το έργο της δύναµης για την

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κινήσεις στερεών, ροπή αδράνειας, ισορροπία στερεού

ΔΙΑΓΩΝΙΣΜΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κινήσεις στερεών, ροπή αδράνειας, ισορροπία στερεού ΛΥΣΕΙΣ ΘΕΜΑ Α ΔΙΑΩΝΙΣΜΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κινήσεις στερεών, ροπή αδράνειας, ισορροπία στερεού Α..β, Α..β, Α..β, Α.4.β, Α.5. Λ, Σ, Λ, Σ, Λ ΘΕΜΑ Β Β.. Στο διπλανό σχήμα βλέπουμε μία

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

3.2. Ισορροπία στερεού.

3.2. Ισορροπία στερεού. 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

3ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

3ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα Α ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κεφάλαιο 4, Μηχανικό στερεό (5Χ5 μονάδες) Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής -4 αρκεί να γράψετε στο φύλλο

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1 ΙΟΥΝΙΟΥ 017 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4 1. F 2 F 3 F 1 F 4 Στο σώμα του παραπάνω σχήματος βάρους Β = 20Ν ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς τα δεξιά κατά 2m να υπολογισθεί

Διαβάστε περισσότερα

9 o Γ.Λ. ΠΕΙΡΑΙΑ ιαγώνισµα ΦΥΣΙΚΗΣ (2) 0. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς /5 / 2007

9 o Γ.Λ. ΠΕΙΡΑΙΑ ιαγώνισµα ΦΥΣΙΚΗΣ (2) 0. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς /5 / 2007 1) Ένα σώµα εκτοξεύεται από τη βάση λείου κεκλιµένου επιπέδου µε αρχική ταχύτητα υ 0, προς τα πάνω (θέση 1) και σταµατά στη θέση (2) που βρίσκεται σε ύψος h. i) Ποια πρόταση που αναφέρεται στο έργο του

Διαβάστε περισσότερα

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ 1. Στο σώμα του σχήματος έχει βάρος Β = 20Ν είναι ακίνητο και του ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήµες Κλασική Μηχανική Αύγουστος 2004 Ονοµατεπώνυµο:

Εισαγωγή στις Φυσικές Επιστήµες Κλασική Μηχανική Αύγουστος 2004 Ονοµατεπώνυµο: Εισαγωγή στις Φυσικές Επιστήµες Κλασική Μηχανική Αύγουστος 004 Ονοµατεπώνυµο: Τµήµα Θέµα Α) Μικρός κοίλος κύλινδρος ακτίνας r=h/5 και µάζας m αφήνεται να κυλήσει χωρίς να ολισθαίνει κατά µήκος κεκλιµένου

Διαβάστε περισσότερα

Ένα βαρούλκο με χάντρα.

Ένα βαρούλκο με χάντρα. Ένα βαρούλκο με χάντρα Το βαρούλκο ενός ηγαδιού αοτελείται αό τροχαλία ακτίνας R 0,5m και μάζας M 0Kg, στο οοίο είναι ροσαρμοσμένη χειρολαβή η οοία αοτελείται αό τρεις ράβδους αμελητέας μάζας Η ράβδος

Διαβάστε περισσότερα

4η Εργασία Ημερομηνία αποστολής 12/4/2010

4η Εργασία Ημερομηνία αποστολής 12/4/2010 4η Εργασία Ημερομηνία αποστολής 1/4/010 Άσκηση 1 Α ) Η Σελήνη περιφέρεται γύρω από τη Γη έτσι ώστε να στρέφει προς τη Γη πάντα το ίδιο ημισφαίριο. Υπολογίστε το λόγο της στροφορμής της Σελήνης λόγω ιδιοπεριστροφής

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Ένα σώμα εκτελεί φθίνουσα αρμονική ταλάντωση με δύναμη απόσβεσης

Διαβάστε περισσότερα

Κύλιση με ολίσθηση δακτυλίου-σφαίρας

Κύλιση με ολίσθηση δακτυλίου-σφαίρας Κύλιση με ολίσθηση δακτυλίου-σφαίρας Ο δακτύλιος του σχήματος ακτίνας r=0,1m έχει όλη τη μάζα του συγκεντρμένη στην περιφέρεια του και κυλίεται χρίς να ολισθαίνει πάν στο τραχύ οριζόντιο επίπεδο του σχήματος.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΟ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΦΥΣΙΚΗ 16 ΙΟΥΝΙΟΥ 2010 1) Ράβδος μάζας Μ και μήκους L που είναι στερεωμένη με άρθρωση σε οριζόντιο άξονα Ο, είναι στην κατακόρυφη θέση και σε κατάσταση ασταθούς ισορροπίας

Διαβάστε περισσότερα