ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Επανάληπτικά Θέματα Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Επανάληπτικά Θέματα Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ"

Transcript

1 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Επανάληπτικά Θέματα Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

2 ΕΠΑΝΑΛΗΠΤΙΚΑΘΕΜΑΤΑ1 ου ΚΕΦΑΛΑΙΟΥ ΜΗΧΑΝΙΚΕΣΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΗΑΡΜΟΝΙΚΗΤΑΛΑΝΤΩΣΗ Απλήαρμονικήταλάντωση 1. Ένα σώμα μάζας mπου εκτελεί ΣF(N) απλή αρμονική ταλάντωση, δέχεται +20 συνισταμένη δύναμη της οποίας η αλγεβρική τιμή μεταβάλλεται με το χρόνο όπως φαίνεται στο διπλανό 00,1π0,2πt(s) διάγραμμα. Τη χρονική στιγμή t 1 =0,1π s η κινητική ενέργεια της ταλάντωσηςτουσώματοςείναικ 1 =2J. K20 α)ναυπολογίσετετημάζαmτουσώματος β)ναγράψετετηνεξίσωσητηςαπομάκρυνσηςσεσυνάρτησημετοχρόνο. γ)ναβρεθείηκινητικήενέργειατουσώματοςτηστιγμήπουβρίσκεταιστη θέσηx 2 =Α/2. δ)ναυπολογίσετετοέργοτηςδύναμηςεπαναφοράςαπότηστιγμήt=0μέχρι τηστιγμήt 2 πουπερνάαπότηθέσηx 2 γιαπρώτηφορά. ε)να βρεθούν οι ρυθμοί μεταβολής της ορμής και της κινητικής ενέργειας τη στιγμήt 2. Απάντηση: Δ p kgm/ s α) m=1kg, β) x=0,2ημ10t (SI), γ) Κ 2 = 1,5 J, δ) W = ] 0,5 J, ε) = 10, Δt s Δ K = 10 3 J / s Δt Απλήαρμονικήταλάντωση 2. ΈνασώμαεκτελείαπλήαρμονικήταλάντωσημεπερίοδοΤ=0,5s.Τηστιγμήt=0 το σώμα διέρχεται από κάποιο σημείο του θετικού ημιάξονα, κινούμενο κατά τη θετική φορά και η δυναμική του ενέργεια είναι τριπλάσιααπότηνκινητικήτου ενέργεια. Στο χρονικό διάστημα από t=0 μέχρι t=t/12 η κινητική ενέργεια του σώματοςελαττώνεταικατά2,5`10 ]4 J.Ναγραφείηεξίσωσητηςδυναμικήςενέργειας σεσυνάρτησημετοχρόνο. Απάντηση:U=10 ]3 ημ 2 (4πt+π/3)(SI) 1

3 Απλήαρμονικήταλάντωση 3. ΜικρόσώμαμάζαςmεκτελείαπλήαρμονικήταλάντωσηπλάτουςΑ=0,4mκαι περιόδου Τ=0,2πs και τη χρονική στιγμή t=0 διέρχεται από τη θέση y 1 έχοντας αρνητικήεπιτάχυνση.τηνίδιαχρονικήστιγμήηδυναμικήενέργειατηςταλάντωσης ισούται με U 1 =6 J και αυξάνεται, ενώ η κινητική ενέργεια του κύβου ισούται με Κ 1 =2J. α)ναυπολογίσετετησταθεράεπαναφοράς. β)ναγράψετετηχρονικήεξίσωσητηςαπομάκρυνσηςαπότηθέσηισορροπίας. γ) Να υπολογίσετε τη χρονική στιγμή που το σώμα θα περάσει από τη θέση ισορροπίαςτουγιαπρώτηφορά. δ)ναυπολογίσετετηναπόστασημεταξύτωνδύοθέσεωντουσώματοςστιςοποίες ηκινητικήενέργειαισούταιμετι1/3τηςδυναμικήςενέργειαςτηςταλάντωσης. Απάντηση. α)d=100n/mβ)y=0,4ημ(10t+π/3)(s.i)γ)t=π/15sδ)d=0,4 3m Απλήαρμονικήταλάντωση 4. Ένα σώμα μάζας m=0,1 Κg εκτελεί απλή αρμονική ταλάντωση με εξίσωση απομάκρυνσης: =, "# " +. α)ναβρεθείηολικήενέργειατουταλαντωτήκαιναδειχθείότιτηχρονικήστιγμή t=0ηκινητικήενέργειαείναιτριπλάσιατηςδυναμικής. β) Να υπολογιστεί η ελάχιστη χρονική διάρκεια μέχρι η κινητική ενέργεια να ξαναγίνειτριπλάσιατηςδυναμικής. γ)ναβρεθείορυθμόςμεταβολήςτηςορμήςτουσώματοςτηχρονικήστιγμήt=2s. δ) Να βρεθεί ο ρυθμός μεταβολής της δυναμικής ενέργειας της ταλάντωσης του σώματοςτηχρονικήστιγμήt=2s. Απάντηση. α)ε=0,32jβ)δt=1/6sγ)dp/dt==1,6kg.m/s 2 δ)du/dt=0,64 3πJ/s. Απλήαρμονικήταλάντωση 5. Ένα σώμα μάζας m=2 Κg εκτελεί απλή αρμονική ταλάντωση με εξίσωση απομάκρυνσης: = "# " +. Τηχρονικήστιγμήt 1 =1,5sηεπιτάχυνσητουσώματοςισούταιμεα 1 =+8 3m/s 2 καιη φάσητηςταλάντωσηςισούταιμεφ 1 =10π/3rad. 2

4 α)ναβρεθείηγωνιακήσυχνότητακαιτοπλάτοςτηςταλάντωσης, β)ναυπολογίσετετηχρονικήδιάρκειαγιατηναπευθείαςμετάβασητουσώματος απότηθέσηx 1 =]0,2mστηθέσηx 2 =+0,2 3m. γ) Να βρείτε τη ταχύτητα του σώματος τη χρονική στιγμή t=5/3 s και τη ταχύτητα του σώματος όταν διέρχεται από τη θέση x = ] 0,2m κινούμενο προς τη θέση ισορροπίας. δ) Ποιες τιμές παίρνει η δύναμη επαναφοράς όταν το μέτρο της ταχύτητας του σώματοςείναι0,4πm/s. Απάντηση. α)ω=2πrad/s,a=0,4mβ)δt=1/4sγ)υ=0,4πm/s,υ=0,4π 3m/s δ) = ±16 3N. Απλήαρμονικήταλάντωση 6. Ένα σώμα μάζας m=1kg εκτελεί γραμμική αρμονική ταλάντωση. Τη χρονική στιγμήt=0διέρχεταιαπότηθέσηx= 2mκινούμενοπροςτηθέσηισορροπίαςκαι ηκινητικήτουενέργειαείναιτριπλάσιατηςδυναμικής.ηδύναμηεπαναφοράςτης ταλάντωσηςδίνεταιαπότησχέσησf=]16x(s.i).ναυπολογίσετε: α)τοπλάτοςτηςταλάντωσης. β)τηχρονικήεξίσωσητηςαπομάκρυνσηςτηςταλάντωσης. γ)τορυθμόμεταβολήςτηςκινητικήςενέργειαςτηστιγμήt 1 =π/24s. δ)τοέργοτηςδύναμηεπαναφοράςαπότηχρονικήστιγμήt 1 =π/24sμέχρικαιτη χρονικήστιγμήt 2 =π/6s. Απάντηση. α)α=2 2mβ) = 2 2" 4 +. γ)dk/dt=0δ)w==64j. Απλήαρμονικήταλάντωση(κατακόρυφοελατήριοKσώμα) 7. Το ένα άκρο κατακόρυφου ελατηρίου σταθεράς k στερεώνεται στην οροφή ενώ στο άλλο άκρο του κρεμάμε ένα σώμα βάρους w=10n. Εκτρέπουμε το σώμα μέχριναφτάσειστηθέσηπουείναι10cmπάνωαπότηθέσηφυσικούμήκουςτου ελατηρίου και τη χρονική στιγμή t=0 το αφήνουμε ελεύθερο. Το σώμα σταματά στιγμιαίαγιαπρώτηφοράτηχρονικήστιγμήt 1 =π/10s. α)ναβρεθείησταθεράτουελατηρίου. β)ναβρεθείτοπλάτοςτηςταλάντωσης. γ)ναγραφείηχρονικήεξίσωσητηςταχύτηταςτηςταλάντωσηςθεωρώνταςθετική φοράπροςταπάνω. 3

5 δ)ναβρεθείορυθμόςμεταβολήςτηςκινητικήςενέργειαςτουσώματοςτηχρονική στιγμήπουδιέρχεταιγιαπρώτηφοράαπότηθέσηφυσικούμήκουςτουελατηρίου. Δίνεταιg=10m/s 2. Απάντηση. α)k=100n/mβ)α=0,2mγ)υ=2συν(10t+π/2)(s.i)δ)dk/dt=+10 3J/s. Απλήαρμονικήταλάντωση(οριζόντιοελατήριοKσώμα)&πλαστικήκρούση 8. Σώμα μάζας Μ=2Kg είναι δεμένο στο ελεύθερο άκρο οριζόντιου ελατηρίου σταθεράςk=250n/mκαιεκτελείαπλήαρμονικήταλάντωσηπλάτουςα=0,3mπάνω σελείοοριζόντιοδάπεδο.κάποιαστιγμήπουτηθεωρούμεt=0,έναβλήμαμάζαςm πουκινείταιομόρροπαμετοσώμασφηνώνεταισεαυτόκαιτοσυσσωμάτωμαπου προκύπτειεκτελείμιανέααρμονικήταλάντωση,μεεξίσωσηαπομάκρυνσης: =, "# "# +. α)ναυπολογίσετετηταχύτητατουσώματοςμτηστιγμήτηςκρούσης. β)ναυπολογίσετετηταχύτητατουσυσσωματώματοςαμέσωςμετάτηκρούση. γ)ναυπολογίσετετηταχύτητατουβλήματοςτηστιγμήτηςκρούσης. δ)ναβρείτετηθερμότηταπουπαράχθηκεκατάτηδιάρκειατηςκρούσης. Δίνεται 3 = 1,73. Απάντηση. α)υ=2,5m/sβ)υ=2 3m/sγ)υ=7,3m/sδ)Q=4,57J. Απλήαρμονικήταλάντωση(οριζόντιοελατήριοKσώμα)&πλαστικήκρούση 9. ToσώμαΣ 1 τουπαρακάτωσχήματοςκινείταιμεταχύτηταμέτρουυ 1 =6m/sκαι συγκρούεταιμετωπικάκαιπλαστικάμετοακίνητοσώμασ 2 μάζαςm 2 =5Kg.Μετάτη κρούση το συσσωμάτωμα κινείται με ταχύτητα μέτρου υ=2m/s και συγκρούεται μετωπικάκαιπλαστικάμετοσώμασ 3 μάζαςm 3 =2,5Kgτοοποίοείναιστερεωμένο στοελατήριοσταθεράςk=250n/mκαιεκτελείαπλήαρμονικήταλάντωσηπλάτους Α=0,2m. Tη στιγμή της κρούσης που πραγματοποιείται στη θέση φυσικού μήκους τουελατηρίουτασώματακινούνταισεαντίθετεςκατευθύνσεις. Θ.Φ.Μ Σ 1 Σ 2 Σ 3 υ 1 k 4

6 α)ναβρείτετημάζατουσώματοςσ 1. β)ναβρείτετομέτροτηςμέγιστηςδύναμηςπουδέχεταιτοσυσσωμάτωμααπότο ελατήριο. γ) Να γράψετε τη χρονική εξίσωση της επιτάχυνσης του συσσωματώματος, θεωρώνταςωςστιγμήt=0τηστιγμήτηςκρούσηςτουσ 1 ]Σ 2 μετοσ 3 καιωςθετική φοράτηφοράπροςτααριστερά. Απάντηση. α)m 1 =2,5Kgβ)F max =50Nγ)α==5ημ(5t+π)(S.I). Απλήαρμονικήταλάντωση(οριζόντιοελατήριοKσώμα)&πλάγιαπλαστικήκρούση 10. Ένα σώμα Σ 1 μάζας m 1 =1Kg είναι δεμένο στο άκρο οριζόντιου ελατηρίου σταθεράς k=400n/m και εκτελεί απλή αρμονική ταλάντωση πλάτους Α=0,4m σε λείοοριζόντιοεπίπεδο.απόσημείοκπουβρίσκεταιστηκατακόρυφοπουδιέρχεται απότηθέσηισορροπίαςοαφήνουμεναπέσειελεύθερασώμασ 2 μάζαςm 2 =3Kgτη στιγμή που το Σ 1 διέρχεται από τη θέση ισορροπίας του. Τα δύο σώματα συγκρούονταιπλαστικάτηστιγμήπουτοσ 1 επιστρέφειξανάστηθέσηισορροπίας τουγιαπρώτηφορά. Σ 2 K h Σ 1 υ 1 O α)ναυπολογιστείηταχύτητατουσώματοςσ 1 τηστιγμήτηςκρούσης. β)ναβρεθείτούψοςhαπότοοποίοαφέθηκεελεύθεροτοσώμασ 2. γ)ναβρεθείηχρονικήεξίσωσητηςκινητικήςενέργειαςτουσυσσωματώματοςκαι να παρασταθεί γραφικά. Θεωρείστε ως χρονική στιγμήt=0 τη στιγμή της κρούσης καιωςθετικάφοράτηφοράπροςταδεξιά. 5

7 δ) Να βρεθεί το έργο της δύναμης του ελατηρίου κατά τη κίνηση του συσσωματώματος από τη χρονική στιγμή t 1 =π/30 s ως τη χρονική στιγμή που μηδενίζεταιηταχύτητάτουγιαπρώτηφορά. Δίνεταιg=10m/s 2 καιπ 2 =10. Απάντηση. α)υ 1 =8m/sβ)h=1/8mγ)Κ=8συν 2 (10t+π)(S.I)δ)W==2J. Απλήαρμονικήταλάντωση(κατακόρυφοελατήριοKσώμα)&πλαστικήκρούση 11. Τοπάνωάκροκατακόρυφουιδανικούελατηρίουσταθεράςk=400N/mείναι σταθερά στερεωμένο σε οροφή και το ελατήριο έχει το φυσικό μήκος. Στο κάτω άκρο προσδένεται σώμα Σ 1 μάζας m 1 =1 kg το οποίο αφήνεται ελεύθερο να εκτελέσειαπλήαρμονικήταλάντωση.τηστιγμήκατάτηνοποίαηκινητικήενέργεια του σώματος Σ 1 γίνεται τριπλάσια της δυναμικής ενέργειας ταλάντωσής του για δεύτερη φορά, το σώμα Σ 1 συναντά σώμα Σ 2 μάζας m 2 =3 kg που ανέρχεται κατακόρυφαμεταχύτηταμέτρουυ 2 = 3/12m/sμετοοποίοσυγκρούεταικεντρικά καιπλαστικά.ναυπολογίσετε: α)τοπλάτοςκαιτηνπερίοδοταλάντωσηςτουσώματοςσ 1. β)τομέτροτηςταχύτηταςτουσώματοςσ 1 αμέσωςπριντηνκρούση. γ)τομέτροτηςταχύτηταςτουσυσσωματώματοςαμέσωςμετάτηνκρούση. δ)τηναπώλειαενέργειαςεξαιτίαςτηςπλαστικήςκρούσης. ε)τοπλάτοςκαιτησυχνότηταταλάντωσηςτουσυσσωματώματος. Θεωρώνταςωςχρονικήστιγμήt 0 =0,τηστιγμήτηςκρούσης, στ) Να γράψετε την εξίσωσητηςταχύτηταςσεσυνάρτησημετοχρόνογιατην ταλάντωσητουσυσσωματώματος. ζ)ναυπολογίσετετορυθμόμεταβολήςτηςορμήςτουσυσσωματώματοςτηχρονική στιγμήαμέσωςμετάτηνπλαστικήκρούση η) Να υπολογίσετε το ρυθμό μεταβολής της κινητικής ενέργειας του συσσωματώματοςτηχρονικήστιγμήt 2 =π/40s. θ)ναυπολογίσετετορυθμόμεταβολήςτηςδυναμικήςενέργειαςταλάντωσηςτου συσσωματώματοςτηχρονική στιγμήt 2 =π/40s. Ναθεωρήσετεαμελητέατηχρονικήδιάρκειατηςκρούσης,τηνκατεύθυνσηπροςτα πάνωθετική,τριβέςδενεμφανίζονταικατάτηδιάρκειακίνησηςτωνσωμάτωνκαι ότι οι απομακρύνσεις και των δύο ταλαντώσεων είναι ημιτονοειδείς συναρτήσεις τουχρόνου.δίνεταιg=10m/s 2. Απαντήσεις. α)a 1 =0,025m,T 1 =0,1πsβ) 3/4m/sγ)υ κ =0δ)ΔΕ=0,125J ε)a 2 =0,0625m,f 2 =5/πHzστ)υ=0,0625συν(10t+π/2)(S.I) ζ)dp/dt=]25kg.m 2 /sη)dk/dt=7,8125j/sθ)du/dt=]7,8125j/s 6

8 Απλήαρμονικήταλάντωση(κατακόρυφοελατήριοKσώμα)&έκρηξη 12. Τοπάνωάκροκατακόρυφουιδανικούελατηρίουσταθεράςk=100N/mείναι σταθεράστερεωμένοσεοροφήκαιτοελατήριοέχειτοφυσικότουμήκος.στοκάτω άκροπροσδένεταισώμασμάζαςm=4kgτοοποίοαφήνεταιελεύθεροναεκτελέσει απλή αρμονική ταλάντωση. Τη στιγμή κατά την οποία η κινητική ενέργεια του σώματοςσγίνεταιτριπλάσιατηςδυναμικήςενέργειαςταλάντωσήςτουγιαδεύτερη φορά,τοσώμασμεκατάλληλομηχανισμόεκρήγνυταικαιδιασπάταιακαριαίασε δύο κομμάτια Α και Β με μάζες m A και m B =3m A αντίστοιχα. Κατά την έκρηξη το κομμάτι Β αποκτά κατακόρυφη ταχύτητα μέτρου υ Β = 3 3 m/s με φορά προς τα κάτω και το κομμάτι Α παραμένει συνδεδεμένο στο ελατήριο συνεχίζοντας να εκτελείαπλήαρμονικήταλάντωση.ναυπολογίσετε: α)τοπλάτοςταλάντωσηςτουσώματοςσ. β)τομέτροτηςταχύτηταςτουσώματοςσαμέσωςπριντηνέκρηξη. γ)τομέτροτηςταχύτηταςτουκομματιούaαμέσωςμετάτηνέκρηξη. δ)τημηχανικήενέργειαπουπροσφέρεταιμέσωτουεκρηκτικούμηχανισμού. ε)τοπλάτοςταλάντωσηςτουκομματιούa. Θεωρώνταςωςχρονικήστιγμήt 0 =0,τηστιγμήτηςέκρηξης: στ)ναγράψετετηνεξίσωσητηςαπομάκρυνσηςσεσυνάρτησημετοχρόνογιατην ταλάντωσητουκομματιούa. ζ) Να υπολογίσετε το ρυθμό μεταβολής της ορμής του κομματιού A τη χρονική στιγμήαμέσωςμετάτηνέκρηξη. η)ναυπολογίσετετημέγιστητιμήτουρυθμούμεταβολήςτηςδυναμικήςενέργειας ταλάντωσηςτουκομματιούa. Ναθεωρήσετεαμελητέατηχρονικήδιάρκειατηςέκρηξης.Τριβέςδενεμφανίζονται κατά τη διάρκεια κίνησης των σωμάτων. Θετική κατεύθυνση και για τις δύο ταλαντώσειςθεωρήστετηνκατεύθυνσηπροςταπάνω.δίνεταιg=10m/s 2. Απαντήσεις. α)α=0,4mβ)υ 1 = 3m/sγ)υ=5 3m/sδ)ΔΕ=72Jε)A 2 =1m στ)y=1ημ(10t+11π/6)(s.i)ζ)dp/dt=50κg.m/s 2 η)du/dt=500j/s. 7

9 Ασκούμεδιαρκώςσταθερήδύναμη.Αργότερακαταργείταιηδύναμη 13. Σώμα μάζας m=1 kg ισορροπεί δεμένο στην ελεύθερη άκρη οριζόντιου ιδανικού ελατηρίου σταθεράς k=100 N/m, η άλλη άκρη του οποίου είναι στερεωμένη σε σταθερό τοίχο, όπως φαίνεται στο σχήμα. Τη χρονική στιγμή t=0 ασκούμε στο σώμα οριζόντια σταθερή δύναμη μέτρου F=10 N με φορά προς τα δεξιά. Θ.Φ.Μ k F Α. α. Να αποδείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να υπολογίσετετηνπερίοδοττηςταλάντωσήςτου. β.ναγράψετετηνεξίσωσηπουπεριγράφειτηναπομάκρυνσητουσώματοςαπότη θέση ισορροπίας του, σε συνάρτηση με το χρόνο, θεωρώντας θετική την κατεύθυνσηπροςταδεξιά. γ.ναυπολογίσετετομέτροτηςμέγιστηςδύναμηςτουελατηρίουκατάτηδιάρκεια τηςταλάντωσηςτουσώματος. δ.ναυπολογίσετεποιαχρονικήστιγμήt 1 ηκινητικήενέργειατουσώματοςγίνεται ίσημετηδυναμικήενέργειαταλάντωσήςτουγιαπρώτηφορά. ε.ναυπολογίσετετορυθμόπροσφοράςενέργειαςστοσώμα,μέσωτηςδύναμηςf, τηχρονικήστιγμήt 2 =T/12. στ.ναυπολογίσετετομέγιστοκατάαπόλυτητιμήρυθμόμεταβολήςτηςκινητικής ενέργειας του σώματος, καθώς και τη χρονική στιγμή t 3 κατά την οποία επιτυγχάνεταιγιαπρώτηφοράστηνταλάντωση. Β.Τηχρονικήστιγμήt 4 =4T/3καταργούμεακαριαίατηδύναμηF. ζ.ναυπολογίσετετονέοπλάτοςταλάντωσηςτουσώματος. η.ναυπολογίσετετοποσοστόμεταβολήςτηςενέργειαςταλάντωσηςτουσώματος. Θεωρήστεότικατάτηδιάρκειατηςκίνησηςτουσώματοςδενυπάρχουντριβέςκαι αντιστάσειςαπόαέρα. Απαντήσεις. Α.α.Τ=0,2πsβ.x=0,1ημ(10t+3π/2)(S.I)γ.F ελ,max =20Nδ.t 1 =π/40sε.p=5j/s στ.(dk/dt) max =5J/s,t 3 =π/40s Β.ζ.A 2 =0,1 3mη.π%=200% 8

10 Ασκούμεαρχικάμεταβλητήδύναμη 14. Το σώμα του διπλανού σχήματος έχει μάζα m=4kg και ισορροπεί στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k. F εξ Ασκούμε στο σώμα κατακόρυφη δύναμη F με φορά προς τα πάνω της οποίας το μέτρο μεταβάλλεταισύμφωναμετησχέση: = " + "#(. ) όπου x είναι η απομάκρυνση από τη θέση ισορροπίας. Το σώμα αρχίζει να κινείται προς ταπάνωκαιότανμηδενιστείγιαπρώτηφοράη ταχύτητα του (t=0) καταργείται η δύναμη.το σώμα μετά τη στιγμή t=0 αρχίζει να εκτελεί απλή αρμονική ταλάντωση και διέρχεται από τηθέσηισορροπίαςτουτηστιγμήt=π/10s. α)ναυπολογίσετετοπλάτοςτηςταλάντωσης. β) Να γράψετε τη χρονική εξίσωση της δυναμικής ενέργειας της ταλάντωσης, θεωρώνταςθετικήφοράπροςταπάνω. γ) Να βρείτε το μέτρο της ταχύτητας της ταλάντωσης του σώματος, όταν το ελατήριοείναισυσπειρωμένοκατάδl=0,6m. Δίνεται:g=10m/s 2. Απαντήσεις: α)α=0,8mβ)u=32.ημ 2 (5t+π/2)(S.I)γ)υ= 15m/s Χάσιμοεπαφής 15. Στο παρακάτω σχήμα φαίνεται ένα σώμα (2) μάζας m 2 =3Kg το οποίο είναι δεμένοστοάκροτουιδανικούελατηρίουσταθεράς k=100n/m και εκτελεί απλή αρμονικήταλάντωση.πάνωστοσώμα(2)βρίσκεταιτοσώμα(1)μάζαςm 1 =1Kg.Οι επιφάνειες των δύο σωμάτων είναι τραχιές και ο συντελεστής στατικής τριβής μεταξύτωνδύοεπιφανειώνείναιμ oρ =1. (1) k(2) α) Να βρείτε το μέγιστο πλάτος ταλάντωσης ώστε το σώμα (1) να μη γλιστρήσει πάνωαπόστοσώμα(2),μεαποτέλεσμαναχαθείηεπαφήτωνδύοσωμάτων. β)ναβρείτετομέτροτηςστατικήςτριβήςπουδέχεταιτοσώμα(1)τηστιγμήπουη ταχύτητατουσυστήματοςτωνδύοσωμάτωνέχειμέτρου=1m/s. 9

11 Απάντηση: α)α=0,4mβ)τ στ =5 3Ν. Σύνδεσηελατηρίωνσεσειράκαιπαράλληλα 16. A.Ταδύοελατήριατουπαρακάτωσχήματοςέχουνσταθερέςk 1 =1200N/mκαι k 2 =400N/mκαιτοσώμαέχειμάζαm=3kg.Ταδύοελατήριαβρίσκονταιστοφυσικό τουςμήκοςκαιτοσώμαισορροπείακίνητοπάνωστολείοοριζόντιοδάπεδο. k 2 k 1 m Νααποδείξετεότιτοσύστημαμπορείναεκτελέσειαπλήαρμονικήταλάντωσηκαι ναυπολογίσετετηπερίοδοτης. B. Τα δύο ελατήρια του παρακάτω σχήματος έχουν σταθερές k 1 =300N/m και k 2 =500N/mκαιτοσώμαέχειμάζαm=2kg.Ταδύοελατήριαβρίσκονταιστοφυσικό τουςμήκοςκαιτοσώμαισορροπείακίνητοπάνωστολείοοριζόντιοδάπεδο k 1 m k 2 Νααποδείξετεότιτοσύστημαμπορείναεκτελέσειαπλήαρμονικήταλάντωσηκαι ναυπολογίσετετηπερίοδοτης. Απάντηση:Α.Τ=π/5sB.T=π/15s 10

12 Σύνδεσηελατηρίωνσεσειρά 17. Τα ελατήρια του διπλανού σχήματος έχουν σταθερές k 1 =400N/m και k 2 =100N/m και το σώμα μάζας m=0,8kg συγκρατείται σε τέτοια θέση ώστε τα ελατήρια να έχουν το φυσικό τους μήκος. Τη χρονική στιγμή t 1 το σώμααφήνεταιελεύθερονακινηθεί. α) Να αποδείξετε ότι το σώμα θα εκτελέσει k 2 απλή αρμονική ταλάντωση και να υπολογίσετετηπερίοδοτης. β)ναυπολογίσετετηδυναμικήενέργειατου κάθε ελατηρίου τη χρονική στιγμή που k 1 μηδενίζεται η δυναμική ενέργεια της ταλάντωσης. γ) Να γράψετε τη χρονική εξίσωση της ταχύτητας του σώματος, θεωρώντας θετική φοράτηπροςταπάνω. Δίνεται:g=10m/s 2 m Απάντηση: α)τ=0,2πsβ)u ελατ(1) =0,08J,U ελατ(2) =0,32Jγ)υ=1.συν(10t+π/2)(S.I) Τοσώμαακουμπάειστοέναελατήριο 18. Στο παρακάτω σχήμα το σώμα Σ έχει μάζα m=1kg και είναι δεμένο στο ελατήριο σταθεράς k 1 =100N/m, ενώ απλά ακουμπάει στο ελατήριο σταθεράς k 2 =300N/m.Στηθέσηαυτή(x=0),ταδύοελατήριαέχουντοφυσικότουςμήκοςκαι το σώμα ισορροπεί ακίνητο. Τη χρονική στιγμή t=0 δίνουμε στο σώμα ταχύτητα μέτρου υ=3m/s με φορά προς το ελατήριο σταθεράς k 2, η οποία θεωρείται και θετικήφορά. m(+) k 1 k 2 x=0 α) Να δείξετε ότι η κίνηση του σώματος είναι περιοδική και να υπολογίσετε τη περίοδότης. β)ποιεςείναιοιμέγιστεςαπομακρύνσειςτουσώματοςπροςτηθετικήκαιπροςτην αρνητικήκατεύθυνση; γ) Να υπολογίσετε την απομάκρυνση και την ταχύτητα του σώματος τις χρονικές στιγμέςt 1 =π/120sκαιt 2 =8π/120s. Απάντηση. α)τ=3π/20sβ)a 1 =3/20m,A 2 =3/10m γ)x 1 =+3/40m,υ 1 =+1,5 3m/s,x 2 =]3/20m,υ 2 =]1,5 3m/s, 11

13 Ασκούμεδιαρκώςσταθερήδύναμη 19. Το σώμα μάζας m=1kg του διπλανού σχήματος ισορροπεί δεμένο στα ελεύθεραάκρατωνδύοοριζόντιωνιδανικώνελατηρίωνμεσταθερέςk 1 =100N/m καιk 2 =300N/m.Θεωρήστεότιταδύοελατήριαέχουντοφυσικότουςμήκος.Τη χρονικήστιγμήt o =0ασκούμεστοσώμασταθερήοριζόντιαδύναμημέτρουF=100N, στηδιεύθυνσητωνδύοελατηρίωνμεφοράπροςταδεξιά. m k 1 k 2 α. Να αποδείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να υπολογίσετετηνπερίοδότης. β.ναυπολογίσετετηνενέργειαταλάντωσηςτουσώματος. γ. Να γράψετε την εξίσωση της απομάκρυνσης σε συνάρτηση με το χρόνο, θεωρώνταςθετικήτηνκατεύθυνσηπροςταδεξιά. δ. Να υπολογίσετε τη χρονική στιγμή t 1 κατά την οποία η κινητική ενέργεια του σώματοςγίνεταιτριπλάσιατηςδυναμικήςενέργειαςταλάντωσης,γιαπρώτηφορά. ε.ναυπολογίσετετορυθμόμεταβολήςτηςορμήςτουσώματοςτηχρονικήστιγμή t 2 =π/30s. στ.να υπολογίσετε το ρυθμό μεταβολής της κινητικής ενέργειας του σώματος τη χρονικήστιγμήπουηεπιτάχυνσήτουέχειαλγεβρικήτιμήα=+50m/s 2,γιαπρώτη φορά. ζ. Να υπολογίσετε την ορμή του σώματος τη χρονική στιγμή που διέρχεται για πρώτη φορά από τη θέση στην οποία το μέτρο της δύναμης από το ελατήριο σταθεράςk 2 είναιίσομετομισότουμέτρουτηςδύναμηςf. η.ναυπολογίσετετοέργοτηςδύναμηςεπαναφοράςαπότηχρονικήστιγμήt o =0 έωςτηστιγμήt 3 =π/40s. θ. Να υπολογίσετε την ισχύ της δύναμης F τη χρονική στιγμή που η ελαστική δυναμική ενέργεια του ελατηρίου σταθεράς k 1, ισούται με το 25% της ενέργειας ταλάντωσηςτουσώματοςγιαπρώτηφορά. Θεωρήστεότικατάτηδιάρκειατηςκίνησηςτουσώματοςδενυπάρχουντριβέςκαι αντιστάσειςαπόαέρα. Απ.α)Τ=0,1πs β)e=12,5j.γ)x=0,25.ημ(20t+3π/2)στοs.i.δ)t 1 =π/60s ε)dp/dt=]50nστ)dk/dt=125 3J/sζ)p 2 =(10 2)/3Kg.m/sη)W ΣF =12,5J θ)p=500w 12

14 20. Τοκιβώτιοτουδιπλανούσχήματος έχει μάζα m και είναι δεμένο στο ελεύθερο άκρο κατακόρυφου ιδανικού ελατήριου το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε οροφή. Στην οροφή του κιβωτίου είναι κολλημένοσώμαίσηςμάζαςμεαυτόκαι ηδιάταξηισορροπεί.ηεπιμήκυνσητου ελατήριουείναι20cm.κάποιαστιγμήτο σώμα ξεκολλά από την οροφή και m αρχίζειναπέφτει,ενώτοκιβώτιοξεκινά να κάνει απλή αρμονική ταλάντωση. Μετά από λίγο το σώμα συγκρούεται πλαστικά με το δάπεδο του κιβωτίου όταναυτόβρίσκεταιστηνανωτάτηθέση τηςταλάντωσήςτου. Ναυπολογιστούν: α.τοπλάτοςταλάντωσηςτουσυσσωματώματος. β.τούψοςdτουκιβωτίου. Δίνεταιπ 2 =10. Απ.α)A=30cmβ)d=70cm Κάποιαστιγμήαποκολλάταιτοέναελατήριο 21. Ταδύοιδανικάελατήριατουπαρακάτωσχήματος,είναικατακόρυφα,έχουν το φυσικό τους μήκος, τα ελεύθερα άκρα τους εφάπτονται και έχουν σταθερές k 1 =100N/mκαιk 2 =300N/m.Δένουμεσταάκρατωνδύοελατηρίωνένασώμαμάζας m=1kgκαιτοαφήνουμεναισορροπήσει.στησυνέχειατοεκτρέπουμεπροςτακάτω κατάd=4cmκαιτοαφήνουμεελεύθερονακινηθεί. k 1 Θ.Φ.Μ k 2 Α. Να αποδείξετε ότι το σώμα θα κάνει απλή αρμονική ταλάντωση και να υπολογίσετετηπερίοδότης. m d d 13

15 Β.Όταντοσώμαβρίσκεταιστηθέσηx=+A,τοελατήριοσταθεράςk 2 αποκολλάται απότομαχωρίςναμεταβληθείηταχύτητατουσώματος.τοσώμασυνεχίζεινακάνει απλήαρμονικήταλάντωσηδεμένομόνοστοελατήριοσταθεράςk 1. α)ναυπολογίσετετοπλάτοςτηςνέαςταλάντωσης. β)ναβρείτετολόγοτωνενεργειώντωνδύοταλαντώσεων. γ)ναγράψετετηνχρονικήεξίσωσητηςαπομάκρυνσηςγιατηνέαταλάντωση. Θεωρείστεχρονικήστιγμήt=0τηστιγμήτηςαποκόλλησηςκαιθετικήφοράπροςτα κάτω.δίνεταιg=10m/s 2. Απάντηση. Α)Τ=π/10sB)α)Α =3,5cmβ)256/49γ)x=3,5ημ(10t+3π/2)(S.I) Κατακόρυφο ελατήριοkδίσκος πάνω στον οποίο βρίσκεται ένα σώμα. Χάσιμο επαφής. 22. Ένας δίσκος μάζας Μ=1Kg ισορροπεί συνδεδεμένος στο πάνω άκρο ενός κατακόρυφου ιδανικού ελατηρίου σταθεράς k=100n/m, το κάτω άκρο του οποίου είναι στερεωμένο στο έδαφος. Τη χρονική στιγμή t=0 αφήνουμε πάνω στο δίσκο σώμα μάζας m=3kg οπότε το σύστημα αρχίζει να εκτελεί απλή αρμονική ταλάντωση. α)να υπολογίσετε τη σταθερά επαναφοράς της ταλάντωσης του σώματος μάζας m,τοοποίοακουμπάπάνωστοδίσκο. β)ναγράψετετηνεξίσωσητηςδύναμηςπουδέχεταιτοσώμαμάζαςmεξαιτίαςτης επαφής του με το δίσκο, σε συνάρτηση με την απομάκρυνση y του συστήματος δίσκος]σώμα από τη θέση ισορροπίας του, να σχεδιάσετε την αντίστοιχη γραφική παράστασηκαινααποδείξετεότιτοσώμαμάζαςmδενχάνειτηνεπαφήτουμετον δίσκο. γ)ναγράψετετιςχρονικέςεξισώσειςτηςκινητικήςενέργειαςτουσώματοςμάζαςm καιτηςδυναμικήςενέργειαςταλάντωσηςτου,θεωρώνταςωςθετικήφοράπροςτα πάνω και να σχεδιάσετε τις γραφικές τους παραστάσεις σε κοινό σύστημα βαθμολογημένωναξόνων. δ) Να υπολογίσετε το ρυθμό μεταβολής της ορμής του συστήματος δίσκος]σώμα τις στιγμές κατά τη διάρκεια της ταλάντωσης που η δυναμική ενέργεια του ελατηρίουείναιμέγιστη. Δίνεταιηεπιτάχυνσητηςβαρύτητας:g=10m/s 2 Απάντηση: α)d 1 =75N/mβ)Ν=30]75y(S.I)]0,3m<y<+0,3m γ)u=3,375ημ 2 (5t+π/2)(S.I),K=3,375συν 2 (5t+π/2)(S.I)δ)dp/dt=30Kg.m/s 2 14

16 Απλήαρμονικήταλάντωσηκαιδιάσπαση 23. Ένας γλάρος μάζας m στέκεται ακίνητος πάνω σε δίσκο μάζας Μ που είναι δεμένοςστοπάνωάκροιδανικούκατακόρυφουελατηρίουσταθεράςk=200n/m,το κάτω άκρο του οποίου στερεώνεται στο έδαφος. Κάποια χρονική στιγμή που τη θεωρούμε ως t=0, ο γλάρος απογειώνεται κατακόρυφα από το δίσκο έχοντας αρχικήταχύτηταυ 0.Οδίσκοςμετάτοπέταγματουγλάρουεκτελείαπλήαρμονική ταλάντωσημεχρονικήεξίσωσηαπομάκρυνσης: y=0,1 3ημ(10t+4π/3)(S.I). Nαυπολογίσετε: α)τημάζαμτουδίσκου, β)τομέτροτηςταχύτηταςτουγλάρουτηστιγμήτηςαπογείωσήςτου, γ)τορυθμόμεταβολήςτηςταχύτηταςτουδίσκουτηςστιγμήτηςαπογείωσηςτου γλάρου, δ) το ρυθμό μεταβολής της κινητικής ενέργειας του δίσκου της στιγμή της απογείωσηςτουγλάρου. Δίνεταιότιγιατηνταλάντωσητουδίσκουθετικήφοράείναιηπροςταπάνωκαιη επιτάχυνσητηςβαρύτηταςg=10m/s 2. Απάντηση: α)μ=2κgβ)υ 0 = 3/3m/sγ)α=+15m/s 2 δ)dk/dt=]15 3J/s. 24. Ένα βλήμα μάζας m 1 =0,1 Kg κινείται οριζόντια με ταχύτητα υ=60 m/s και σφηνώνεται στο σώμα Α που έχει μάζα m 2 =0,9 Kg. Το σώμα Α συνδέεται μέσω ιδανικού ελατηρίου σταθεράς k=400 N/m με ένα άλλο σώμα Β μάζας M=20Kg.Το δάπεδο ακριβώς κάτω από το σώμα Β είναι τραχύ και παρουσιάζει συντελεστή στατικήςτριβήςμ ορ =0,8.Τοσυσσωμάτωμαπουπροκύπτειαρχίζειναεκτελείαπλή αρμονικήταλάντωση. υ 1.ΝαβρεθείημέγιστητιμήτηςτριβήςπουασκείταιστοσώμαΒ. 2.ΝαβρεθείηχρονικήσυνάρτησητηςδύναμηςτριβήςπουδέχεταιτοσώμαΒαπό το δάπεδο. Να θεωρήσετε ως στιγμή t=0 τη στιγμή της κρούσης και θετική φορά προςταδεξιά. 15

17 3.Ποιαπρέπειναείναιημέγιστητιμήτηςταχύτηταςτουβλήματος,ώστεναμην μετακινηθείτοσώμαβ; Απάντηση.1.Τ=120Ν2.Τ=]120ημ(20t)(S.I)3.υ=80m/s. 25. Στο διπλανό σχήμα φαίνεται ένα ιδανικό ελατήριο σταθεράς k στο κάτω άκρο του οποίου είναι δεμένο σώμα Σ μάζας m. Το σώμα Σ με τη σειρά του ηρεμεί πάνω σε οριζόντιο δάπεδο. Από ύψος h=0,1m αφήνεται να πέσει ένα άλλο σώμα Σ, ίσης μάζας, το οποίο προσκολλάται στο ελατήριο και αρχίζει ναταλαντώνεται.ημέγιστησυσπείρωση τουελατηρίουείναιεπίσηςίσημεh. 1. Να υπολογίσετε τη μέγιστη ταχύτητα τουσμέχριναακινητοποιηθείστιγμιαία. Σ h h 2. Να αποδείξετε ότι το Σ θα Σ Σ αναπηδήσειαπότοέδαφος. 3.Ποιαθαείναιηπαραμόρφωσητουελατηρίουότανθασυμβείηαναπήδηση; Απάντηση.1.υ max =1,5m/s3.Επιμήκυνσηκατά1/40m 26. Στο διπλανό σχήμα φαίνεται ένα ιδανικόελατήριοσταθεράς k=100 N/m, στοκάτωάκροτουοποίουείναιδεμένο σώμα Σ μάζας Μ=3,5Kg. ΤοσώμαΣ με τη σειρά του ηρεμεί πάνω σε οριζόντιο δάπεδο. Στο πάνω άκρο του ελατηρίου βρίσκεται δεμένο ένα άλλο σώμα Σ μάζας m=3kg, το οποίο επίσης είναι ακίνητο.τηχρονικήστιγμήt=0τοσώμα Σ εκρήγνυται σε δύο κομμάτια Σ 2 και Σ 1 με μάζες m 2 και m 1 =m 2 /2. Το σώμα Σ 1 μένει δεμένο στο ελατήριο και εκτελεί απλή αρμονική ταλάντωση ενώ το Σ 2 εκτοξεύεται κατακόρυφα προς τα πάνω υ 2 Σ 2 Σ Σ 1 υ 1 φτάνονταςσεύψος h=0,15m πάνω από το σημείο της έκρηξης, από όπου και απομακρύνεται.ναυπολογίσετε: Σ Σ 16

18 α)τοπλάτοςτηςταλάντωσηςτουσ 1. β)τηχρονικήστιγμήt 1 πουκαθώςεξελίσσεταιηταλάντωσητοελατήριοέχειγια πρώτηφοράτημέγιστηεπιμήκυνση. γ)τηχρονικήσυνάρτησητηςδύναμηςεπαφήςπουδέχεταιτοσ απότοδάπεδο. δ)τομέγιστοπλάτοςταλάντωσηςτουσ 1,ώστετοΣ ναμηχάσειτηνεπαφήτουμε τοέδαφος. Απάντηση. α)α=0,4mβ)t=4π/30sγ)n=45]40ημ(10t+7π/6)(s.i)δ)a max =0,45m 27. Στο διπλανό σχήμα φαίνονται δύο σώματασ 1 καισ 2 μεμάζεςm 1 =m 2 =1Kgτα οποία είναι κολλημένα μεταξύ τους με ειδική κόλλα που αντέχει μέγιστη (+) δύναμη F=30N. Το συσσωμάτωμα είναι δεμένο στο κάτω άκρο ιδανικού κατακόρυφουελατηρίουσταθεράςkκαι ισορροπεί ακίνητο με το ελατήριο να είναι επιμηκυμένο κατά Δl 0 =0,1m σε σχέσημετοφυσικότουμήκος. Α. Τη χρονική στιγμή t=0 δίνουμε στο Θ.Φ.Μ Δl 0 σύστημακατακόρυφηταχύτηταπροςτα υθ.ι πάνω,μέτρουυ=4m/sκαιαυτόαρχίζει Σ 1 ναεκτελείαπλήαρμονικήταλάντωση. Σ 2 1.Ποιοείναιτοπλάτοςτηςταλάντωσης τουσυσσωματώματος; 2. Ποια είναι η συνάρτηση με την απομάκρυνση από τη θέση ισορροπίας, της δύναμηςfπουασκείηκόλλαστοσώμασ 2 ; 3.ΣεποιααπομάκρυνσηκαιποιαχρονικήστιγμήτοΣ 2 αποκολλάταιαπότοσ 1 ; Β. Μετά την αποκόλληση το Σ 1 συνεχίζει να εκτελεί απλή αρμονική ταλάντωση. Δεχόμαστε επίσης ότι δεν μεταβάλλεται η ταχύτητα του Σ 1 εξαιτίας της αποκόλλησης. 1.ΝαβρείτετοπλάτοςτηςταλάντωσηςτουΣ Να υπολογίσετε την απόλυτη τιμή του μέγιστου ρυθμού μεταβολής της ταχύτηταςτουσ 1. Δίνονται:g=10m/s 2 καιπ=3,14. Απάντηση. Α.1.2. Β

19 28. ΔύοσώματαΑκαιΒέχουνμάζες m 1 =1Kg και m 2 =2Kg και κρέμονται από το έναάκροελατηρίουσταθεράςk=100n/mόπωςφαίνεταιστοσχήμα.ηγωνίακλίσης του λείου κεκλιμένου επιπέδου είναι φ=30 0. Τα δύο σώματα αρχικά ισορροπούν ακίνητα και είναι δεμένα μεταξύ τους με αβαρές νήμα. Τη χρονική στιγμή t=0 κόβουμετονήμαοπότετοσώμαααρχίζειναεκτελείαπλήαρμονικήταλάντωση. A B α)ναβρεθείοχρόνοςπουχρειάζεταιτοσώμααγιαναφτάσειστηπάνωακραία θέσηγιαπρώτηφορά. β)ναβρεθείτοπλάτοςτηςταλάντωσηςτουσώματοςα. γ) Να γραφεί η χρονική εξίσωση της επιτάχυνσης της ταλάντωσης θεωρώντας ως θετικήφοράτηφοράπροςταπάνω. δ)ναβρεθείτομέτροτηςταχύτηταςτουσώματοςακάθεφοράπουδιέρχεταιαπό τηθέσηφυσικούμήκουςτουελατηρίου. Απ.α)t=π/10sβ)Α=0,1mγ)α==10ημ(10t π/2)(s.i)δ) = 3/2m/s. Χάσιμοεπαφής 29. Στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς k=400 N/m που έχει στερεωθεί στο έδαφος δένουμε δίσκο μάζας Μ=3 Kg. Πάνω στο δίσκο έχει τοποθετηθεί σώμα μάζας m=1kg και το σύστημα ισορροπεί. Συμπιέζουμε το σύστημα έτσι ώστε το ελατήριο να συσπειρωθεί κατά 0,2m και τη χρονική στιγμή t=0τοαφήνουμεελεύθερονακινηθείχωρίςαρχικήταχύτητα. m M α)ναβρεθείηθέσηπουτοσώμαχάνειτηνεπαφήτουμετοδίσκο. 18

20 β)ποιαχρονικήστιγμήχάνεταιηεπαφή; γ)ναβρεθείηταχύτητατουσυστήματοςτηστιγμήπουχάνεταιηεπαφή. Δίνεταιg=10m/s 2. Απ.α)χ=0,1mβ)t=π/15sγ)υ= 3m/s. 30. Στο διπλανό σχήμα φαίνονται δύο σώματα Σ 1 και Σ 2 με μάζες m 1 = 1Kg και m 2 =3Kgταοποίαείναιδεμέναστοκάτω άκρο κατακόρυφου ιδανικού ελατηρίου (+) σταθεράςk. A. To σύστημα εκτελεί απλή αρμονική ταλάντωση με χρονική εξίσωση απομάκρυνσης x=0,08.ημ(10t) (S.I). Να υπολογίσετε: Σ 1 1.Τησταθεράkτουελατηρίου. 2.Τηνενέργειατηςταλάντωσης. Σ 2 3. Την τάση του νήματος τη χρονική στιγμήt=π/60s. B. Όταν το σώμα Σ 2 βρίσκεται στη κατώτερη θέση της ταλάντωσης, κόβουμε το νήμαοπότεσυνεχίζειναταλαντώνεταιμόνοτοσ 1.Ναβρείτε: 1.ΤοπλάτοςταλάντωσηςτουΣ 1. 2.ΤορυθμόμεταβολήςτηςορμήςτουΣ 1 όταντοελατήριοείναισυσπειρωμένοκατά Δl=0,115m. Γ. Ποιο είναι το μέγιστο πλάτος ταλάντωσης του συστήματος της περίπτωσης(α), ώστεναπαραμένειτεντωμένοτονήμα; Δίνεται:g=10m/s 2 Απάντηση. Α Β.1.2. Γ. 19

21 31. Τα δύο σώματα Σ 1 και Σ 2 του παρακάτω σχήματος, έχουν μάζες m 1 =1Kg και m 2 =3Kg αντίστοιχα και ηρεμούν πάνω στο λείο οριζόντιο δάπεδο, δεμένα μεταξύ τους με νήμα μήκους d. Το σώμα Σ 1 είναι δεμένο στο ελατήριο σταθεράς k=400 N/m.ΤραβάμετοσώμαΣ 2 προςτααριστεράεπιμηκύνονταςτοελατήριοκατά0,4m και τη στιγμή t=0, αφήνουμε ελεύθερο το σύστημα να εκτελέσει απλή αρμονική ταλάντωση. (+) Σ 2 Σ 1 1. Να βρεθεί η τάση του νήματος που δέχεται το σώμα Σ 2 σε συνάρτηση με το χρόνο και να γίνει η γραφική της παράσταση. Θεωρείστε θετική φορά προς τα δεξιά. 2.Ταδύοσώματασυγκρούονταιπλαστικάτηχρονικήστιγμήt=3π/40s.Ναβρεθεί τομήκοςτουνήματος. 3.Ναβρεθείηενέργειατηςταλάντωσηςτιςχρονικέςστιγμέςt 1 =3π/80s,t 2 =5π/80s, t 3 =7π/80s. 4.Ναβρεθείορυθμόςμεταβολήςτηςκινητικήςενέργειαςαμέσωςμετάτηκρούση. Απάντηση. 1.Τ=]120.ημ(10t+3π/2)(S.I)2.d=0,114m3.Ε 1 =32J,E 2 =8J,E 3 =27J4.dK/dt=]240J/s (K.MAΡ) 32. Ένασώμαείναιδεμένοστοδεξιόάκροοριζόντιουιδανικούελατηρίουκαιστο αριστερόάκροοριζόντιουνήματοςκαιηρεμείσεισορροπίαόπωςδείχνειτοσχήμα. Το ελατήριο και το νήμα έχουν τα άλλα τους άκρα ακλόνητα. Στη θέση αυτή, το ελατήριοέχειεπιμηκυνθείκατάδl=0,2mαπότοφυσικότουμήκος,καιτονήμα είναι τεντωμένο. Κάποια στιγμή κόβουμε το νήμα και το σύστημα ελατήριο]σώμα αρχίζεινακάνειαπλήαρμονικήταλάντωσημεπλάτοςα. Θαείναι α.α=0,1mβ.α=0,2mγ.α=0,3mδ.α=0,4m Απάντηση:β. 20

22 33. To σώμα του σχήματος βάρους w=40n, είναι δεμένο στο κάτω άκρο κατακόρυφου νήματος και στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k=400n/m και ισορροπεί σε ηρεμία.τοελατήριοστηθέσηαυτήέχει επιμηκυνθεί κατά Δl=0,2m από το φυσικό του μήκος. Τη χρονική στιγμή t=0, κόβουμε το νήμα και το σώμα αρχίζει να κάνει απλή αρμονική ταλάντωσηπλάτουςα. Θαείναι α.α=0,1mβ.α=0,2m γ.α=0,3mδ.α=0,4m Απάντηση:γ Ασκούμεδιαρκώςσταθερήδύναμη 34. Το σώμα Σ 1 του σχήματος μάζας m, αρχικά ηρεμεί πάνω σε λείο οριζόντιο επίπεδο, δεμένο στο δεξιό άκρο του οριζόντιου ιδανικού ελατηρίου που έχει σταθερά k και το άλλο του άκρο ακλόνητο. Στη θέση αυτή το ελατήριο έχει το φυσικότουμήκος.τηχρονικήστιγμήt=0,ασκούμεδιαρκώςστοσώμαοριζόντια σταθερήδύναμηfστηδιεύθυνσητουελατηρίου,όπωςστοσχήμαμεαποτέλεσμα νααρχίσεινακάνειαπλήαρμονικήταλάντωσηπλάτουςα 1 =0,1m.Ανεπαναλάβουμε το ίδιο πείραμα αλλά αντί του Σ 1 δέσουμε στο ελατήριο σώμα Σ 2 μάζας 2m το πλάτοςτηςνέαςταλάντωσηςθαείναι: Σ 1 F α.α=0,1mβ.α=0,2mγ.α=0,3mδ.α=0,4m Απάντηση:α 21

23 Ασκούμεμεταβλητήδύναμηηοποίακαταργείται 35. Το μεγάλου μήκους ελατήριο του παρακάτω σχήματος έχει σταθερά k=100n/mκαιτοσώμαέχειμάζαm=2kg.κάποιαστιγμήκαιενώτοσώμαβρίσκεται στη θέση του φυσικού του μήκους ασκείται στο σώμα η δύναμη F της οποίας η συνάρτηση με την απόσταση x δίνεται από τη σχέση F(x)=1000]100x(S.I). Όταν το σώμα έχει διανύσει στο λείο οριζόντιο επίπεδο απόσταση 6m καταργείται η επίδρασητηςδύναμηςf.ναυπολογίσετε: Θ.Φ.Μ Σ 1 F(x) x α)τηνμέγιστηταχύτηταπουαποκτάτοσώμακαθώςκινείταιμετηνεπίδρασητης δύναμηςf, β)τηνταχύτητατουσώματοςτηχρονικήστιγμήπουκαταργείταιηδύναμηf, γ)τηνχρονικήεξίσωσητηςαπομάκρυνσηςγιατηνταλάντωσηπουεκτελείτοσώμα μετά την κατάργηση της δύναμης F. Να θεωρήσετε t=0 τη στιγμή της κατάργησης τηςδύναμηςκαιθετικήφοράπροςταδεξιά. 36. Α. Από το κάτω άκρο κατακόρυφου ελατηρίου σταθεράς k=100n/m, κρέμεται ένα σώμα μάζας m=1κg και το σύστημα είναι ακίνητο. Τραβάμε το σώμα προς τα κάτω κατά d=0,16m με τη βοήθεια σταθερής k κατακόρυφης δύναμης μέτρου F=12,5N και αμέσως μετά καταργούμε τη δύναμη.τοσώμααρχίζειτότεναεκτελεί απλήαρμονικήταλάντωση. mθ.ι 1.Ναβρείτετοπλάτοςτηςταλάντωσης. 2.Ναβρείτετομέτροτηςταχύτηταςτου F σώματος κάθε φορά που το ελατήριο έχειτοφυσικότουμήκος. Β. Έστω ότι η δύναμη καταργείται όταν το ελατήριο πάθει τη μέγιστη δυνατή επιμήκυνση. 1.Ποιοθαείναιτότετοπλάτοςτηςταλάντωσης; 22

24 Γ.Έστωότιηδύναμηδενκαταργείταιποτέ. 1.Ναδείξετεότιτοσώμαθακάνειαπλήαρμονικήταλάντωση. 2.Ναυπολογίσετετοπλάτοςκαιτηπερίοδοτηςταλάντωσης. Δίνονται:g=10m/s 2 καιπ=3, ΜιασφαίραΣ 1 βάρουςwείναιδεμένηστοκάτωάκροκατακόρυφουιδανικού ελατηρίου σταθεράς k. Το πάνω άκρο του ελατηρίου είναι ακλόνητο. Αρχικά, κρατάμετησφαίραακίνητηέτσιώστετοελατήριοναμηνέχειπαραμόρφωσηκαιτη χρονική στιγμή t = 0, την αφήνουμε ελεύθερη από τη θέση αυτή. Στησυνέχειατο σύστημαελατήριο]σφαίρακάνειαπλήαρμονικήταλάντωσηπλάτουςα 1 =0,1m. Αντίσταση αέρα αμελητέα Αν επαναλάβουμε το ίδιο πείραμα αλλά αντί του Σ 1 δέσουμεστοελατήριοσώμασ 2 μάζας2m,τοπλάτοςτηςνέαςταλάντωσηςθαείναι α.α 2 =0,1mβ.Α 2 =0,2mγ.Α 2 =0,3mδ.Α 2 =0,4m Απάντηση:β 38. Στο ελεύθερο κάτω άκρο ιδανικού κατακόρυφου ελατηρίου σταθεράς k, κρεμάμεένασώμαμάζαςmκαιτοκρατάμεακίνητοστηθέσηπουτοελατήριοέχει τοφυσικότουμήκος.κάποιαστιγμήαφήνουμεελεύθεροτοσώμα να εκτελέσει απλή αρμονική ταλάντωση και παρατηρούμε ότι ακινητοποιείται στιγμιαία αφού διανύσειαπόσταση d=5cm. Η περίοδος της ταλάντωσης του συστήματος αυτού είναι: α)τ=π/10sβ)τ=π/20sγ)τ=π/5s Απάντηση:α 39. ΔυοοριζόντιαεντελώςόμοιαιδανικάελατήριαΑκαιΒ,έχουνστερεωθείσε δυο κατακόρυφους τοίχους όπως δείχνει το σχήμα, έτσι ώστε τα ελεύθερα άκρα τουςνααπέχουνκατάd.τοσώμασ,εφάπτεταιστοδεξιόάκροτουελατηρίουα, και ηρεμεί σε ισορροπία πάνω στο λείο οριζόντιο επίπεδο. Εκτρέπουμε προς τα αριστεράτοσώμασκατάδx=d/2καιτοαφήνουμεελεύθεροαπότηθέσηαυτή. d ΑΒ ΤοπλάτοςτηςταλάντωσηςπουθακάνειτοσώμαΣείναι α.α=dβ.a=d/2γ.α=2d,δα=d/3 23

25 Απάντηση:α 40. ΈνασώμαΣμάζαςβάρουςwείναι δεμένο στο πάνω άκρο κατακόρυφου ιδανικούελατηρίου.αρχικά,κρατάμετο σώμα έτσι ώστε το κάτω άκρο του ελατηρίου να βρίσκεται σε ύψος h=w/k πάνω από ένα οριζόντιο δάπεδο, και από τη θέση αυτή, το αφήνουμε ελεύθερο. Όταν το κάτω άκρο του ελατήριου φτάνει στο δάπεδο σφηνώνεται σ αυτό και το σύστημα ελατήριο]σφαίρακάνειαπλήαρμονική ταλάντωσηπλάτουςα. Θαείναι: α)/ h β)(2)/ γ)( 3)/ δ)( 2)/ Απάντηση:γ 41. Ένασώμαμάζαςm=4kgείναιδεμένοστοκάτωάκροκατακόρυφουιδανικού ελατηρίου και εκτελεί απλή αρμονική ταλάντωση. Το πάνω άκρο του ελατηρίου είναι δεμένο σε σταθερό σημείο. Στο σχήμα δίνεται η γραφική παράσταση της αλγεβρικής τιμής της ταχύτητας του σώματος, σε συνάρτηση με το χρόνο όπου t 4 ] t 2 = π/5 s. Με δεδομένο ακόμη ότι, τη χρονική στιγμή t=0 το σώμα κινείται κατακόρυφαπροςταεπάνωναυπολογίσετε: υ(m/s) +2 0t 1 t 2 t 3 t 4 t K2 1.Τηναπομάκρυνσηx o τουσώματοςαπότηθέσηισορροπίαςτουτηχρονικήστιγμή t=0. 24

26 2.Τηνσυνάρτησηαπομάκρυνσης]χρόνουx=f(t). 3.Τιςχρονικέςστιγμέςt 1,t 2 καιt 3. 4.Τηνδυναμικήενέργειατουελατηρίουτηχρονικήστιγμήt=t Τις τιμές του έργου της δύναμης επαναφοράς, του έργου της δύναμης του ελατηρίουκαιτουέργουτουβάρους,απόt=0μέχριt=t 2 Δίνεταιg=10m/s² Απάντηση. 1.x 0 =]0,1m2. = 0,2. " 10 + (. )3.t 1 =π/60s,t 2 =4π/60s,t 3 =7π/60s 4.U ελ =2J5.W ΣF =]6J,W Fελ =+6J,W w =]12J Ανακύκλωση 42. Σώμαμάζαςm 2 =0,4KgκρέμεταιαπόνήμαμήκουςL=0,5mόπωςφαίνεταιστο παρακάτω σχήμα. Σε κάποια απόσταση από αυτό υπάρχει το ελεύθερο άκρο οριζόντιου ελατηρίου σταθεράς k=80n/m του οποίου το άλλο άκρο είναι στερεωμένοσεκατακόρυφοτοίχο.στοελεύθεροάκροτουελατηρίουτοποθετούμε σώμα μάζας m 1 =0,1 Kg χωρίς να το δέσουμε. Βλήμα μάζας m=0,1kg έρχεται με ταχύτητα υ και αφού διαπεράσει το σώμα μάζας m 2 συνεχίζει να κινείται με ταχύτηταυ/2καισφηνώνεταιστοσώμαμάζαςm 1. O L m 1 k mυ m 2 α)ναβρείτετηταχύτητατουβλήματοςυανείναιγνωστόότιμετάτηκρούσητο σώμαμάζαςm 2,εκτελείοριακάανακύκλωση. β)ναβρείτετητάσητουνήματοςαμέσωςμετάτηκρούση. γ)ναβρείτετημέγιστησυσπείρωσητουελατηρίου. δ)αντοσώμαμάζαςm 2,βρεθείταυτόχροναστηνίδιαθέσηΑμετοσυσσωμάτωμα μάζας m+m 1 και συγκρουστούν πλαστικά, να βρεθεί η ταχύτητα του συσσωματώματος. 25

27 Δίνεταιότιηεπιτάχυνσητηςβαρύτηταςισούταιμεg=10m/s 2 καιότιοιδιαστάσεις τωνσωμάτωνείναιασήμαντες. Απ.α)υ=40m/sβ)Τ=γ)ΔL max =0,5mδ)υ κ =10m/s. Πλαστικήκρούση 43. ΤοακίνητοσώμαΣ 1 μάζαςμ=9kgτουπαρακάτωσχήματοςείναιδεμένοστο έναάκροοριζόντιουελατηρίουσταθεράςk=400n/m,τοάλλοάκροτουοποίουείναι στερεωμένο σε ακλόνητο σημείο. Το ελατήριο βρίσκεται στη κατάσταση φυσικού μήκους. Μετακινούμε το σώμα Σ 1 στη θέση Δ, συσπειρώνοντας το ελατήριο κατά Δx=0,2m και αμέσως μετά το αφήνουμε ελεύθερο να κινηθεί χωρίς αρχική ταχύτητα. Ένα άλλο σώμα Σ 2 μάζας m=7kg κινείται οριζόντια στο λείο δάπεδο με ταχύτηταu 2 =2 2 m/sκαιτηχρονικήστιγμήt=0συγκρούεταικεντρικάκαιπλαστικά μετοσώμασ 1 τηστιγμήπουαυτόδιέρχεταιαπόθέσηx 1 >0τηςταλάντωσήςτου.Το συσσωμάτωμα που προκύπτει από την κρούση εκτελεί απλή αρμονική ταλάντωση μεενέργειαίσημετηνενέργειατηςταλάντωσηςτουσώματοςσ 1 πριντηνκρούση. (+) Θ.Ι u 2 u 1 k mμ x 1 Δx(Δ) α)ναυπολογίσετετοπλάτοςτηςταλάντωσηςτουσυσσωματώματος. β)ναυπολογίσετετηνταχύτητατηςταλάντωσηςτουσώματοςσ 1 ελάχισταπριντην κρούση,θεωρώνταςότιοιταχύτητεςτωνσωμάτωνσ 1 καισ 2 πριντηνκρούσηείναι θετικήκαιαρνητικήαντίστοιχακαιηταχύτητατουσυσσωματώματοςαμέσωςμετά τηκρούσηείναιαρνητική. γ)ναγράψετετηνεξίσωσητηςαπομάκρυνσηςτουσυσσωματώματοςσεσυνάρτηση μετοχρόνο. Απ.α)0,2mβ)2 2 /3m/sγ)x=0,2ημ(5t+3π/4) 26

28 Πλαστικήκρούση 44. Από σημείο της οροφής έχουμε κρεμάσει ιδανικό κατακόρυφο ελατήριο σταθεράςk=200ν/mστοάλλοάκροτουοποίουέχουμεστερεώσειμικρόσώμα(1) μάζας m 1 το οποίο ισορροπεί ακίνητο. Σώμα (2) που έχει μάζα m 2 κινείται κατακόρυφα προς τα πάνω και τη στιγμή t=0 σφηνώνεται στο σώμα(1). Μετά τη κρούση το συσσωμάτωμα που προκύπτει εκτελεί απλή αρμονική ταλάντωση με εξίσωσηαπομάκρυνσηςy=0,6ημ(5t+ 6 π )(S.I).Nαυπολογίσετε: α)τομέτροτηςταχύτηταςτουσυσσωματώματοςαμέσωςμετάτηκρούση, β)τοπηλίκοτηςθερμότηταςπουεκλύθηκεεξαιτίαςτηςκρούσηςπροςτηνενέργεια τηςταλάντωσηςτουσυσσωματώματος, γ)τημεταβολήτηςορμήςτουσώματος(2)εξαιτίαςτηςκρούσης, δ)τορυθμόμετονοποίομεταβάλλεταιηδυναμικήενέργειατηςταλάντωσηςτου συσσωματώματοςτηχρονικήστιγμήαμέσωςμετάτηκρούση.(g=10m/s 2 ) Απ.α)1,5 3 m/sβ)0,25γ)=3 3Κg.m/sδ)+90 3J/s Πλαστικήκρούση 45. Το σώμα μάζας Μ=3Kg του σχήματος είναι συνδεδεμένο με κατακόρυφο ελατήριο σταθεράς k=400n/m και εκτελεί απλή αρμονική ταλάντωση πλάτους Α=0,2m.Τηχρονικήστιγμήt=0πουδιέρχεταιαπότηθέσηx=+Α/2μεταχύτηταπου έχει φορά προς τα κάτω συγκρούεται μετωπικά και πλαστικάμε μικρή σφαίρα μάζαςm=1kgπουκινείταιμεταχύτηταu 1 κατακόρυφαπροςταπάνω.αμέσωςμετά τηνκρούσητοσυσσωμάτωμαέχειμηδενικήορμή. k Mu A/2mu 1 Θ.Ι(Μ) α)ναυπολογίσετετομέτροτηςταχύτηταςu 1 β)ναυπολογίσετετοπλάτοςτηςταλάντωσηςτουσυσσωματώματος. 27

29 γ) Να γράψετε τη χρονική εξίσωση ταχύτητας της ταλάντωσης του συσσωματώματος,θεωρώνταςθετικήφοράτηςταχύτηταςu 1.(g=10m/s 2 ) Απ.α)6m/sβ)0,125mγ)u=1,25συν(10t+π/2) ΠλαστικήκρούσηKΝ(t) 46. Ταδύοσώματατουσχήματοςέχουν μάζες m 1 =m 2 =2Kgκαι το ελατήριο έχει σταθερά k=400n/m. Αφήνουμε το σώμα μάζαςm 2 ναπέσειαπόύψοςh=0,15m m 2 πάνωαπότοσώμαμάζαςm 1 καιταδύοh σώματα συγκρούονται πλαστικά τη χρονική στιγμήt=0.nαβρείτε: α) Τη ταχύτητα του συσσωματώματος αμέσωςμετάτηκρούση. m 1 k β)τη χρονική εξίσωση της ταλάντωσης του συσσωματώματος και να κάνετε τη γραφική της παράσταση για την πρώτη περίοδο. (Θεωρήστε σαν θετική φορά την προς τα πάνω.) γ)ποια η χρονική εξίσωση της δύναμης που δέχεται το σώμα μάζας m 2 από το σώμαμάζαςm 1 κατάτηδιάρκειατηςταλάντωσης; Δίνεταιg=10m/s 2. Aπ:α) m/sβ)x=0,1.ημ(10t+5π/6)(s.i)γ)ν=20]20ημ(10t+5π/6)(s.i) Πλαστικήκρούση 47. Σώμαμάζαςm 1 =2Kgισορροπείδεμένοστοκάτωάκροκατακόρυφουιδανικού ελατηρίου σταθεράς k. Απομακρύνουμε το σώμα κατακόρυφα από τη θέση ισορροπίας του, προκαλώντας στο ελατήριο συσπείρωση ίση με την αρχική παραμόρφωσηπουπροκάλεσεημάζαm 1 καιτηχρονικήστιγμήt=0αφήνουμετο σύστημαελεύθεροναεκτελέσειαπλήαρμονικήταλάντωση. α)ανηπερίοδοςτηςταλάντωσηςείναιτ 1 =0,1πsναυπολογίσετετησταθεράkτου ελατηρίουκαιναγράψετετηνχρονικήεξίσωσητηςαπομάκρυνσης. 28

30 β)τηχρονικήστιγμήt=2π/15sτοσώμαμάζαςm 1 συγκρούεταιπλαστικάμεάλλο σώμα μάζας m 2 που ανεβαίνει με ταχύτητα μέτρου υ 2 =1,5. 3m/s και το συσσωμάτωμα που προκύπτει εκτελεί απλή αρμονική ταλάντωση με περίοδο Τ 2 =2Τ 1. i)ναυπολογίσετετηπαραμόρφωσητουελατηρίουκαιτηταχύτητατηςμάζαςm 1 τηχρονικήστιγμήτηςκρούσης. ii)ναυπολογίσετετημάζαm 2 καιτοπλάτοςτηςταλάντωσηςτουσυσσωματώματος. γ) Να συγκρίνετε τη μέγιστη συσπείρωση που προκαλείται στο ελατήριο από τις δύοταλαντώσεις. Θεωρήστετιςτριβέςασήμαντεςκαιωςθετικήφοράγιατηνταλάντωσητηνπροςτα πάνω.δίνεταιg=10m/s 2 ΦΘΙΝΟΥΣΑΜΗΧΑΝΙΚΗΤΑΛΑΝΤΩΣΗ Φθίνουσααρμονικήταλάντωση 48. Έναελατήριοσταθεράςk=100N/m κρέμεται κατακόρυφα και έχει φυσικό μήκοςl 0 =0,5m.Δένουμεστοκάτωάκρο του ένα σώμα μάζας m=2kg και το αφήνουμε να κινηθεί οπότε και εκτελεί L 0 φθίνουσα ταλάντωση εξαιτίας της αντίστασης του αέρα που είναι της μορφής F =]bυ. Κάποια στιγμή t 1 το σώμα κινείται προς τα κάτω και το ελατήριο έχει μήκος L=0,8m. Στη θέση αυτή η ταχύτητα του σώματος έχει μέτρου=0,8m/sκαιμειώνεταιμερυθμό L 1 υ 5,2m/s 2. Ναυπολογίσετε: α)τηνελάττωσητηςενέργειαςτηςταλάντωσηςαπότηστιγμήt=0μέχριτηστιγμή t 1. β)τησταθεράαπόσβεσηςb. γ)τορυθμόμετονοποίομειώνεταιηενέργειατηςταλάντωσηςτηστιγμήt 1. Απάντηση. α)0,86jβ)0,5kg/sγ)0.32j/s 29

31 Α.Α.Τκαιπλαστικήκρούση.Φθίνουσααρμονικήταλάντωση 49. Σώμα μάζας m 1 =4Kg ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k=400n/m. Ανεβάζουμε το σώμα αυτό κατά l=0,05m από τη θέση ισορροπίας του και το εκτοξεύουμε κατακόρυφα προς τα κάτω με ταχύτητα μέτρουυ 0 = 2 3 m/sοπότετοσώμααρχίζειναεκτελείαπλήαρμονικήταλάντωση. α)ναβρεθείτομέτροτηςμέγιστηςταχύτηταςταλάντωσης. β)κάποια στιγμή που το σώμα μάζας m 1 περνά από τη θέση ισορροπίας της ταλάντωσής του και κατεβαίνει συγκρούεται πλαστικά με σώμα μάζας m 2 που ανεβαίνειμεταχύτηταμέτρουυ 2.Μετάτησύγκρουσητοσυσσωμάτωμαανεβαίνει καιφτάνειμέχριτηθέσηπουβρίσκεταιπάνωαπότοφυσικόμήκοςτουελατηρίου κατά d=0,1m. Δίνεται ότι η περίοδος Τ ΟΛ της ταλάντωσης του συσσωματώματος είναιτ ΟΛ = 2 Τ 1,όπουΤ 1 είναιηπερίοδοςτηςταλάντωσηςτουσώματοςμάζαςm 1. Ναβρεθούν: i) ημάζαm 2 ii) ηταχύτηταυ 2 γ)κάποιαστιγμή(t=0)πουτοσυσσωμάτωμαείναισεακραίαθέσηταλάντωσης, βυθίζεταισευγρόοπότεαρχίζειναεκτελείφθίνουσαταλάντωσηγιατηνοποίαη αντιτιθέμενηδύναμηείναιτηςμορφήςf=]bυ.ναβρεθείποιαχρονικήστιγμήτο σύστημασυσσωμάτωμα]ελατήριοέχειχάσειενέργεια13,5j. ΔίνεταιότιησταθεράΛ=0,231s ] 1καιότιln2=0,693. Aπ:α)υ=1m/sβ)m 2 =4Kg,υ 2 =5m/sγ)t=3s Φθίνουσααρμονικήταλάντωση 50. Ένας ταλαντωτής μάζας m=0,2 Kg εκτελεί φθίνουσα ταλάντωση μικρής απόσβεσηςμεσυχνότηταf=0,5hzκαιπλάτοςπουμειώνεταιεκθετικάμετοχρόνο σύμφωνα με τη σχέση Α=2.e ]Λt (S.I). Μετά από 10 ταλαντώσεις η ενέργεια της ταλάντωσηςισούταιμε0,25j.ναυπολογίσετε: α) την απώλεια της ενέργειας στη χρονική διάρκεια των 10 πρώτων δευτερολέπτων, β)τησταθεράλ, 30

32 γ)τηχρονικήστιγμήt 2 πουτοπλάτοςτηςταλάντωσηςέχειγίνει0,25m, δ)τοέργοτηςδύναμηςαντίστασηςστηκίνησηαπότηχρονικήστιγμήt=0μέχριτη χρονικήστιγμήt 3 =40s. Δίνεται για τις πράξεις ότι π 2 =10 και ότι η συχνότητα της φθίνουσας ταλάντωσης ισούταιμετηνιδιοσυχνότητατουταλαντωτή. Απ.α)ΔΕ=3,75Jβ)Λ=0,1.ln2s ]1 γ)t 2 =30sδ)W=]255/64J Φθίνουσααρμονικήταλάντωση 51. Σημειακήμάζαm=1Kgκρέμεταιαπόιδανικόκατακόρυφοελατήριοσταθεράς k=100n/m το άλλο άκρο του οποίου είναι στερεωμένο στην οροφή. Το σώμα εκτρέπεταιαπότηθέσηισορροπίαςτουκατακόρυφαπροςταπάνωκατάδx=1mκαι τη χρονική στιγμή t=0 το αφήνουμε ελεύθερο να κινηθεί. Το σώμα εκτελεί φθίνουσαταλάντωσηκαιτοπλάτοςτουμειώνεταιεκθετικάμετοχρόνο.τοπλάτος μειώνεταικατά20%στηδιάρκειατηςπρώτηςπεριόδου.ναυπολογίσετε: α)τομέτροτηςδύναμηςεπαναφοράςστηδιάρκειατηςπρώτηςπεριόδου, β)τηναπώλειαενέργειαςστηδιάρκειατηςδεύτερηςπεριόδου, γ)τομέτροτηςδύναμηςτουελατηρίουστοτέλοςτηςτρίτηςπεριόδου, δ)τοποσοστό%τηςμείωσηςτουπλάτουςστηδιάρκειατηςδέκατηςπεριόδου. Δίνεταιηεπιτάχυνσητηςβαρύτηταςg=10m/s 2. Απ.α)F επαν =80Νβ)Ε απωλ =11,52Jγ)F ελ =41,2Νδ)π%=20% 52. Ένα σώμα μάζας m=2kg το πλάτος της οποίας μεταβάλλεται με το χρόνο σύμφωναμετησχέσηα=2.e ]Λt (S.I).Hενέργειατηςταλάντωσηςμεταβάλλεταιμετο χρόνοσύμφωναμετησχέσηε=16π 2.e ](ln16)t (S.I). Ναυπολογιστούν: α)ηπερίοδοςτηςταλάντωσης. β)οχρόνοςπουπρέπειναπεράσειγιαναυποδιπλασιαστείτοπλάτος. γ)τοπλάτοςτηςταλάντωσηςτηχρονικήστιγμήt=2s. δ)το % ποσοστό μείωσης της αρχικής ενέργειας κατά τη διάρκεια της δεύτερης περιόδουτηςταλάντωσης. 31

33 Απ.α)Τ=1sβ)Δt=0,5sγ)Α=1/8mδ)π=5,86% ΕΞΑΝΑΓΚΑΣΜΕΝΗΜΗΧΑΝΙΚΗΤΑΛΑΝΤΩΣΗ Εξαναγκασμένηταλάντωση Συντονισμός. 53. Ένα σώμα μάζας m=2kg δένεται από το ένα άκρο κατακόρυφου ελατηρίου σταθεράς k=200n/m το πάνω άκρο του οποίου είναι στερεωμένο σε ακλόνητο σημείο.μετακινούμετοσώμαπροςταπάνωκαιτοφέρνουμεστηνθέσηφυσικού μήκουςτουελατηρίου.τηνχρονικήστιγμήt=0αφήνουμετοσώμαελεύθεροαπό την θέση αυτή και εκτελεί ταλάντωση. Πάνω στο σώμα εκτός από την δύναμη επαναφοράςασκείταικαιεξωτερικήδύναμηαντίστασηςτηςμορφήςf =]b.υ,όπου b η σταθερά απόσβεσης και υ η αλγεβρική τιμή της ταχύτητας του σώματος. Παρατηρούμεότιμετάαπό2sτοπλάτοςτηςταλάντωσηςέχειυποτετραπλασιαστεί. Ναβρείτε: α.τηνενέργειαπουπροσφέρθηκεαρχικάστοσύστημαγιαναεκτελέσειταλάντωση καιτηναρχικήεπιτάχυνσητουσώματος. β.τηνσταθεράλτηςταλάντωσηςκαιτοέργοτηςδύναμηςαντίστασηςαπότηνt=0 ωςτην2s. γ. την απομάκρυνση του σώματος από την θέση ισορροπίας συναρτήσει του χρόνου. Μετά την 2s εξαναγκάζουμε το σύστημα σε αμείωτη ταλάντωση, οπότε ασκούμε μιακατάλληληεξωτερικήπεριοδικήδύναμη. δ. Ποια πρέπει να είναι η τιμή της συχνότητας της εξωτερικής δύναμης ώστε το σύστημα να ταλαντώνεται απορροφώντας ενέργεια με το βέλτιστο τρόπο και με πλάτοςαυτόπουείχετηστιγμήt=2s; ε. Ποιος είναι ο ρυθμός προσφοράς ενέργειας από τη εξωτερική δύναμη όταν το σώμαδιέρχεταιαπότηνθέσηισορροπίαςτου; Δίνεται:g=10m/s²,ln2=0,7καιότιησταθεράαπόσβεσηςείναιαρκετάμικρήώστε να θεωρήσουμε την περίοδο ίση με την περίοδο της αμείωτης ταλάντωσης του σώματος. Απ.α.Ε=1J,α 0 =10m/s 2 β.λ=0,7s 1,W F =]0,9375Jγ.x=0,1.e ]0,7t συν(10t)(s.i) δ.f=5/πhzε.dw/dt=0,175j/s Εξαναγκασμένηταλάντωση Συντονισμός. 54. Ένασώμαμάζαςm=2Kgεκτελείεξαναγκασμένηταλάντωσηπάνωστονάξονα x x,δεχόμενοτηνδύναμηεπαναφοράςf επ =]450x(S.I),τηδύναμηαντίστασηςF =]4υ (S.I)καιτηπεριοδικήεξωτερικήδύναμηF δ =30.συν14t(S.I). α)ναυπολογίσετετηνιδιοσυχνότητατουσυστήματος. 32

34 β)ναβρείτετηχρονικήδιάρκειατηςκίνησηςμεταξύδύοδιαδοχικώνμηδενισμών τηςδύναμηςαντίστασης. γ)αλλάζουμετησυχνότητατηςεξωτερικήςπεριοδικήςδύναμηςώστεναγίνειίσημε την ιδιοσυχνότητα του ταλαντωτή, οπότε και η εξίσωση της απομάκρυνσης είναι x=0,5.ημω 0 t (S.I). Να αποδείξετε ότι κάθε χρονική στιγμή ο ρυθμός προσφοράς ενέργειαςαπότηνεξωτερικήδύναμη,ισούταιμετορυθμόμετονοποίοαφαιρείται απότηδύναμηαντίστασης. Απάντηση:α)f 0 =7,5/πHzβ)Δt=π/14sγ)Ρ=225συν 2 15t(S.I) Εξαναγκασμένηταλάντωση Φθίνουσαταλάντωση. 55. Σώμα μάζας m=1kg εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια εξωτερικής περιοδικής δύναμης F εξ =40.συν20t (S.I) και η χρονική εξίσωση της απομάκρυνσης είναι η x=0,5.ημωt (S.I). Επίσης το σώμα δέχεται και δύναμη αντίστασης της μορφής F =]bυ η οποία είναι διαρκώς αντίθετη της F εξ. Η ιδιοσυχνότηταταλάντωσηςείναιf 0 =10/πHz. α)ναυπολογίσετετησταθεράαπόσβεσηςb. β) Να βρείτε το ρυθμό απορρόφησης ενέργειας από την δύναμη αντίστασης τη στιγμήt=33π/80s. γ) Τη στιγμή που το σώμα βρίσκεται στη θέση μέγιστης θετικής απομάκρυνσης καταργείταιηεξωτερικήδύναμη.ναυπολογίσετετοέργοτηςδύναμηςαντίστασης στηδιάρκειατηςπρώτηςπεριόδουτηςφθίνουσαςταλάντωσης. Θεωρείστε ότι η συχνότητα της φθίνουσας ταλάντωσης είναι ίση με την ιδιοσυχνότητατουσυστήματοςκαησταθεράλ=b/2m.γιατιςπράξειςδίνεται e ]1,256 =0,3. Απάντηση:α)b=4Kg/sβ)P=200J/sγ)W=]35J Εξαναγκασμένηταλάντωση 56. Ένασώμαμάζαςm=1Kgείναιδεμένοστοέναάκροκατακόρυφουελατηρίου το οποίο κρέμεται από την οροφή. Ένας διεγέρτης εξαναγκάζει το σύστημα σε ταλάντωση πολύ μικρής απόσβεσης με συχνότητα f 1 τέτοια ώστε το σώμα να διέρχεται 4 φορές από τη θέση ισορροπίας του σε κάθε δευτερόλεπτο. Αν ο διεγέρτης εξαναγκάζει το σύστημα σε ταλάντωση με συχνότητα f 2 τέτοια ώστε το σώμα σε κάθε 8s να διέρχεται 48 φορές από τη θέση ισορροπίας του, τότε παρατηρείταιμεγιστοποίησητουπλάτουςτηςταλάντωσηςκαιημέγιστηδυναμική ενέργειατηςταλάντωσηςισούταιμεu max(2) =45J. α)ναυπολογίσετετησταθεράkτουελατηρίου. 33

35 β)ναβρείτετοπλάτοςτηςταλάντωσηςτουσώματοςμεσυχνότηταf 1 ανδίνεταιότι ημέγιστηδυναμικήενέργειατηςταλάντωσηςμετησυχνότητααυτήδιαφέρειαπό τημέγιστηδυναμικήενέργειατηςταλάντωσηςμεσυχνότηταf 2 κατά16,2j. γ) Να σχεδιάσετε ποιοτικά το πλάτος της ταλάντωσης σε συνάρτηση με τη συχνότητατουδιεγέρτη.στοσχήμααυτόναφαίνονταιοισυχνότητεςf 1 καιf 2 καθώς καιτοπλάτοςπουαντιστοιχείσεκαθεμιάαπόαυτές. Δίνεταιγιατιςπράξειςπ 2 =10. Απ.α)k=360N/mβ)Α 1 =0,4mγ)Α 2 =0,5m ΣΥΝΘΕΣΗΤΑΛΑΝΤΩΣΕΩΝ Σύνθεσηταλαντώσεων(Α) Φθίνουσαταλάντωση Εξαναγκασμένηταλάντωση. 57. Υλικό σημείο μάζας m=0,1 Kg εκτελεί περιοδική ευθύγραμμη κίνηση με χρονικήεξίσωση = 0,25 2. "# 20 0,25 2. " 20 (. ) A. 1.Ναδείξετεότιηπαραπάνωκίνησηείναιαπλήαρμονικήταλάντωση. 2.Ναγράψετετηχρονικήεξίσωσητηςταχύτητας. Β. Κάποια στιγμή που τη θεωρούμε ως χρονική στιγμή t=0 και ενώ ο ταλαντωτής βρίσκεταιστημέγιστηθετικήαπομάκρυνση,αρχίζειναδραδύναμηαπόσβεσηςτης μορφήςf =]0,2.υ(S.I)καιτοπλάτοςαρχίζειναμειώνεταιεκθετικάμετοχρόνο. 1.Ποιοςείναιορυθμόςμείωσηςτηςενέργειαςτουταλαντωτή,ότανηταχύτητατου έχειμέτρου=0,5m/s; 2.Ποιαστιγμήηενέργειαέχειμειωθείστο1/64τηςαρχικήςτηςτιμής; 3.Μετάαπόπόσεςταλαντώσειςτοπλάτοςθαμειωθείκατά50%; Γ. Για να παραμένει η ταλάντωση αμείωτη με εξίσωση αυτή της περίπτωσης (Α) ασκούμε εξωτερική περιοδική δύναμη F. Να γράψετε τη χρονική εξίσωση της δύναμης αυτής εφόσον γνωρίζετε ότι το σύστημα βρίσκεται σε κατάσταση συντονισμού. Ναθεωρήσετεότιηπερίοδοςτηςφθίνουσαςταλάντωσηςείναιίσημετηπερίοδο τηςαπλήςαρμονικήςταλάντωσης. Δίνονταιln2=0,7,π=3,14καιπ 2 =10. Σύνθεσηταλαντώσεων(Α) 58. Μικρόσώμαεκτελείταυτόχροναδύοαπλέςαρμονικέςταλαντώσειςx 1 =f(t)και x 2 =f(t) ίδιας συχνότητας f=5hz, οι οποίες εξελίσσονται στην ίδια διεύθυνση και 34

36 γύρω από την ίδια θέση ισορροπίας και εμφανίζουν διαφορά φάσης π/2 με την x 2 =f(t)ναπροηγείται.ησυνισταμένηταλάντωσηπουεκτελείτοσώμαέχειπλάτος Α=2m και ενέργεια Ε=20J. Αν το σώμα εκτελούσε μόνο την ταλάντωση x 1 =f(t) οι ακραίεςθέσειςτηςταλάντωσηςθααπείχανμεταξύτουςαπόστασηd=2 3mκαιτη χρονική στιγμή t=0 το σώμα θα περνούσε από τη θέση ισορροπίας με θετική ταχύτητα. α)ναβρείτετημέγιστητιμήτηςσυνισταμένηςδύναμηςπουδέχεταιησφαίρακατά τηδιάρκειατηςσυνισταμένηςταλάντωσης. β)ναγράψετετηχρονικήεξίσωσηx 2 =f(t). γ) Να γράψετε τις χρονικές εξισώσεις της ταχύτητας και της επιτάχυνσης της συνισταμένηςταλάντωσηςπουεκτελείτοσώμα. δ) Να υπολογίσετε το έργο της δύναμης επαναφοράς κατά τη διάρκεια της συνισταμένηςταλάντωσηςαπότηχρονικήστιγμήt=0μέχριτηχρονικήστιγμήπου τοσώμαφτάνειγιαπρώτηφοράσεακραίαθέσητηςταλάντωσης. Απάντηση. α)σf max =20Nβ)x 2 =1.ημ(10πt+π/2)(S.I)γ)υ=20π.συν(10πt+π/6)(S.I), α=]2000.ημ(10πt+π/6)(s.i)δ)w=]15j Σύνθεσηταλαντώσεων(Α)καιφθίνουσαταλάντωση 59. Σώμα μάζας m=1,2kg εκτελεί σύνθετη αρμονική ταλάντωση της οποίας οι συνιστώσεςταλαντώσειςέχουνεξισώσεις: x 1 =3ημ(ωt)(S.I)καιx 2 =3ημ(ωt+π/3)(S.I) α)υπολογίστετοπλάτοςακαιτηναρχικήφάσηθτηςσυνισταμένηςταλάντωσης. β)ναγράψετετηχρονικήεξίσωσητηςαπομάκρυνσηςτουσώματοςανγνωρίζετε ότιτοσώμαπερνάγιαπρώτηφοράαπότηθέσηισορροπίαςτουτηχρονικήστιγμή t=2,5s. γ)ναυπολογίσετετηνκινητικήενέργειατουσώματοςτηχρονικήστιγμήt=5,5s. δ)θεωρήστεότικάποιαχρονικήστιγμήt 1 >5,5sπουτοσώμαβρίσκεταιστηθέση x=+a, αρχίζει να δέχεται δύναμη απόσβεσης της μορφής F=]b.υ,οπότεμετάαπό χρόνοt=12sτοπλάτοςυποδιπλασιάζεται.μετάαπόπόσοχρόνοαπότηστιγμήt 1 το πλάτοςτηςταλάντωσηςθαγίνεια/16;δίνεταιπ 2 =10. Σύνθεσηταλαντώσεων(Α) 60. Ένα σώμα μάζας m=2kg εκτελεί απλή αρμονική ταλάντωση που προκύπτει απότησύνθεσηδύοαπλώναρμονικώνταλαντώσεων(ι)και(ιι)μεπλάτηα 1 =5cm και Α 2 =5 3 cm. Οι ταλαντώσεις εξελίσσονται στην ίδια διεύθυνση γύρω από την 35

37 ίδια θέση ισορροπίας και με την ίδια συχνότηταf=2hz. Τη χρονική στιγμήt=0 το σώμαεξαιτίαςτηςταλάντωσης(ι)θαβρισκότανστηθέσηισορροπίαςτουκινούμενο κατά τη θετική φορά ενώ εξαιτίας της ταλάντωσης (ΙΙ) θα είχε βρεθεί στην αντίστοιχηκατάστασηπριναπόχρόνοδt=1/8s. α)να γραφούν οι χρονικές εξισώσεις των συνιστωσών ταλαντώσεων και της συνισταμένηςταλάντωσης. β)ναυπολογιστείηκινητικήενέργειατουσώματοςτηχρονικήστιγμήt=1/4s. γ) Να υπολογιστεί το έργο της δύναμης επαναφοράς από τη χρονική στιγμή t=0 μέχριτηχρονικήστιγμήt=1/4s. Απ:α)x 1 =0,05ημ(4πt)(S.I),x 2 =0,05 3ημ(4πt+π/2)(S.I),x=0,1ημ(4πt+π/2)(S.I) Σύνθεσηταλαντώσεων(Α) 61. Μικρό σώμα μάζας m=4kg εκτελεί ταυτόχρονα 3 ταλαντώσεις που εξελίσσονταιστηνίδιαδιεύθυνσηκαιγύρωαπότηνίδιαθέσηισορροπίαςκαιέχουν εξισώσειςx 1 =0,4ημ(10t)(S.I),x 2 =0,1ημ(10t+π)(S.I)καιx 3 =Α 3 ημ(10t+2π/3)(s.i).η μέγιστη δύναμη επαναφοράς που δέχεται το μικρό σώμα κατά τη διάρκεια της ταλάντωσήςτουείναι120ν. α)ναυπολογίσετετοπλάτοςτηςσυνισταμένηςταλάντωσης. β)ναβρείτετοπλάτοςα 3. γ)ναγράψετετηχρονικήεξίσωσητηςκινητικήςενέργειαςτουσώματος. δ)ναυπολογίσετετομέτροτηςεπιτάχυνσηςτουσώματοςτιςχρονικέςστιγμέςπου ηδυναμικήενέργειατηςσυνισταμένηςταλάντωσηςισούταιμε2j. Aπ.α)Α=0,3mβ)Α 3 =0,3mγ)Κ=18συν 2 (10t+π/3)(S.I)δ)α=10m/s 2 Σύνθεσηταλαντώσεων(Α) 62. Υλικόσημείομάζαςm=0,2Kgκινείταιευθύγραμμακαιηεξίσωσητηςκίνησής τουδίνεταιαπότησχέση: y=3.ημ2πt+3.συν2πt(s.i) α) Να δείξετε ότι το υλικό σημείο εκτελεί απλή αρμονική ταλάντωση και να υπολογίσετετοπλάτοςτηςκαιτηπερίοδότης. β)ναβρείτετημέγιστητιμήτουμέτρουτηςδύναμηςεπαναφοράς. γ)ναβρείτετηνενέργειατηςταλάντωσης. 36

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης

4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης 4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης 1 ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Στην ελαστική κρούση όπου το ένα σώμα είναι ακίνητο αρχικά εφαρμόζω τις γνωστές σχέσεις : Για το σώμα m 1 που αρχικά κινείται με ταχύτητα

Διαβάστε περισσότερα

1.1 Κινηματική προσέγγιση

1.1 Κινηματική προσέγγιση 1.1 Κινηματική προσέγγιση ΣΑ 1.8: Η απομάκρυνση από τη θέση ισορροπίας ενός σώματος που κάνει αατ δίνεται σε συνάρτηση με το χρόνο από τη σχέση x=10 ημ(π/4t) (x σε cm και t σε s). Να βρείτε: Α) το πλάτος

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ 1. Ελατήριο σταθεράς K τοποθετείται κατακόρυφα με το πάνω άκρο του στερεωμένο σε ακλόνητο σημείο. Ένα σώμα μάζας M=1 kg δένεται στο κάτω άκρο του ελατηρίου και η επιμήκυνση που προκαλεί

Διαβάστε περισσότερα

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια; 1. Στην κάτω άκρη ενός ιδανικού ελατήριου είναι δεμένο ένα σώμα που έχει μάζα m 1 = m και ισορροπεί. Στην κάτω άκρη ενός άλλου ομοίου ελατήριου είναι δεμένο ένα άλλο σώμα που έχει μάζα m 2 = 4m και ισορροπεί.

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε. 1.1. Μηχανικές. Ομάδα Ε. 1.1.81. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας 1kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k 1 =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο

Διαβάστε περισσότερα

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο.

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. 1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου σταθεράς, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. Το σώμα εκτελεί απλή αρμονική ταλάντωση, κατά τη διεύθυνση του άξονα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 Θέμα Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι:

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι: 1. Σώμα εκτελεί Α.Α.Τ. με περίοδο 2 s και πλάτος ταλάντωσης 0,1 m. Τη χρονική στιγμή 0 το σώμα διέρχεται από τη θέση ισορροπίας του με θετική ταχύτητα. Να υ πολογιστούν: α) η συχνότητα και η γωνιακή συχνότητα

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ. 1.1. Μηχανικές. Ομάδα Δ. 1.1.51. Συνάντηση σωμάτων που ταλαντώνονται. Τα σώματα Α και Β του σχήματος έχουν ίσες μάζες m 1 =m 2 =m=1kg. Τα δύο σώματα ισορροπούν πάνω στο λείο οριζόντιο δάπεδο, με τα ελατήρια

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Ταλαντώσεις Θέμα Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Α1. Αν μεταβληθεί η ολική ενέργεια της ταλάντωσης

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ.

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΩΤΗΣΗ 1 Στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 400 N/m είναι κρεμασμένο σώμα μάζας m = 1 kg. Το σύστημα ελατήριο-σώμα εξαναγκάζεται

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Δύο εγκάρσια κύματα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Σελίδα από ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ () ΘΕΜΑ Α Α. Με την πάροδο του χρόνου και καθώς τα αμορτισέρ ενός αυτοκινήτου παλιώνουν και φθείρονται:

Διαβάστε περισσότερα

1. Ένα σώμα A μάζας, κινούμενο με ταχύτητα πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική κατεύθυνση του άξονα x Ox, συγκρούεται με ακίνητο σώμα Β.

1. Ένα σώμα A μάζας, κινούμενο με ταχύτητα πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική κατεύθυνση του άξονα x Ox, συγκρούεται με ακίνητο σώμα Β. ΚΡΟΥΣΕΙΣ ΕΠΑΝΑΛΗΨΗ 1. Ένα σώμα A μάζας, κινούμενο με ταχύτητα πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική κατεύθυνση του άξονα x Ox, συγκρούεται με ακίνητο σώμα Β. Α) Αν η κρούση είναι μετωπική και ελαστική

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΜΕΙΩΤΕΣ ΓΡΑΜΜΙΚΕΣ ΑΡΜΟΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ http://users.sch.gr/cdfan

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί,

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί, ΚΡΟΥΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Σφαίρα Α μάζας 3m κινείται πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική φορά και συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα Β μάζας m που κινείται κατά την

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια.

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια. 4.1.. 4.1.Ταχύτητες κατά την ελαστική κρούση. Σε λείο οριζόντιο επίπεδο κινείται ένα σώμα Α μάζας m 1 =0,2kg με ταχύτητα υ 1 =6m/s και συγκρούεται κεντρικά και ελαστικά με δεύτερο σώμα Β μάζας m 2 =0,4kg.

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

Ποιο είναι το πλάτος της ταλάντωσης ;

Ποιο είναι το πλάτος της ταλάντωσης ; Ποιο είναι το πλάτος της ταλάντωσης ; 1. Ένα σώμα είναι δεμένο στο δεξιό άκρο οριζόντιου ιδανικού ελατηρίου και στο αριστερό άκρο οριζόντιου νήματος και ηρεμεί σε ισορροπία όπως δείχνει το σχήμα. Το ελατήριο

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ) α (cm/s ) ΚΕΦΑΛΑΙΟ 3 Κατηγορία Α ΤΑΛΑΝΤΩΣΕΙΣ (3 ΠΕΡΙΟΔΟΙ) 1. Να προσδιορίσετε ποια από τα πιο κάτω φυσικά μεγέθη μπορεί να έχουν την ίδια κατεύθυνση για ένα απλό αρμονικό ταλαντωτή: α. θέση και ταχύτητα,

Διαβάστε περισσότερα

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής Γ) Ορμή και διατήρηση ορμής 1) Στο ταβάνι, στον τοίχο ή στο πάτωμα; Βρισκόμαστε σε ένα δωμάτιο όπου ταβάνι τοίχος και δάπεδο έχουν φτιαχτεί από το ίδιο υλικό και κάνουμε το εξής πείραμα. Εκτοξεύουμε μπαλάκι

Διαβάστε περισσότερα

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

[50m/s, 2m/s, 1%, -10kgm/s, 1000N] ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

3.1. Διατήρηση της Ορμής.

3.1. Διατήρηση της Ορμής. 3.1. Διατήρηση της Ορμής. 3.1.Ορμή και ρυθμός μεταβολής της ορμής. Ένα σώμα μάζας m=2kg εκτελεί ομαλή κυκλική κίνηση με ταχύτητα υ=5m/s σε κύκλο κέντρου Ο και ακτίνας R=10m. i) Υπολογίστε την ορμή του

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 05-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08//05 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4 1. F 2 F 3 F 1 F 4 Στο σώμα του παραπάνω σχήματος βάρους Β = 20Ν ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς τα δεξιά κατά 2m να υπολογισθεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις,

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις, 1. Κάθε ελατήριο του σχήματος έχει το ένα άκρο του στερεωμένο σε ακίνητο σημείο και το άλλο του άκρο προσδεμένο στο σώμα Σ. Οι σταθερές των δύο ελατηρίων είναι Κ 1 =120Ν/m και Κ 2 =80N/m. To σώμα Σ, έχει

Διαβάστε περισσότερα

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ 1. Στο σώμα του σχήματος έχει βάρος Β = 20Ν είναι ακίνητο και του ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ.. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Σώμα μάζας = g κινείται σε λείο οριζόντιο επίπεδο με ταχύτητα υ μέτρου υ = 5 /s συγκρούεται

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m /s, ενώ στη θέση με απομάκρυνση

Διαβάστε περισσότερα

Φάσμα. Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα. Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ 50.51.557 50.56.296 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 25ης Μαρτίου 74 Πλ.ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Νήμα τυλίγεται σε λεπτό αυλάκι κατά μήκος της περιφέρειας κυλίνδρου, που έχει μάζα 2 kg και ακτίνα 0,2 m. Ο κύλινδρος συγκρατείται αρχικά στη θέση που φαίνεται στο σχήμα, με το νήμα να εξέχει τεντωμένο

Διαβάστε περισσότερα

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α.

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α. Γ Τάξης Γενικού Λυκείου Σάββατο 1 Νοεμβρίου 016 Απλή Αρμονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες Ονοματεπώνυμο: Θέμα Α. Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων)

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων) Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων) ~Διάρκεια 3 ώρες~ Θέμα Α 1) Σε μια φθίνουσα ταλάντωση στην οποία το πλάτος μειώνεται εκθετικά με το χρόνο: i) Η περίοδος δε διατηρείται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ 1. Σφαίρα μάζας m 1 =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1 =8m /s συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα μάζας =3 kg που κινείται προς τα αριστερά με ταχύτητα

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις. Θέµα Α

Ενδεικτικές Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Στη σύνθεση δύο απλών αρµονικών ταλαντώσεων της ίδιας συχνότητας που γίνονται γύρω από το ίδιο σηµείο και στην ίδια διεύθυνση,

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6/0/06 ΕΩΣ 30/0/06 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 6 Οκτωβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου Θέμα Α 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση περιόδου Τ και τη χρονική στιγμή t=0 βρίσκεται στην ακραία αρνητική του απομάκρυνση. Μετά από χρόνο t 1 =

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΥΡΙΑΚΗ 13 ΟΚΤΩΒΡΙΟΥ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΥΡΙΑΚΗ 13 ΟΚΤΩΒΡΙΟΥ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ Θέμα A ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΥΡΙΑΚΗ 13 ΟΚΤΩΒΡΙΟΥ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Οδηγία: Να γράψετε στο τετράδιό σας, δίπλα στον

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5)

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5) ΘΕΜΑ Α 1) Σύστημα ελατηρίου-σώματος με μάζα m εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς k. Αν η μάζα του σώματος τετραπλασιαστεί τότε: α/ το πλάτος της ταλάντωσης θα τετραπλασιαστεί β/ η περίοδος

Διαβάστε περισσότερα

α.- β. γ. δ. Μονάδες 5

α.- β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 13/11/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις 1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Οµάδα Β Στις ηµιτελείς

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α

Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως και Α.4 να γράψετε τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση. Α1) Ένα σώμα κάνει α.α.τ.

Διαβάστε περισσότερα

α. να υπολογίσετε το πλάτος της ταλάντωσης K=25N/m

α. να υπολογίσετε το πλάτος της ταλάντωσης K=25N/m 1 Θέμα 1 ο Tο σώμα με μάζα m 1=0,75Kg ισορροπεί. Πάνω από το σώμα και σε απόσταση από αυτό 40cm εκτοξεύουμε κατακόρυφα μια μπίλια με μάζαm 2 =0,25Kg προς τα πάνω με ταχύτητα 2m/s και κατά την επιστροφή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 13/11/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 13/11/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 13/11/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ γ τάξη ενιαίου λυκείου (εξεταστέα ύλη: κρούσεις - ταλαντώσεις) Κυριακή, 6 Οκτωβρίου 6 ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΤΜΗΜΑ: ΘΕΜΑ Α (διάρκεια εξέτασης: 7.sec) Στις ερωτήσεις Α Α4

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 6/0/0 ΘΕΜΑ 0 Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής - 5, να γράψετε στο

Διαβάστε περισσότερα

0. Ασκήσεις επανάληψης.

0. Ασκήσεις επανάληψης. 0. Ασκήσεις επανάληψης. 1. Κίνηση με μεταβλητή κατακόρυφη δύναμη Ένα σώμα μάζας 2kg βρίσκεται ακίνητο στο έδαφος. Σε μια στιγμή δέχεται την επίδραση μιας μεταβλητής κατακόρυφης δύναμης F, το μέτρο της

Διαβάστε περισσότερα

[απ. α) =2 m/s, β) h=1,25 m, γ) =9 J, =8 J]

[απ. α) =2 m/s, β) h=1,25 m, γ) =9 J, =8 J] Ορµή 1. Ένα αυτοκίνητο μάζας 1000 kg κινείται με ταχύτητα 72 km/h. Κάποια στιγμή προσκρούει σε τοίχο και σταματάει. Αν η διάρκεια της σύγκρουσης είναι 0,2 s να βρείτε α) Την μεταβολή της ορμής του β) Τη

Διαβάστε περισσότερα

Δ1. Αν η τάση του νήματος ισούται με Ν, να υπολογίσετε την απόσταση του

Δ1. Αν η τάση του νήματος ισούται με Ν, να υπολογίσετε την απόσταση του Στερεό σώμα κρούση γ.α.τ. 1. Η μη ομογενής ράβδος του σχήματος μάζας Μ = 4kg,έχει μήκος l = 8m και μπορεί να στρέφεται ελεύθερα γύρω από οριζόντιο άξονα κάθετο στη ράβδο που διέρχεται από την άρθρωση στο

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Σεπτέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο: ΚΡΟΥΣΕΙΣ -ΦΑΙΝΟΜΕΝΟ DOPPLER ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 5ο: ΚΡΟΥΣΕΙΣ -ΦΑΙΝΟΜΕΝΟ DOPPLER ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ.

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ. 1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ. 1.4.1. Σύνθετη ταλάντωση και περιστρεφόμενα διανύσματα. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση, της οποίας η απομάκρυνση από τη θέση ισορροπίας είναι x=0, + (..) και

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Ένα βλήμα μάζας 0,1 kg που κινείται οριζόντια με ταχύτητα 100 m/s σφηνώνεται σε ακίνητο ξύλο μάζας 1,9 kg. Να βρεθεί η απώλεια ενέργειας που οφείλεται στην κρούση, όταν το ξύλο είναι: α. πακτωμένο στο

Διαβάστε περισσότερα

2

2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1. Να βρείτε ποια από τις παρακάτω απαντήσεις είναι η σωστή. Η περίοδος της ταλάντωσης σώματος Α κρεμασμένου στο άκρο ελατηρίου είναι 3s, ενώ σώματος Β κρεμασμένου

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στις ΤΑΛΑΝΤΩΣΕΙΣ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στις ΤΑΛΑΝΤΩΣΕΙΣ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr Φυσική Γ Λυκείου Θετικής - Τεχνολογικής κατεύθυνσης Επαναληπτικά θέματα στις ΤΑΛΑΝΤΩΣΕΙΣ Πηγή: study4exams.gr Επιμέλεια: Μαρούσης Βαγγέλης Φυσικής ζητήματα 1 Επαναληπτικά Θέματα στις ΤΑΛΑΝΤΩΣΕΙΣ A. Ερωτήσεις

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.. Σώμα μάζας = 0,5 g έχει το ένα άκρο στερεωμένο σε οριζόντιο ιδανικό ελατήριο σταθεράς = 50 / και το άλλο άκρο του βρίσκεται

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 83 -- ΤΗΛ. 0-447, 43687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ. Α. Σώμα εκτελεί εξαναγκασμένη ταλάντωση με εξίσωση x A ημωt. H δύναμη που αντιστέκεται

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

Ερωτήσεις του τύπου Σωστό /Λάθος

Ερωτήσεις του τύπου Σωστό /Λάθος Ερωτήσεις του τύπου Σωστό /Λάθος Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά απ αυτόν το γράμμα Σ αν την κρίνετε σωστή ή το

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

Μηχανικές ταλαντώσεις

Μηχανικές ταλαντώσεις ο ΘΕΜΑ Μηχανικές ταλαντώσεις Α Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Η εξίσωση της

Διαβάστε περισσότερα

των δύο σφαιρών είναι. γ.

των δύο σφαιρών είναι. γ. ΘΕΜΑ B Σφαίρα µάζας κινούµενη µε ταχύτητα µέτρου υ συγκρούεται κεντρικά και ελαστικά µε ακίνητη σφαίρα ίσης µάζας Να βρείτε τις σχέσεις που δίνουν τις ταχύτητες των δύο σφαιρών, µετά την κρούση, µε εφαρµογή

Διαβάστε περισσότερα

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος.

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος. ο ΘΕΜΑ Κρούσεις Α Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σε κάθε κρούση ισχύει α η

Διαβάστε περισσότερα

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1 ο Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 55 ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Α. ΠΡΟΣΘΕΣΗ ΔΥΝΑΜΕΩΝ ΝΟΜΟΣ ΤΟΥ HOOKE 1. Να σχεδιάσετε δύο αντίρροπες δυνάμεις F 1=5N και F 2=15N με κλίμακα 1cm/2,5N και να βρείτε την συνισταμένη τους. (Απ.: 10

Διαβάστε περισσότερα

Μηχανικές ταλαντώσεις

Μηχανικές ταλαντώσεις ο ΘΕΜΑ Μηχανικές ταλαντώσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Η εξίσωση

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα